
A selective overview of deep learning

Jianqing Fan, Cong Ma, Yiqiao Zhong
Department of ORFE, Princeton University, Princeton, NJ, 08544

Abstract

Deep learning has achieved tremendous success in recent years. In simple words, deep learning

uses the composition of many nonlinear functions to model the complex dependency between

input features and labels. While neural networks have a long history, recent advances have greatly

improved their performance in computer vision, natural language processing, etc. From the

statistical and scientific perspective, it is natural to ask: What is deep learning? What are the new

characteristics of deep learning, compared with classical methods? What are the theoretical

foundations of deep learning?

To answer these questions, we introduce common neural network models (e.g., convolutional

neural nets, recurrent neural nets, generative adversarial nets) and training techniques (e.g.,

stochastic gradient descent, dropout, batch normalization) from a statistical point of view. Along

the way, we highlight new characteristics of deep learning (including depth and over-

parametrization) and explain their practical and theoretical benefits. We also sample recent results

on theories of deep learning, many of which are only suggestive. While a complete understanding

of deep learning remains elusive, we hope that our perspectives and discussions serve as a stimulus

for new statistical research.

Keywords

neural networks; over-parametrization; stochastic gradient descent; approximation theory;
generalization error

1. INTRODUCTION

Modern machine learning and statistics deal with the problem of learning from data: given a

training dataset {(yi,xi)}1≤i≤n where xi ∈ ℝd is the input and yi ∈ ℝ is the output1, one

seeks a function f : ℝd ℝ from a certain function class ℱ that has good prediction

performance on test data. This problem is of fun-damental significance and finds

applications in numerous scenarios. For instance, in image recognition, the input x (reps. the

output y) corresponds to the raw image (reps. its category) and the goal is to find a mapping

f(·) that can classify future images accurately. Decades of research efforts in statistical

machine learning have been devoted to developing methods to find f(·) efficiently with

jqfan@princeton.edu;.
1When the label y is given, this problem is often known as supervised learning. We mainly focus on this paradigm throughout this
paper and remark sparingly on its counterpart, unsupervised learning, where y is not given.

HHS Public Access
Author manuscript
Stat Sci. Author manuscript; available in PMC 2021 July 23.

Published in final edited form as:
Stat Sci. 2021 May ; 36(2): 264–290. doi:10.1214/20-sts783.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

provable guarantees. Prominent examples include linear classifiers (e.g., linear / logistic

regression, linear discriminant analysis), kernel methods (e.g., support vector machines),

tree-based methods (e.g., decision trees, random forests), nonparametric regression (e.g.,

nearest neighbors, local kernel smoothing), etc. Roughly speaking, each aforementioned

method corresponds to a different function class ℱ from which the final classifier f(·) is

chosen.

Deep learning (LeCun, Bengio and Hinton, 2015), in its simplest form, proposes the

following compositional function class:

f(x; θ) = WLσL WL − 1⋯σ2 W2σ1 W1x ∣ θ = W1, …, WL . (1.1)

Here, for each 1 ≤ l ≤ L, σl(⋅) is some nonlinear function, and θ = {W1,…,WL} consists of

matrices with appropriate sizes. Though simple, deep learning has made significant progress

towards addressing the problem of learning from data over the past decade. Specifically, it

has performed close to or better than humans in various important tasks in artificial

intelligence, including image recognition (He et al., 2016a), game playing (Silver et al.,

2017), and machine translation (Wu et al., 2016). Owing to its great promise, the impact of

deep learning is also growing rapidly in areas beyond artificial intelligence; examples

include statistics (Bauer and Kohler, 2017; Schmidt-Hieber, 2017; Liang, 2017; Romano,

Sesia and Candès, 2018; Gao et al., 2018), applied mathematics (Weinan, Han and Jentzen,

2017; Chen et al., 2018), clinical research (De Fauw et al., 2018), etc.

To get a better idea of the success of deep learning, let us take the ImageNet Challenge

(Russakovsky et al., 2015) (also known as ILSVRC) as an example. In the classification

task, one is given a training dataset consisting of 1.2 million color images with 1000

categories, and the goal is to classify images based on the input pixels. The performance of a

classifier is then evaluated on a test dataset of 100 thousand images, and in the end the top-5

error2 is reported. Table 1 highlights a few popular models and their corresponding

performance. As can be seen, deep learning models (the second to the last rows) have a clear

edge over shallow models (the first row) that fit linear models / tree-based models on

handcrafted features. This significant improvement raises a foundational question:

Why is deep learning better than classical methods on tasks like image recognition?

1.1 Intriguing new characteristics of deep learning

It is widely acknowledged that two indispensable factors contribute to the success of deep

learning, namely (1) huge datasets that often contain millions of samples and (2) immense

computing power resulting from clusters of graphics processing units (GPUs). Admittedly,

these resources are only recently available: the latter allows to train larger neural networks

which reduces biases and the former enables variance reduction. However, these two alone

are not sufficient to explain the mystery of deep learning due to some of its “dreadful”

characteristics: (1) over-parametrization: the number of parameters in state-of-the-art deep

learning models is often much larger than the sample size (see Table 1), which gives them

2The algorithm makes an error if the true label is not contained in the 5 predictions made by the algorithm.

Fan et al. Page 2

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the potential to overfit the training data, and (2) nonconvexity: even with the help of GPUs,

training deep learning models is still NP-hard (Arora and Barak, 2009) in the worst case due

to the highly nonconvex loss function to minimize. In reality, these characteristics are far

from nightmares. This sharp difference motivates us to take a closer look at the salient

features of deep learning, which we single out a few below.

1.1.1 Depth.—Deep learning expresses complicated nonlinearity through composing

many nonlinear functions; see (1.1). The rationale for this multilayer structure is that, in

many real-world datasets such as images, there are different levels of features and lower-

level features are building blocks of higher-level ones. See Yosinski et al. (2015) for a

visualization of trained features of convolutional neural nets. This is also supported by

empirical results from physiology and neuroscience (Hubel and Wiesel, 1962; Abbasi-Asl et

al., 2018). The use of function composition marks a sharp difference from traditional

statistical methods such as projection pursuit models (Friedman and Stuetzle, 1981) and

multi-index models (Li, 1991; Cook et al., 2007). It is often observed that depth helps

efficiently extract features that are representative of a dataset. In comparison, increasing

width (e.g., number of basis functions) in a shallow model leads to less improvement. This

suggests that deep learning models excel at representing a very different function space that

is suitable for complex datasets.

1.1.2 Algorithmic regularization.—The statistical performance of neural networks

(e.g., test accuracy) depends heavily on the particular optimization algorithms used for

training (Wilson et al., 2017). This is very different from many classical statistical problems,

where the related optimization problems are less complicated. For instance, when the

associated optimization problem has a relatively simple structure (e.g., convex objective

functions, linear constraints), the solution to the optimization problem can often be

unambiguously computed and analyzed. However, in deep neural networks, due to over-

parametrization, there are usually many local minima with different statistical performance

(Li et al., 2018a). Nevertheless, common practice runs stochastic gradient descent with

random initialization and finds model parameters with very good prediction accuracy.

1.1.3 Implicit prior learning.—It is well observed that deep neural networks trained

with only the raw inputs (e.g., pixels of images) can provide a useful representation of the

data. This means that after training, the units of deep neural networks can represent features

such as edges, corners, wheels, eyes, etc.; see Yosinski et al. (2015). Importantly, the training

process is automatic in the sense that no human knowledge is involved (other than hyper-

parameter tuning). This is very different from traditional methods, where algorithms are

designed after structural assumptions are posited. It is likely that training an over-

parametrized model efficiently learns and incorporates the prior distribution p(x) of the

input, even though deep learning models are themselves discriminative models. With

automatic representation of the prior distribution, deep learning typically performs well on

similar datasets (but not very different ones) via transfer learning.

Fan et al. Page 3

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1.2 Towards theory of deep learning

Despite the empirical success, theoretical support for deep learning is still in its infancy.

Setting the stage, for any classifier f, denote by E(f) the expected risk on fresh sample (a.k.a.

test error, prediction error or generalization error), and by En(f) the empirical risk / training

error averaged over a training dataset. Arguably, the key theoretical question in deep

learning is

why is E fn small, where fn is the classifier returned by the training algorithm?

We follow the conventional approximation-estimation decomposition (sometimes, also bias-

variance tradeoff) to decompose the term E fn into two parts. Let ℱ be the function space

expressible by a family of neural nets. Define f* = argminfE(f) to be the best possible

classifier and fℱ* = argminf ∈ ℱE(f) to be the best classifier in ℱ. Then, we can decompose

the excess error ℰ ≜ E fn − E f* into two parts:

ℰ = E fℱ* − E f*
approximationerror

+ E fn − E fℱ*
estimationerror

.
(1.2)

Both errors can small for deep learning (cf. Figure 1), which we explain below.

• The approximation error is determined by the function class ℱ. Intuitively, the

larger the class, the smaller the approximation error. Deep learning models use

many layers of nonlinear functions (Figure 2)that can drive this error small.

Indeed, in Section 5, we provide recent theoretical progress of its representation

power. For example, deep models allow efficient representation of interactions

among variable while shallow models cannot.

• The estimation error reflects the generalization power, which is influenced by

both the complexity of the function class ℱ and the properties of the training

algorithms. Interestingly, for over-parametrized deep neural nets, stochastic

gradient descent typically results in a near-zero training error (i.e., En fn ≈ 0;

see e.g. left panel of Figure 1). Moreover, its generalization error E fn remains

small or moderate. This “counterintuitive” behavior suggests that for over-

parametrized models, gradient-based algorithms enjoy benign statistical

properties; we shall see in Section 7 that gradient descent enjoys implicit
regularization in the over-parametrized regime even without explicit

regularization (e.g., l2 regularization).

The above two points lead to the following heuristic explanation of the success of deep

learning models. The large depth of deep neural nets and heavy over-parametrization lead to

small or zero training errors, even when running simple algorithms with moderate number of

iterations. In addition, these simple algorithms with moderate number of steps do not

explore the entire function space and thus have limited complexities, which results in small

generalization error with a large sample size. Thus, by combining the two aspects, it

explains heuristically that the test error is also small.

Fan et al. Page 4

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1.3 Roadmap of the paper

We first introduce basic deep learning models in Sections 2–4, and then examine their

representation power via the lens of approximation theory in Section 5. Section 6 is devoted

to training algorithms and their ability of driving the training error small. Then we sample

recent theoretical progress towards demystifying the generalization power of deep learning

in Section 7. Along the way, we provide our own perspectives, and at the end we identify a

few interesting questions for future research in Section 8. The goal of this paper is to present

suggestive methods and results, rather than giving conclusive arguments (which is currently

unlikely) or a comprehensive survey. We hope that our discussion serves as a stimulus for

new statistics research.

2. FEED-FORWARD NEURAL NETWORKS

Before introducing the vanilla feed-forward neural nets, let us set up necessary notations for

the rest of this section. We focus primarily on classification problems, as regression

problems can be addressed similarly. Given the training dataset {(yi, xi)}1≤i≤n where yi ∈ [K]

≜ {1, 2, …, K} and xi ∈ ℝd are independent across i ∈ [n], supervised learning aims at

finding a (possibly random) function f(x) that predicts the outcome y for a new input x,

assuming (y, x) follows the same distribution as (yi, xi). In the terminology of machine

learning, the input xi is often called the feature, the output yi called the label, and the pair

(yi, xi) is an example. The function f is called the classifier, and estimation of f is training

or learning. The performance of f is evaluated through the prediction error ℙ(y ≠ f(x)),
which can be often estimated from a separate test dataset.

As with classical statistical estimation, for each k ∈ [K], a classifier approximates the

conditional probability ℙ(y = k ∣ x) using a function fk(x; θk) parametrized by θk. Then the

category with the highest probability is predicted. Thus, learning is essentially estimating the

parameters θk. In statistics, one of the most popular methods is (multinomial) logistic

regression, which stipulates a specific form for the functions fk(x; θk): let zk = x⊤βk + αk

and fk(x; θk) = Z−1 exp(zk) where Z = ∑k = 1
K exp zk is a normalization factor to make

{fk(x; θk)}1≤k≤K a valid probability distribution. It is clear that logistic regression induces

linear decision boundaries in ℝd, and hence it is restrictive in modeling nonlinear

dependency between y and x. The deep neural networks we introduce below provide a

flexible framework for modeling nonlinearity in a fairly general way.

2.1 Model setup

From the high level, deep neural networks (DNNs) use composition of a series of simple

nonlinear functions to model nonlinearity

h(L) = g(L) ○ g(L − 1) ○ … ○ g(1)(x),

where ○ denotes composition of two functions and L is the number of hidden layers, and is

usually called depth of a NN model. Letting h(0) ≜ x, one can recursively define

Fan et al. Page 5

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

h(l) = g(l) h(l − 1) for all l = 1, 2, …, L. The feed-forward neural networks, also called the

multilayer perceptrons (MLPs), are neural nets with a specific choice of g(l) : forl = 1, …, L,

define

h(l) = g(l) h(l − 1) ≜ σ W(l)h(l − 1) + b(l) , (2.1)

where W(l) and b(l) are the weight matrix and the bias / intercept, respectively, associated

with the l-th layer, and σ(·) is usually a simple given (known) nonlinear function called the

activation function. In words, in each layer l, the input vector h(l − 1) goes through an affine

transformation first and then passes through a fixed nonlinear function σ(·). See Figure 2 for

an illustration of a simple MLP with two hidden layers. The activation function (·) is usually

applied element-wise, and a popular choice is the ReLU (Rectified Linear Unit) function:

[σ(z)]j = max zj, 0 . (2.2)

Other choices of activation functions include leaky ReLU, tanh function (Maas, Hannun and

Ng, 2013) and the classical sigmoid function (1 + e−z)−1, which is less used now.

Given an output h(L) from the final hidden layer and a label y, we can define a loss function

to minimize. A common loss function for classification problems is the multinomial logistic

loss. Using the terminology of deep learning, we say that h(L) goes through an affine

transformation and then the soft-max function:

fk(x; θ) ≜
exp zk

∑kexp zk
, ∀ k ∈ [K], wherez = W(L + 1)h(L) + b(L + 1) ∈ ℝK .

Then the loss is defined to be the cross-entropy between the label y (in the form of an

indicator vector) and the score vector (f1(x; θ), … , fK(x; θ))┬, which is exactly the

negative log-likelihood of the multinomial logistic regression model:

ℒ(f(x; θ), y) = − ∑
k = 1

K
1 y = k logfk(x; θ), (2.3)

where θ ≜ W(l), b(l) : 1 ≤ l ≤ L + 1 . As a final remark, the number of parameters scales

with both the depth L and the width (i.e., the dimensionality of W(l), and hence it can be

quite large for deep neural nets.

2.2 Back-propagation in computational graphs

Training neural networks follows the empirical risk minimization paradigm that minimizes

the loss (e.g., (2.3)) over all the training data. This minimization is usually done via

stochastic gradient descent (SGD). In a way similar to gradient descent, SGD starts from a

certain initial value θ0 and then iteratively updates the parameters θt by moving it in the

direction of the negative gradient. The difference is that, in each update, a small subsample

ℬ ⊂ [n] called a mini-batch—which is typically of size 32–512—is randomly drawn and the

Fan et al. Page 6

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

gradient calculation is only on ℬ instead of the full batch [n]. This saves considerably the

computational cost in calculation of gradient. By the law of large numbers, this stochastic

gradient should be close to the full sample one, albeit with some random fluctuations. A pass

of the whole training set is called an epoch. Usually, after several or tens of epochs, the error

on a validation set levels off and training is complete. See Section 6 for more details and

variants on training algorithms.

The key to the above training procedure, namely SGD, is the calculation of the gradient

∇lℬ(θ), where

lℬ(θ) ≜ |ℬ|−1 ∑
i ∈ ℬ

ℒ f xi; θ , yi . (2.4)

Gradient computation, however, is in general nontrivial for complex models, and it is

susceptible to numerical instability for a model with large depth. Here, we introduce an

efficient approach, namely back-propagation, for computing gradients in neural networks.

Back-propagation (Rumelhart, Hinton and Williams, 1985) is a direct application of the

chain rule in networks. As the name suggests, the calculation is performed in a backward

fashion: one first computes ∂lℬ/ ∂h(L), then ∂lℬ/ ∂h(L − 1),…, and finally ∂lℬ/ ∂h(1). For

example, in the case of the ReLU activation function3, we have the following recursive /

backward relation

∂lℬ
∂h(l − 1) = ∂h(l)

∂h(l − 1) ⋅ ∂lℬ
∂h(l) = W(l) ⊤diag

1 W(l)h(l − 1) + b(l) ≥ 0 ∂lℬ
∂h(l)

(2.5)

where diag(·) denotes a diagonal matrix with elements given by the argument. Note that the

calculation of ∂lℬ/ ∂h(l − 1) depends on ∂lℬ/ ∂h(l), which is the partial derivatives from the

next layer. In this way, the derivatives are “back-propagated” from the last layer to the first

layer. These derivatives ∂lℬ/ ∂h(l) are then used to update the parameters. For instance,

the gradient update for W(l) is given by

W(l) W(l) − η ∂lℬ
∂W(l) , where ∂lℬ

∂W jm
(l) = ∂lℬ

∂ℎj
(l) ⋅ σ′ ⋅ ℎm

(l − 1), (2.6)

where σ′ = 1 if the j-th element of W(l)h(l − 1) + b(l) is nonnegative, and σ′ = 0 otherwise.

The step size η > 0, also called the learning rate, controls how much parameters are changed

in a single update.

A more general way to think about neural network models and training is to consider

computational graphs. Computational graphs are directed acyclic graphs that represent

3The issue of non-differentiability at the origin is often ignored in implementation.

Fan et al. Page 7

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

functional relations between variables. They are very convenient and flexible to represent

function composition, and moreover, they also allow an efficient way of computing

gradients. Consider an MLP with a single hidden layer and an l2 regularization:

lℬ
λ (θ) = lℬ(θ) + rλ(θ) = lℬ(θ) + λ ∑

j, j′
W j, j′

(1) 2 + ∑
j, j′

W j, j′
(2) 2 , (2.7)

where lℬ(θ) is the same as (2.4), and λ ≥ 0 is a tuning parameter. A similar example is

considered in Goodfellow, Bengio and Courville (2016). The corresponding computational

graph is shown in Figure 3. Each node represents a function (inside a circle), which is

associated with an output of that function (outside a circle). For example, we view the term

lℬ(θ) as a result of 4 compositions: first the input data x multiplies the weight matrix W(1)

resulting in u(1), then it goes through the ReLU activation function relu resulting in h(1), then

it multiplies another weight matrix W(2) leading to p, and finally it produces the cross-

entropy with label y as in (2.3). The regularization term is incorporated in the graph

similarly.

A forward pass is complete when all nodes are evaluated starting from the input x. A

backward pass then calculates the gradients of lℬ
λ with respect to all other nodes in the

reverse direction. Due to the chain rule, the gradient calculation for a variable (say,

∂lℬ/ ∂u(1)) is simple: it only depends on the gradient value of the variables ∂lℬ/ ∂h the

current node points to, and the function derivative evaluated at the current variable value (σ′
(u(1))). Thus, in each iteration, a computation graph only needs to (1) calculate and store the

function evaluations at each node in the forward pass, and then (2) calculate all derivatives in

the backward pass.

Back-propagation in computational graphs forms the foundations of popular deep learning

programming softwares, including TensorFlow (Abadi and et. al., 2015) and PyTorch

(Paszke et al., 2017), which allows more efficient building and training of complex neural

net models.

3. POPULAR MODELS

Moving beyond vanilla feed-forward neural networks, we introduce two other popular deep

learning models, namely, the convolutional neural networks (CNNs) and the recurrent neural

networks (RNNs). One important characteristic shared by the two models is weight sharing,

that is some model parameters are identical across locations in CNNs or across time in

RNNs. This is related to the notion of translational invariance in CNNs and stationarity in

RNNs. At the end of this section, we introduce a modular thinking for constructing more

flexible neural nets.

3.1 Convolutional neural networks

The convolutional neural network (CNN) (LeCun et al., 1998; Fukushima and Miyake,

1982) is a special type of feed-forward neural networks that is tailored for image processing.

More generally, it is suitable for analyzing data with salient spatial structures. In this

Fan et al. Page 8

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

subsection, we focus on image classification using CNNs, where the raw input (image

pixels) and features of each hidden layer are represented by a 3D tensor X ∈ ℝd1 × d2 × d3.

Here, the first two dimensions d1, d2 of X indicate spatial coordinates of an image while the

third d3 indicates the number of channels. For instance, d3 is 3 for the raw inputs due to the

red, green and blue channels, and d3 can be much larger (say, 256) for hidden layers. Each

channel is also called a feature map, because each feature map is specialized to detect the

same feature at different locations of the input, which we will soon explain. We now

introduce two building blocks of CNNs, namely the convolutional layer and the pooling

layer.

1. Convolutional layer (CONV). A convolutional layer has the same functionality

as described in (2.1), where the input feature X ∈ ℝd1 × d2 × d3 goes through an

affine transformation first and then an element-wise nonlinear activation. The

difference lies in the specific form of the affine transformation. A convolutional

layer uses a number of filters to extract local features from the previous input.

More precisely, each filter is represented by a 3D tensor

Fk ∈ ℝw × w × d3 1 ≤ k ≤ d3 , where w is the size of the filter (typically 3 or 5)

and d3 denotes the total number of filters. Note that the third dimension d3 of Fk

is equal to that of the input feature X. For this reason, one usually says that the

filter has size w × w, while suppressing third the dimension d3. Each filter Fk

then convolves with the input feature X to obtain one single feature map

Ok ∈ ℝ d1 − w + 1 × d1 − w + 1 , where4

Oij
k = [X]ij, Fk = ∑

i′ = 1

w
∑

j′ = 1

w
∑
l=1

d3
[X]i + i′ − 1, j + j′ − 1, l Fk i′, j′, l . (3.1)

Here [X]ij ∈ ℝw × w × d3 is a small “patch” of X starting at location (i, j). See

Figure 4 for an illustration of the convolution operation. If we view the 3D

tensors [X]ij and Fk as vectors, then each filter essentially computes their inner

product with a part of X indexed by i, j (which can be also viewed as

convolution, as its name suggests). One then pack the resulted feature maps

where {Ok} into a 3D tensor O with size d1 − w + 1 × d1 − w + 1 × d3,

where

[O]ijk = Ok
ij . (3.2)

The outputs of convolutional layers are then followed by nonlinear activation

functions. In the ReLU case, we have

Xijk = σ Oijk , ∀i ∈ d1 − w + 1 , j ∈ d2 − w + 1 , k ∈ d3 . (3.3)

4To simplify notation, we omit the bias/intercept term associated with each filter.

Fan et al. Page 9

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The convolution operation (3.1) and the ReLU activation (3.3) work together to

extract features X from the input X. Different from feed-forward neural nets, the

filters Fk are hared across all locations (i, j). A patch [X]ij of an input responds

strongly (that is, producing a large value) to a filter Fk if they are positively

correlated. Therefore intuitively, each filter Fk serves to extract features similar

to Fk.

As a side note, after the convolution (3.1), the spatial size d1 × d2 of the input X
shrinks to (d1 − w + 1) (d2 − w + 1) of X However one may want the spatial size

unchanged. This can be achieved via padding, where one appends zeros to the

margins of the input X to enlarge the spatial size to (d1+w−1)×(d2+w−1). In

addition, a stride in the convolutional layer determines the gap i′ − i and j′ − j
between two patches Xij and Xi′j′: in (3.1) the stride is 1, and a larger stride

would lead to feature maps with smaller sizes.

2. Pooling layer (POOL). A pooling layer aggregates the information of nearby

features into a single one. This downsampling operation reduces the size of the

features for subsequent layers and saves computation. One common form of the

pooling layer is composed of the 2 × 2 max-pooling filter. It computes

max{Xi,j,k, Xi+1,j,k, Xi,j+1,k, Xi+1,j+1,k}, that is, the maximum of the 2 × 2

neighborhood in the spatial coordinates; see Figure 5 for an illustration. Note that

the pooling operation is done separately for each feature map k. As a

consequence, a 2 × 2 max-pooling filter acting on X ∈ ℝd1 × d2 × d3 will result in

an output of size d1/2 × d2/2 × d3. In addition, the pooling layer does not involve

any parameters to optimize. Pooling layers serve to reduce redundancy since a

small neighborhood around a location (i, j) in a feature map is likely to contain

the same information.

In addition, we also use fully-connected layers as building blocks, which we have already

seen in Section 2. Each fully-connected layer treats input tensor X as a vector Vec(X), and

computes X = σ(WVec(X)). A fully-connected layer does not use weight sharing and is

often used in the last few layers of a CNN. As an example, Figure 6 depicts the well-known

LeNet 5 (LeCun et al., 1998), which is composed of two sets of CONV-POOL layers and

three fully-connected layers.

3.2 Recurrent neural networks

Recurrent neural nets (RNNs) are another family of powerful models, which are designed to

process time series data and other sequence data. RNNs have successful applications in

speech recognition (Sak, Senior and Beaufays, 2014), machine translation (Wu et al., 2016),

genome sequencing (Cao et al., 2018), etc. The structure of an RNN naturally forms a

computational graph, and can be easily combined with other structures such as CNNs to

build large computational graph models for complex tasks. Here we introduce vanilla RNNs

and improved variants such as long short-term memory (LSTM).

Fan et al. Page 10

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2.1 Vanilla RNNs.—Suppose we have general time series inputs x1, x2, …, xT. A

vanilla RNN models the “hidden state” at time t by a vector ht, which is subject to the

recursive formula

ht = fθ ht − 1, xt . (3.4)

Here, fθ is generally a nonlinear function parametrized by θ. Concretely, a vanilla RNN with

one hidden layer has the following form5

ht = tanh Wℎℎht − 1 + Wxℎxt + bh , where tanh(a) = e2a − 1
e2a + 1

,

zt = σ Wℎyht + bz ,

where Whh, Wxh, Why are trainable weight matrices, bh, bz are trainable bias vectors, and zt

is the output at time t. Like many classical time series models, those parameters are shared

across time. Note that in different applications, we may have different input/output settings

(cf. Figure 7). Examples include

• One-to-many: a single input with multiple outputs; see Figure 7(a). A typical

application is image captioning, where the input is an image and outputs are a

series of words.

• Many-to-one: multiple inputs with a single output; see Figure 7(b). One

application is text sentiment classification, where the input is a series of words in

a sentence and the output is a label (e.g., positive vs. negative).

• Many-to-many: multiple inputs and outputs; see Figure 7(c). This is adopted in

machine translation, where inputs are words of a source language (say Chinese)

and outputs are words of a target language (say English).

As the case with feed-forward neural nets, we minimize a loss function using back-

propagation, where the loss is typically

lT(θ) = ∑
t ∈ T

ℒ yt, zt = − ∑
t ∈ T

∑
k = 1

K
1 yt = k log

exp zt k
∑kexp zt k

,

where K is the number of categories for classification (e.g., size of the vocabulary in

machine translation), and T ⊂ [T] is the length of the output sequence. During the training,

the gradients ∂lT/ ∂ht are computed in the reverse time order (from T to t). For this reason,

the training process is often called back-propagation through time.

One notable drawback of vanilla RNNs is that, they have difficulty in capturing long-range

dependencies in sequence data when the length of the sequence is large. This is sometimes

5Similar to the activation function (·), the function tanh(·) means element-wise operations.

Fan et al. Page 11

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

due to the phenomenon of exploding / vanishing gradients. Take Figure 7(c) as an example.

Computing ∂lT/ ∂h1 involves the product ∏t = 1
3 ∂ht + 1/ ∂ht by the chain rule. However, if

the sequence is long, the product will be the multiplication of many Jacobian matrices,

which usually results in exponentially large or small singular values. To alleviate this issue,

in practice, the forward pass and backward pass are implemented in a shorter sliding window

{t1, t1 + 1, …, t2}, instead of the full sequence {1, 2, …, T}.Though effective in some cases,

this technique alone does not fully address the issue of long-term dependency.

3.2.2 GRUs and LSTM.—There are two improved variants that alleviate the above

issue: gated recurrent units (GRUs) (Cho et al., 2014) and long short-term memory (LSTM)

(Hochreiter and Schmidhuber, 1997).

• A GRU refines the recursive formula (3.4) by introducing gates, which are

vectors of the same length as ht. The gates, which take values in [0, 1]

elementwise, multiply with ht−1 elementwise and determine how much they keep

the old hidden states.

• An LSTM similarly uses gates in the recursive formula. In addition to ht, an

LSTM maintains a cell state, which takes values in ℝ elementwise and are

analogous to counters.

Here we only discuss LSTM in detail. Denote by ⊙ the element-wise multiplication. We

have a recursive formula in replace of (3.4):

it
ft
ot
gt

=

σ
σ
σ

tanh

W
ht − 1

xt
1

,

ct = ft ⊙ ct − 1 + it ⊙ gt,

ht = ot ⊙ tanh ct ,

where W is a big weight matrix with appropriate dimensions. The cell state vector ct carries

information of the sequence (e.g., singular/plural form in a sentence). The forget gate ft

determines how much the values of ct−1 are kept for time t, the input gate it controls the

amount of update to the cell state, and the output gate ot gives how much ct reveals to ht.

Ideally, the elements of these gates have nearly binary values. For example, an element of ft

being close to 1 may suggest the presence of a feature in the sequence data. Similar to the

skip connections in residual nets, the cell state ct has an additive recursive formula, which

helps back-propagation and thus captures long-range dependencies.

Fan et al. Page 12

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2.3 Multilayer RNNs.—Multilayer RNNs are generalization of the one-hidden-layer

RNN discussed above. Figure 8 shows a vanilla RNN with two hidden layers. In place of

(3.4), the recursive formula for an RNN with L hidden layers now reads

htl = tanh Wl
htl − 1

ht − 1
l

1

, for alll ∈ [L], ht0 ≜ xt .

Note that a multilayer RNN has two dimensions: the sequence length T and depth L. Two

special cases are the feed-forward neural nets (where T = 1) introduced in Section 2, and

RNNs with one hidden layer (where L = 1). Multilayer RNNs usually do not have very large

depth (e.g., 2–5), since T is already very large.

Finally, we remark that CNNs, RNNs, and other neural nets can be easily combined to tackle

tasks that involve different sources of input data. For example, in image captioning, the

images are first processed through a CNN, and then the high-level features are fed into an

RNN as inputs. Theses neural nets combined together form a large computational graph, so

they can be trained using back-propagation. This generic training method provides much

flexibility in various applications.

3.3 Modules

Deep neural nets are essentially composition of many nonlinear functions. A component

function may be designed to have specific properties in a given task, and it can be itself

resulted from composing a few simpler functions. In LSTM, we have seen that the building

block consists of several intermediate variables, including cell states and forget gates that

can capture long-term dependency and alleviate numerical issues.

This leads to the idea of designing modules for building more complex neural net models.

Desirable modules usually have low computational costs, alleviate numerical issues in

training, and lead to good statistical accuracy. Since modules and the resulting neural net

models form computational graphs, training follows the same principle briefly described in

Section 2.

Here, we use the examples of Inception and skip connections to illustrate the ideas behind

modules. Figure 9(a) is an example of “Inception” modules used in GoogleNet (Szegedy et

al., 2015). As before, all the convolutional layers are followed by the ReLU activation

function. The concatenation of information from filters with different sizes give the model

great flexibility to capture spatial information. Note that 1 × 1 filters is an 1 × 1 × d3 tensor

(where d3 is the number of feature maps), so its convolutional operation does not interact

with other spatial coordinates, only serving to aggregate information from different feature

maps at the same coordinate. This reduces the number of parameters and speeds up the

computation. Similar ideas appear in other work (Lin, Chen and Yan, 2013; Iandola et al.,

2016).

Fan et al. Page 13

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Another module, usually called skip connections, is widely used to alleviate numerical

issues in very deep neural nets, with additional benefits in optimization efficiency and

statistical accuracy. Training very deep neural nets are generally more difficult, but the

introduction of skip connections in residual networks (He et al., 2016a,b) has greatly eased

the task.

The high level idea of skip connections is to add an identity map to an existing nonlinear

function. Let F(x) be an arbitrary nonlinear function represented by a (fragment of) neural

net, then the idea of skip connections is simply replacing F(x) with x + F(x). Figure 9(b)

shows a well-known structure from residual networks (He et al., 2016a)—for every two

layers, an identity map is added:

x σ(x + F(x)) = σ x + W′σ(Wx + b) + b′ , (3.5)

where x can be hidden nodes from any layer and W, W′, b, b′ are corresponding

parameters. By repeating (namely composing) this structure throughout all layers, He et al.

(2016a,b) are able to train neural nets with hundreds of layers easily, which overcomes well-

observed training difficulties in deep neural nets. Moreover, deep residual networks also

improve statistical accuracy, as the classification error on ImageNet challenge was reduced

by 46% from 2014 to 2015. As a side note, skip connections can be used flexibly. They are

not restricted to the form in (3.5), and can be used between any pair of layers l, l′ (Huang et

al., 2017).

4. DEEP UNSUPERVISED LEARNING

In supervised learning, given labelled training set {(yi, xi)}, we focus on discriminative

models, which essentially represents ℙ(y ∣ x) by a deep neural net f(x; θ) with parameters θ.

Unsupervised learning, in contrast, aims at extracting information from unlabeled data {xi},

where the labels {yi} are absent. In regard to this information, it can be a low-dimensional

embedding of the data {xi} or a generative model with latent variables to approximate the

distribution ℙX(x). To achieve these goals, we introduce two popular unsupervised deep

leaning models, namely, autoencoders and generative adversarial networks (GANs). The

first one can be viewed as a dimension reduction technique, and the second as a density

estimation method. DNNs are the key elements for both of these two models.

4.1 Autoencoders

Recall that in dimension reduction, the goal is to reduce the dimensionality of the data and at

the same time preserve its salient features. In particular, in principal component analysis

(PCA), the goal is to embed the data {xi}1≤i≤n into a low-dimensional space via a linear

function f such that maximum variance can be explained. Equivalently, we want to find

linear functions f : ℝd ℝk and g : ℝk ℝd (k ≤ d) such that the difference between xi and

g(f(xi)) is minimized. Formally, we let

f(x) = W fx ≜ handg(h) = Wgh, whereW f ∈ ℝk × dandWg ∈ ℝd × k .

Fan et al. Page 14

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Here, for simplicity, we assume that the intercept/bias terms for f and g are zero. Then, PCA

amounts to minimizing the quadratic loss function

minimizeW f,Wg
1
n ∑

i = 1

n
xi − W fW gxi 2

2 . (4.1)

It is the same as minimizing X − WX F
2 subject to rank(W) ≤ k, where X ∈ ℝp × n is the

design matrix. The solution is given by the singular value decomposition of X (Golub and

Van Loan, 2013, Thm. 2.4.8), which is exactly what PCA does. It turns out that PCA is a

special case of autoencoders, which is often known as the undercomplete linear autoencoder.

More broadly, autoencoders are neural network models for (nonlinear) dimension reduction,

which generalize PCA. An autoencoder has two key components, namely, the encoder

function f(·), which maps the input x ∈ ℝd to a hidden code/representation h ≜ f(x) ∈ ℝk,

and the decoder function g(·), which maps the hidden representation h to a point g(h) ∈ ℝd.

Both functions can be multi-layer neural networks as (2.1). See Figure 10 for an illustration

of autoencoders. Let ℒ x1, x2 be a loss function that measures the difference between x1

and x2 in ℝd. Similar to PCA, an autoencoder is used to find the encoder f and decoder g

such that ℒ(x, g(f(x))) is as small as possible. Mathematically, this amounts to solving the

following minimization problem

minimizef, g
1
n ∑

i = 1

n
ℒ xi, g hi withhi = f xi , foralli ∈ [n] . (4.2)

One needs to make structural assumptions on the functions f and g in order to find useful

representations of the data, which leads to different types of autoencoders. Indeed, if no

assumption is made, choosing f and g to be identity functions clearly minimizes the above

optimization problem. To avoid this trivial solution, one natural way is to require that the

encoder f maps the data onto a space with a smaller dimension, i.e., k < d. This is the

undercomplete autoencoder that includes PCA as a special case. There are other structured

autoencoders which add desired properties to the model such as sparsity or robustness,

mainly through regularization terms. Below we present two other common types of

autoencoders.

• Sparse autoencoders. One may believe that the dimension k of the hidden code hi

is larger than the input dimension d, and that hi admits a sparse representation.

As with LASSO (Tibshirani, 1996) or SCAD (Fan and Li, 2001), one may add a

regularization term to the reconstruction loss ℒ in (4.2) to encourage sparsity

(Poultney et al., 2007). A sparse autoencoder solves

minf, g
1
n ∑

i = 1

n
ℒ xi, g hi

loss

+ λ hi 1
regularizer

withhi = f xi , for all i ∈ [n] .

Fan et al. Page 15

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This is similar to dictionary learning, where one aims at finding a sparse

representation of input data on an overcomplete basis. Due to the imposed

sparsity, the model can potentially learn useful features of the data.

• Denoising autoencoders. One may hope that the model is robust to noise in the

data: even if the input data xi are corrupted by small noise ξi or miss some

components (the noise level or the missing probability is typically small), an

ideal autoencoder should faithfully recover the original data. A denoising

autoencoder (Vincent et al., 2008) achieves this robustness by explicitly building

a noisy data xi = xi + ξi as the new input, and then solves an optimization

problem similar to (4.2) where ℒ xi, g hi is replaced by ℒ xi, g f xi . A

denoising autoencoder encourages the encoder/decoder to be stable in the

neighborhood of an input, which is generally a good statistical property. An

alternative way could be constraining f and g in the optimization problem, but

that would be very difficult to optimize. Instead, sampling by adding small

perturbations in the input provides a simple implementation. We shall see similar

ideas in Section 6.3.3.

4.2 Generative adversarial networks

Given unlabeled data {xi}1≤i≤n, density estimation aims to estimate the underlying

probability density function ℙX from which the data is generated. Both parametric and

nonparametric estimators (Silverman, 1998) have been proposed and studied under various

assumptions on the underlying distribution. Different from these classical density estimators,

where the density function is explicitly defined in relatively low dimension, generative

adversarial networks (GANs) (Goodfellow et al., 2014) can be categorized as an implicit
density estimator in much higher dimension. The reasons are twofold: (1) GANs put more

emphasis on sampling from the distribution ℙX than estimation; (2) GANs define the density

estimation implicitly through a source distribution ℙZ and a generator function g(·), which is

usually a deep neural network. We introduce GANs from the perspective of sampling from

ℙX and later we will generalize the vanilla GANs using its relation to density estimators.

4.2.1 Sampling view of GANs.—Suppose the data {xi}1≤i≤n at hand are all real

images, and we want to generate new natural images. With this goal in mind, GAN models a

zero-sum game between two players, namely, the generator G and the discriminator D. The

generator G tries to generate fake images akin to the true images {xi}1≤i≤n while the

discriminator D aims at differentiating the fake ones from the true ones. Intuitively, one

hopes to learn a generator G to generate images where the best discriminator D cannot

distinguish. Therefore the payoff is higher for the generator G if the probability of the

discriminator D getting wrong is higher, and correspondingly the payoff for the

discriminator correlates positively with its ability to tell wrong from truth.

Mathematically, the generator G consists of two components, an source distribution ℙZ
(usually a standard multivariate Gaussian distribution with hundreds of dimensions) and a

function g(·) which maps a sample z from ℙZ to a point g(z) living in the same space as x.

Fan et al. Page 16

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For generating images, g(z) would be a 3D tensor. Here g(z) is the fake sample generated

from G. Similarly the discriminator D is composed of one function which takes an image x

(real or fake) and return a number d(x) ∈ [0, 1], the probability of x being a real sample from

ℙX or not. Oftentimes, both the generating function g(·) and the discriminating function d(·)

are realized by deep neural networks, e.g., CNNs introduced in Section 3.1. See Figure 11

for an illustration for GANs. Denote θG and θD the parameters in g(·) and d(·), respectively.

Then GAN tries to solve the following min-max problem:

min
θG

max
θD

Ex ℙX[log(d(x))] + Ez ℙZ[log(1 − d(g(z)))] .
(4.3)

Recall that d(x) models the belief / probability that the discriminator thinks that x is true

sample. Fix the parameters θG and hence the generator G and consider the inner

maximization problem. We can see that the goal of the discriminator is to maximize its

ability of differentiation. Similarly, if we fix θD (and hence the discriminator), the generator

tries to generate more realistic images g(z) to fool the discriminator.

4.2.2 Density estimation view of GANs.—Let us now take a density-estimation view

of GANs. Fixing the source distribution ℙZ, any generator G induces a distribution ℙG over

the space of images. Removing the restrictions on d(·), one can then rewrite (4.3) as

min
ℙG

max
d(⋅)

Ex ℙX[log(d(x))] + Ex ℙG[log(1 − d(x))] .
(4.4)

Observe that the inner maximization problem is solved by the likelihood ratio, i.e.

d*(x) =
ℙX (x)

ℙX(x) + ℙG(x) .

As a result, (4.4) can be simplified as

min
ℙG

JS ℙX ℙG ,
(4.5)

where JS(·||·) denotes the Jensen–Shannon divergence between two distributions

JS ℙX‖ℙG = 1
2KL ℙX ‖

ℙX + ℙG
2 + 1

2KL ℙG‖
ℙX + ℙG

2 .

In words, the vanilla GAN (4.3) seeks a density ℙG that is closest to ℙX in terms of the

Jensen–Shannon divergence. This view allows to generalize GANs to other variants, by

changing the distance metric. Examples include f-GAN (Nowozin, Cseke and Tomioka,

2016), Wasserstein GAN (W-GAN) (Arjovsky, Chintala and Bottou, 2017), MMD GAN (Li,

Swersky and Zemel, 2015), etc. We single out the Wasserstein GAN (W-GAN) (Arjovsky,

Chintala and Bottou, 2017) to introduce due to its popularity. As the name suggests, it

minimizes the Wasserstein distance between ℙX and ℙG:

Fan et al. Page 17

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

min
θG

WS ℙX‖ℙG = min
θG

sup
f :f 1 − Lipschitz

Ex ℙX[f(x)] − Ex ℙG[f(x)],
(4.6)

where f(·) is taken over all Lipschitz functions with coefficient 1. Comparing W-GAN (4.6)

with the original formulation of GAN (4.3), one finds that the Lipschitz function f in (4.6)

corresponds to the discriminator D in (4.3) in the sense that they share similar objectives to

differentiate the true distribution ℙX from the fake one ℙG. In the end, we would like to

mention that GANs are more difficult to train than supervised deep learning models such as

CNNs (Salimans et al., 2016). Apart from the training difficulty, how to evaluate GANs

objectively and effectively is an ongoing research.

5. REPRESENTATION POWER: APPROXIMATION THEORY

Having seen the building blocks of deep learning models in the previous sections, it is

natural to ask: what is the benefits of composing multiple layers of nonlinear functions. In

this section, we address this question from a approximation theoretical point of view.

Mathematically, letting ℋ be the space of functions representable by neural nets (NNs), how

well can a function f (with certain properties) be approximated by functions in ℋ. We first

revisit universal approximation theories, which are mostly developed for shallow neural nets

(neural nets with a single hidden layer), and then provide recent results that demonstrate the

benefits of depth in neural nets. Other notable works include Kolmogorov-Arnold

superposition theorem (Arnold, 2009; Sprecher, 1965), and circuit complexity for neural

nets (Parberry, 1994).

5.1 Universal approximation theory for shallow NNs

The universal approximation theories study the approximation of f in a space ℱ by a

function represented by a one-hidden-layer neural net

g(x) = ∑
j = 1

N
cjσ* wj⊤x − bj , (5.1)

where σ* : ℝ ℝ is certain activation function and N is the number of hidden units in the

neural net. For different space ℱ and activation function σ*, there are upper bounds and

lower bounds on the approximation error ‖f − g‖ See Pinkus (1999) for a comprehensive

overview. Here we present representative results.

First, as N → ∞, any continuous function f can be approximated by some g under mild

conditions. Loosely speaking, this is because each component σ* wj⊤x − bj behaves like a

basis function and functions in a suitable space ℱ admits a basis expansion. Given the above

heuristics, the next natural question is: what is the rate of approximation for a finite N?

Let us restrict the domain of x to a unit ball Bd in ℝd. For p ∈ [1, ∞) and integer m ≥ 1,

consider the Lp space and the Sobolev space with standard norms

Fan et al. Page 18

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

‖f‖p = ∫Bn|g(x) |p dx
1/p

, ‖f‖m, p = ∑
0 ≤ k ≤ m

‖Dkf‖p
p

1/p
,

where Dkf denotes partial derivatives indexed by k ∈ ℤ+
d . Let ℱ ≜ ℱp

m be the space of

functions f in the Sobolev space with ‖f‖m,p ≤ 1. Note that functions in ℱ have bounded

derivatives up to m-th order, and that smoothness of functions is controlled by m (larger m
means smoother). Denote by ℋN the space of functions with the form (5.1). The following

general upper bound is due to Mhaskar (1996).

Theorem 5.1 (Theorem 2.1 in Mhaskar (1996)).—Assume σ* : ℝ ℝ is such that σ*

has arbitrary order derivatives in an open interval I, and that σ* is not a polynomial on I.
Then, for any p ∈ [1, ∞), d ≥ 2, and integer m ≥ 1,

sup
f ∈ ℱpm

inf
g ∈ ℋN

‖f − g‖p ≤ Cd, m, pN−m/d,

where Cd,m,p is independent of N, the number of hidden units.

In the above theorem, the condition on σ*(·) is mainly technical. This upper bound is useful

when the dimension d is not large. It clearly implies that the one-hidden-layer neural net is

able to approximate any smooth function with enough hidden units. However, it is unclear

how to find a good approximator g; nor do we have control over the magnitude of the

parameters (huge weights are impractical). While increasing the number of hidden units N
leads to better approximation, the exponent −m/d suggests the presence of the curse of
dimensionality. The following (nearly) matching lower bound is stated in Maiorov and Meir

(2000).

Theorem 5.2 (Theorem 5 in Maiorov and Meir (2000)).—Let p ≥ 1, m ≥ 1 and N ≥ 2.

If the activation function is the standard sigmoid function σ(t) = (1 + e−t)−1, then

sup
f ∈ ℱpm

inf
g ∈ ℋN

‖f − g‖p ≥ Cd, m, p′ (N logN)−m/d,
(5.2)

where Cd, m, p′ is independent of N.

Results for other activation functions are also obtained by Maiorov and Meir (2000).

Moreover, the term log N can be removed if we assume an additional continuity condition

(Mhaskar, 1996).

For the natural space ℱp
m of smooth functions, the exponential dependence on d in the upper

and lower bounds may look unappealing. However, Barron (1993) showed that for a

different function space, there is a good dimension-free approximation by the neural nets.

Suppose that a function f : ℝd ℝ has a Fourier representation

Fan et al. Page 19

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f(x) = ∫
ℝdei ω, x f(ω)dω, (5.3)

where f(ω) ∈ ℂ. Assume that f(0) = 0 and that the following quantity is finite

Cf = ∫
ℝd ω 2 |f(ω) |dω . (5.4)

Barron (1993) uncovers the following dimension-free approximation guarantee.

Theorem 5.3 (Proposition 1 in Barron (1993)).—Fix a C > 0 and an arbitrary

probability measure μ on the unit ball Bd in ℝd. For every function f with Cf ≤ C and every N
≥ 1, there exists some g ∈ ℋN such that

∫Bd(f(x) − g(x))2μ(dx)
1/2

≤ 2C
N .

Moreover, the coefficients of g may be restricted to satisfy ∑j = 1
N cj ≤ 2C

The upper bound is now independent of the dimension d. However, Cf may implicitly

depend on d, as the formula in (5.4) involves an integration over ℝd (so for some functions

Cf may depend exponentially on d). Nevertheless, this theorem does characterize an

interesting function space with an improved upper bound. Details of the function space are

discussed by Barron (1993). This theorem can be generalized; see Makovoz (1996) for an

example.

To help understand why a dimensionality-free approximation holds, let us appeal to a

heuristic argument given by Monte Carlo simulations. It is well-known that Monte Carlo

approximation errors are independent of dimensionality in evaluation of high-dimensional

integrals. Let us generate {ωj}1≤j≤N randomly from a given density p(·) in ℝd. Consider the

approximation to (5.3) by

gN(x) = 1
N ∑

j = 1

N
cjei ωj, x , cj = f ωj

p ωj
. (5.5)

Then, gN(x) is a one-hidden-layer neural network with N units and the sinusoid activation

function. Note that EgN(x) = f(x), where the expectation is taken with respect to

randomness {ωj}. Now, by independence, we have

E gN(x) − f(x) 2 = 1
NVar cjei ωj, x ≤ 1

NEcj2,

if Ecj2 < ∞. Therefore, the rate is independent of the dimensionality d, though the constant

can be.

Fan et al. Page 20

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2 Approximation theory for multi-layer NNs

The approximation theory for multilayer neural nets is less understood compared with neural

nets with one hidden layer. Driven by the success of deep learning, there are many recent

papers focusing on expressivity of deep neural nets. As studied by Telgarsky (2016); Eldan

and Shamir (2016); Mhaskar, Liao and Poggio (2016); Poggio et al. (2017); Bauer and

Kohler (2017); Schmidt-Hieber (2017); Lin, Tegmark and Rolnick (2017); Rolnick and

Tegmark (2017), deep neural nets excel at representing composition of functions. This is

perhaps not surprising, since deep neural nets are themselves defined by composing layers of

functions. Nevertheless, it points to a new territory rarely studied in statistics before. Below

we present a result based on Lin, Tegmark and Rolnick (2017); Rolnick and Tegmark

(2017).

Suppose that the inputs x have a bounded domain [−1, 1]d for simplicity. As before, let

σ* : ℝ ℝ be a generic function, and σ* = (σ*, …, σ*)┬ be element-wise application σ*.

Consider a neural net which is similar to (2.1) but with scaler output:

g(x) = Wlσ* ⋯σ* W2σ* W1x ⋯ . A unit or neuron refers to an element of vectors σ* (Wk

⋯ σ*(W2σ* (W1x))⋯) for any k = 1, …, l − 1.For a multivariate polynomial p, define

mk(p) to be the smallest integer such that, for any ϵ > 0, there exists a neural net g(x)

satisfying supx |p(x) − g(x)| < ϵ, with k hidden layers (i.e., l = k + 1) and no more than

mk(p) neurons in total. Essentially, mk(p) is the minimum number of neurons required to

approximate p arbitrarily well.

Theorem 5.4 (Theorem 4.1 in Rolnick and Tegmark (2017)).—Let p(x) be a

monomial x1
r1x2

r2⋯xd
rd with q = ∑j = 1

d rj. Suppose that σ* has derivatives of order 2q at the

origin, and that they are nonzero. Then,

(i)m1(p) = ∏j = 1
d rj + 1 ;

(ii)mink mk(p) ≤ ∑j = 1
d 7 log2 rj + 4 .

This theorem reveals a sharp distinction between shallow networks (one hidden layer) and

deep networks. To represent a monomial function, a shallow network requires exponentially

many neurons in terms of the dimension d, whereas linearly many neurons suffice for a deep

network (with bounded rj). The exponential dependence on d, as shown in Theorem 5.4(i), is

resonant with the curse of dimensionality widely seen in many fields; see Donoho (2000).

One may ask: how does depth help? Depth circumvents this issue, at least for certain

functions, by allowing us to represent function composition efficiently. Indeed, Theorem

5.4(ii) offers a nice result with clear intuitions: it is known that the product of two scalar

inputs can be represented using 4 neurons (Lin, Tegmark and Rolnick, 2017), so by

composing multiple products, we can express monomials with O(d) neurons.

Fan et al. Page 21

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Recent advances in nonparametric regressions also support the idea that deep neural nets

excel at representing composition of functions (Bauer and Kohler, 2017; Schmidt-Hieber,

2017). In particular, Bauer and Kohler (2017) considered the nonparametric regression

setting where we want to estimate a function fn(x) from i.i.d. data Dn = yi, xi 1 ≤ i ≤ n. If

the true regression function f(x) has certain hierarchical structure with intrinsic

dimensionality6 d*, then the error

EDnEx fn(x) − f(x) 2

has an optimal minimax convergence rate O n− 2q
2q + d* , rather than the usual rate O n− 2q

2q + d

that depends on the ambient dimension d. Here q is the smoothness parameter. This provides

another justification for deep neural nets: if data are truly hierarchical, then the quality of

approximators by deep neural nets depends on the intrinsic dimensionality, which avoids the

curse of dimensionality.

We point out that the approximation theory for deep learning is far from complete. For

example, in Theorem 5.4, the condition on σ* excludes the widely used ReLU activation

function, there are no constraints on the magnitude of the weights (so they can be

unreasonably large).

6. TRAINING DEEP NEURAL NETS

The existence of a good function approximator in the NN function class does not explain

why in practice we can easily find them. In this section, we introduce standard methods,

namely stochastic gradient descent (SGD) and its variants, to train deep neural networks (or

to find such a good approximator). As with many statistical machine learning tasks, training

DNNs follows the empirical risk minimization (ERM) paradigm which solves the following

optimization problem

minimizeθ ∈ ℝpln(θ) ≜ 1
n ∑

i = 1

n
ℒ f xi; θ , yi . (6.1)

Here ℒ f xi; θ , yi measures the discrepancy between the prediction f(xi; θ) of the neural

network and the true label yi. Correspondingly, denote by l(θ) ≜ E(x, y) D[ℒ(f(x; θ), y)] the

out-of-sample error, where D is the joint distribution over (y, x). Solving ERM (6.1) for deep

neural nets faces various challenges that roughly fall into the following three categories.

• Scalability and nonconvexity. Both the sample size n and the number of

parameters p can be huge for modern deep learning applications, as we have seen

in Table 1. Many optimization algorithms are not practical due to the

computational costs and memory constraints. What is worse, the empirical loss

6Roughly speaking, the true regression function can be represented by a tree where each node has at most d* children. See Bauer and
Kohler (2017) for the precise definition.

Fan et al. Page 22

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

function ln(θ) in deep learning is often nonconvex. It is a priori not clear whether

an optimization algorithm can drive the empirical loss (6.1) small.

• Numerical stability. With a large number of layers in DNNs, the magnitudes of

the hidden nodes can be drastically different, which may result in the “exploding

gradients” or “vanishing gradients” issue during the training process. This is

because the recursive relations across layers often lead to exponentially

increasing / decreasing values in both forward passes and backward passes.

• Generalization performance. Our ultimate goal is to find a parameter θ such that

the out-of-sample error l(θ) is small. However, in the over-parametrized regime

where p is much larger than n, the underlying neural network has the potential to

fit the training data perfectly while performing poorly on the test data. To avoid

this overfitting issue, proper regularization, whether explicit or implicit, is

needed in the training process for the neural nets to generalize.

In the following three subsections, we discuss practical solutions / proposals to address these

challenges.

6.1 Stochastic gradient descent

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is by far the most popular

optimization algorithm to solve ERM (6.1) for large-scale problems. It has the following

simple update rule:

θt + 1 = θt − ηtG θt withG θt = ∇ℒ f xit; θt , yit (6.2)

for t = 0, 1, 2, …, where ηt > 0 is the step size (or learning rate), θ0 ∈ ℝp is an initial point

and it is chosen randomly from {1, 2,… , n}. It is easy to verify that G(θt) is an unbiased

estimate of ∇ln θt . The advantage of SGD is clear: compared with gradient descent, which

goes over the entire dataset in every update, SGD uses a single example in each update and

hence is considerably more efficient in terms of both computation and memory (especially in

the first few iterations).

Apart from practical benefits of SGD, how well does SGD perform theoretically in terms of

minimizing ln(θ)? We begin with the convex case, i.e., the case where the loss function is

convex w.r.t. θ. It is well understood in literature that with proper choices of the step sizes

{ηt}, SGD is guaranteed to achieve both consistency and asymptotic normality.

• Consistency. If l(θ) is a strongly convex function7, then under some mild

conditions8, learning rates that satisfy

7For results on consistency and asymptotic normality, we consider the case where in each step of SGD, the stochastic gradient is
computed using a fresh sample (y, x) from D. This allows to view SGD as an optimization algorithm to minimize the population loss
l(θ).
8One example of such condition can be constraining the second moment of the gradients:

E ‖∇ℒ xi, yi; θt
2
2 ≤ C1 + C2‖θt − θ*‖2

2.for some C1, C2 > 0. See Bottou (1998) for details.

Fan et al. Page 23

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

∑
t = 0

∞
ηt = + ∞and ∑

t = 0

∞
ηt2 < + ∞ (6.3)

guarantee almost sure convergence to the unique minimizer θ* ≜ argminθl(θ),

i.e., θta . s . θ* as t → ∞ (Robbins and Monro, 1951; Kiefer et al., 1952; Bottou,

1998; Kushner and Yin, 2003). The requirements in (6.3) can be viewed from the

perspective of bias-variance tradeoff: the first condition ensures that the iterates

can reach the minimizer (controlled bias), and the second ensures that

stochasticity does not prevent convergence (controlled variance).

• Asymptotic normality. It is proved by Polyak and Tsypkin (1979) that for robust

linear regression with fixed dimension p, under the choice ηt = t−1, t θt − θ* is

asymptotically normal under some regularity conditions (but θtis not

asymptotically efficient in general). Moreover, by averaging the iterates of SGD,

Polyak and Juditsky (1992) proved that even with a larger step size ηt = t−α, α ∈

(1/2, 1) the averaged iterate θt = t−1∑s = 1
t θs is asymptotic efficient for robust

linear regression. These strong results show that SGD with averaging performs as

well as the MLE asymptotically, in addition to its computational efficiency.

These classical results, however, fail to explain the effectiveness of SGD when dealing with

nonconvex loss functions in deep learning. Admittedly, finding global minima of nonconvex

functions is computationally infeasible in the worst case. Nevertheless, recent work (Allen-

Zhu, Li and Song, 2018; Du et al., 2018) bypasses the worst case scenario by focusing on

losses incurred by over-parametrized deep learning models. In particular, they show that

(stochastic) gradient descent converges linearly towards the global minimizer of ln(θ) as

long as the neural network is sufficiently over-parametrized. This phenomenon is formalized

below.

Theorem 6.1 (Theorem 2 in Allen-Zhu, Li and Song, 2018).—Let {(yi, xi)}1≤i≤n be

a training set satisfying mini,j:i≠j ‖xi − xj‖2 ≥ δ > 0. Consider fitting the data using a feed-

forward neural network (1.1) with ReLU activations. Denote by L (resp. W) the depth (resp.

width) of the network. Suppose that the neural network is sufficiently over-parametrized,

i.e.,

W ≫ poly n, L, 1
δ , (6.4)

where poly means a polynomial function. Then with high probability, running SGD (6.2)

with certain random initialization and properly chosen step sizes yields ln θt ≤ ε in

t ≍ log 1
ε iterations.

Two notable features are worth mentioning: (1) first, the network under consideration is

sufficiently over-parametrized (cf. (6.4)) in which the number of parameters is much larger

than the number of samples, and (2) one needs to initialize the weight matrices to be in near-

Fan et al. Page 24

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

isometry such that the magnitudes of the hidden nodes do not blow up or vanish. In a

nutshell, over-parametrization and random initialization together ensure that the loss

function (6.1) has a benign landscape9 around the initial point, which in turn implies fast

convergence of SGD iterates.

There are certainly other challenges for vanilla SGD to train deep neural nets: (1) training

algorithms are often implemented in GPUs, and therefore it is important to tailor the

algorithm to the infrastructure, (2) the vanilla SGD might converge very slowly for deep

neural networks, albeit good theoretical guarantees for well-behaved problems, and (3) the

learning rates {ηt} can be difficult to tune in practice. To address the aforementioned

challenges, three important variants of SGD, namely mini-batch SGD, momentum-based
SGD, and SGD with adaptive learning rates are introduced.

6.1.1 Mini-batch SGD.—Modern computational infrastructures (e.g., GPUs) can

evaluate the gradient on a number (say 64) of examples as efficiently as evaluating that on a

single example. To utilize this advantage, mini-batch SGD with batch size K ≥ 1 forms the

stochastic gradient through K random samples:

θt + 1 = θt − ηtG θt withG θt = 1
K ∑

k = 1

K
∇ℒ f xitk; θt , yitk , (6.5)

where for each 1 ≤ k ≤ K, itk is sampled uniformly from {1. 2, …, n}. Mini-batch SGD,

which is an “interpolation” between gradient descent and stochastic gradient descent,

achieves the best of both worlds: (1) using 1 ≪ K ≪ n samples to estimate the gradient, one

effectively reduces the variance and hence accelerates the convergence, and (2) by taking the

batch size K appropriately (say 64 or 128), the stochastic gradient G(θt) can be efficiently

computed using the matrix computation toolboxes on GPUs.

6.1.2 Momentum-based SGD.—While mini-batch SGD forms the foundation of

training neural networks, it can sometimes be slow to converge due to its oscillation

behavior (Sutskever et al., 2013). Optimization community has long investigated how to

accelerate the convergence of gradient descent, which results in a beautiful technique called

momentum methods (Polyak, 1964; Nesterov, 1983). Similar to gradient descent with

moment, momentum-based SGD, instead of moving the iterate θt in the direction of the

current stochastic gradient G(θt), smooth the past (stochastic) gradients {G(θt)} to stabilize

the update directions. Mathematically, let vt ∈ ℝp be the direction of update in the tth

iteration, i.e.,

θt + 1 = θt − ηtvt .

Here v0 = G(θ0) and for t = 1, 2, ⋯

9In Allen-Zhu, Li and Song (2018), the loss function ln(θ) satisfies the PL condition.

Fan et al. Page 25

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

vt = ρvt − 1 + G θt (6.6)

with 0 < ρ < 1. A typical choice of ρ is 0.9. Notice that ρ = 0 recovers the mini-batch SGD

(6.5), where no past information of gradients is used. A simple unrolling of vt reveals that vt

is actually an exponential averaging of the past gradients, i.e., vt = ∑j = 0
t ρt − jG θj .

Compared with vanilla mini-batch SGD, the inclusion of the momentum “smoothes” the

oscillation direction and accumulates the persistent descent direction. We want to emphasize

that theoretical justifications of momentum in the stochastic setting is not fully understood

(Kidambi et al., 2018; Jain et al., 2017).

6.1.3 SGD with adaptive learning rates.—In optimization, preconditioning is often

used to accelerate first-order optimization algorithms. In principle, one can apply this to

SGD, which yields the following update rule:

θt + 1 = θt − ηtP t
−1G θt (6.7)

with Pt ∈ ℝp × p being a preconditioner at the t-th step. Newton’s method can be viewed as

one type of preconditioning where Pt = ∇2ln θt . The advantages of preconditioning are

two-fold: first, a good preconditioner reduces the condition number by changing the local

geometry to be more homogeneous, which is amenable to fast convergence; second, a good

preconditioner frees practitioners from laboring tuning of the step sizes, as is the case with

Newton’s method. Ada-Grad, an adaptive gradient method proposed by Duchi, Hazan and

Singer (2011), builds a preconditioner Pt based on information of the past gradients:

P t = diag ∑
j = 0

t
G θt G θt ⊤

1/2
. (6.8)

Since we only require the diagonal part, this preconditioner (and its inverse) can be

efficiently computed in practice. In addition, investigating (6.7) and (6.8), one can see that

AdaGrad adapts to the importance of each coordinate of the parameters by setting smaller

learning rates for frequent features, whereas larger learning rates for those infrequent ones.

In practice, one adds a small quantity δ > 0 (say 10−8) to the diagonal entries to avoid

singularity (numerical underflow). A notable drawback of AdaGrad is that the effective

learning rate vanishes quickly along the learning process. This is because the historical sum

of the gradients can only increase with time. RMSProp (Hinton, Srivastava and Swersky,

2012) is a popular remedy for this problem which incorporates the idea of exponential

averaging:

P t = diag ρP t − 1 + (1 − ρ)G θt G θt ⊤ 1/2
. (6.9)

Again, the decaying parameter ρ is usually set to be 0.9. Later, Adam (Kingma and Ba,

2014; Reddi, Kale and Kumar, 2018) combines the momentum method and adaptive

Fan et al. Page 26

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

learning rate and becomes the default training algorithms in many deep learning

applications.

6.2 Easing numerical instability

For very deep neural networks or RNNs with long dependencies, training difficulties often

arise when the values of nodes have different magnitudes or when the gradients “vanish” or

“explode” during back-propagation. Here we discuss three partial solutions to alleviate this

problem.

6.2.1 ReLU activation function.—One useful characteristic of the ReLU function is

that its derivative is either 0 or 1, and the derivative remains 1 even for a large input. This is

in sharp contrast with the standard sigmoid function (1 + e−t)−1 which results in a very small

derivative when inputs have large magnitude. The consequence of small derivatives across

many layers is that gradients tend to be “killed”, which means that gradients become

approximately zero in deep nets.

The popularity of the ReLU activation function and its variants (e.g., leaky ReLU) is largely

attributable to the above reason. It has been well observed that the ReLU activation function

has superior training performance over the sigmoid function (Krizhevsky, Sutskever and

Hinton, 2012; Maas, Hannun and Ng, 2013).

6.2.2 Skip connections.—We have introduced skip connections in Section 3.3. Why

are skip connections helpful for reducing numerical instability? This structure does not

introduce a larger function space, since the identity map can be also represented with ReLU

activations: x = σ(x) − σ(−x).

One explanation is that skip connections bring ease to the training / optimization process.

Suppose that we have a general nonlinear function F xl; θl . With a skip connection, we

represent the map as xl + 1 = xl + F xl; θl instead. Now the gradient ∂xl + 1/ ∂xl becomes

∂xl + 1
∂xl

= I + ∂F xl; θl
∂xl

insteadof ∂F xl; θl
∂xl

, (6.10)

where I is an identity matrix. By the chain rule, gradient update requires computing products

of many components, e.g.,
∂xL
∂x1

= ∏l = 1
L − 1 ∂xl + 1

∂xl
, so it is desirable to keep the spectra

(singular values) of each component
∂xl + 1

∂xl
 close to 1. In neural nets, with skip connections,

this is easily achieved if the parameters have small values; otherwise, this may not be

achievable even with careful initialization and tuning. Notably, training neural nets with

hundreds of layers is possible with the help of skip connections.

6.2.3 Batch normalization.—Recall that in regression analysis, one often standardizes

the design matrix so that the features have zero mean and unit variance. Batch normalization

extends this standardization procedure from the input layer to all the hidden layers.

Mathematically, fix a mini-batch of input data xi, yi i ∈ ℬ, where ℬ ⊂ [n]. Let hi
(l) be the

Fan et al. Page 27

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

feature of the i-th example in the l-th layer (l = 0 corresponds to the input xi). The batch

normalization layer computes the normalized version of hi
(l) via the following steps:

μ ≜ 1
ℬ ∑

i ∈ ℬ
hi

(l), σ2 ≜ 1
ℬ ∑

i ∈ ℬ
hi

(l) − μ
2

andhi, norm
(l) ≜

hi
(l) − μ

σ .

Here all the operations are element-wise. In words, batch normalization computes the z-

score for each feature over the mini-batch ℬ and use that as inputs to subsequent layers. To

make it more versatile, a typical batch normalization layer has two additional learnable

parameters γ(l) and β(l) such that

hi, new
(l) = γ(l) ⊙ hi, norm

(l) + β(l) .

Again ⊙ denotes the element-wise multiplication. As can be seen, γ(l) and β(l) set the new

feature hinew
(l) to have mean β(l) and standard deviation γ(l). The introduction of batch

normalization makes the training of neural networks much easier and smoother. More

importantly, it allows the neural nets to perform well over a large family of hyper-parameters

including the number of layers, the number of hidden units, etc. At test time, the batch

normalization layer needs more care. For brevity we omit the details and refer to Ioffe and

Szegedy (2015).

6.3 Regularization techniques

So far we have focused on training techniques to drive the empirical loss (6.1) small

efficiently. Here we proceed to discuss common practice to improve the generalization

power of trained neural nets.

6.3.1 Weight decay.—One natural regularization idea is to add an l2 penalty to the loss

function. This regularization technique is known as the weight decay in deep learning. We

have seen one example in (2.7). For general deep neural nets, the loss to optimize is

ln
λ(θ) = ln(θ) + rλ(θ) where

rλ(θ) = λ ∑
l = 1

L
∑
j, j′

W j, j′
(l) 2

.

Note that the bias (intercept) terms are not penalized. If ln(θ) is a least square loss, then

regularization with weight decay gives precisely ridge regression. The penalty rλ(θ) is a

smooth function and thus it can be also implemented efficiently with back-propagation.

6.3.2 Dropout.—Dropout, introduced by Hinton et al. (2012), prevents overfitting by

randomly dropping out subsets of features during training. Take the l-th layer of the feed-

forward neural network as an example. Instead of propagating all the features in h(l) for later

computations, dropout randomly omits some of its entries by

Fan et al. Page 28

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

hdrop
(l) = h(l) ⊙ maskl,

where ⊙ denotes element-wise multiplication as before, and maskl is a vector of Bernoulli

variables with success probability p. It is sometimes useful to rescale the features

hinvdrop
(l) = hdrop

(l) /p, which is called inverted dropout. During training, maskl are i.i.d. vectors

across mini-batches and layers. However, when testing on fresh samples, dropout is disabled

and the original features h(l) are used to compute the output label y. It has been nicely

shown by Wager, Wang and Liang (2013) that for generalized linear models, dropout serves

as adaptive regularization. In the simplest case of linear regression, it is equivalent to l2
regularization. Another possible way to understand the regularization effect of dropout is

through the lens of bagging (Goodfellow, Bengio and Courville, 2016). Since different mini-

batches has different masks, dropout can be viewed as training a large ensemble of

classifiers at the same time, with a further constraint that the parameters are shared.

Theoretical justification remains elusive.

6.3.3 Data augmentation.—Data augmentation is a technique of enlarging the dataset

when we have knowledge about invariance structure of data. It implicitly increases the

sample size and usually regularizes the model effectively. For example, in image

classification, we have strong prior knowledge about what invariance properties a good

classifier should possess. The label of an image should not be affected by translation,

rotation, flipping, and even crops of the image. Hence one can augment the dataset by

randomly translating, rotating and cropping the images in the original dataset.

Formally, during training we want to minimize the loss ln(θ) = ∑iℒ f xi; θ , yi w.r.t.

parameters θ, and we know a priori that certain transformation T ∈ T where T : ℝd ℝd

(e.g., affine transformation) should not change the category / label of a training sample. In

principle, if computation costs were not a consideration, we could convert this knowledge to

a constraint fθ(Txi) = fθ(xi), ∀ T ∈ T in the minimization formulation. Instead of solving a

constrained optimization problem, data augmentation enlarges the training dataset by

sampling T ∈ T and generating new data {(T xi, yi)}. In this sense, data augmentation

induces invariance properties through sampling, which results in a much bigger dataset than

the original one.

7. GENERALIZATION POWER

Section 6 has focused on the in-sample / training error obtained via SGD, but this alone does

not guarantee good performance with respect to the out-of-sample / test error. The gap

between the in-sample error and the out-of-sample error, namely the generalization gap, has

been the focus of statistical learning theory since its birth; see Shalev-Shwartz and Ben-

David (2014) for an excellent introduction to this topic.

While understanding the generalization power of deep neural nets is difficult (Zhang et al.,

2016), we sample recent endeavors in this section. From a high level point of view, these

Fan et al. Page 29

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

approaches can be divided into two categories, namely algorithm-independent controls and

algorithm-dependent controls. More specifically, algorithm-independent controls focus

solely on bounding the complexity of the function class represented by certain deep neural

networks. In contrast, algorithm-dependent controls take into account the algorithm (e.g.,

SGD) used to train the neural network.

7.1 Algorithm-independent controls: uniform convergence

The key to algorithm-independent controls is the notion of complexity of the function class

parametrized by certain neural networks. Informally, as long as the complexity is not too

large, the generalization gap of any function in the function class is well-controlled.

However, the standard complexity measure (e.g., VC dimension (Vapnik and Chervonenkis,

1971)) is at least proportional to the number of weights in a neural network (Anthony and

Bartlett, 2009; Shalev-Shwartz and Ben-David, 2014), which fails to explain the practical

success of deep learning. The caveat here is that the function class under consideration is all
the functions realized by certain neural networks, with no restrictions on the size of the

weights at all. On the other hand, for the class of linear functions with bounded norm, i.e.,

x w⊤x ∣ w 2 ≤ M , it is well understood that the complexity of this function class

(measured in terms of the empirical Rademacher complexity) with respect to a random

sample {xi}1≤i≤n upper is bounded by maxi xi 2M / n, which is independent of the number

of parameters in w. This motivates researchers to investigate the complexity of norm-
controlled deep neural networks10 (Neyshabur, Tomioka and Srebro, 2015; Bartlett, Foster

and Telgarsky, 2017; Golowich, Rakhlin and Shamir, 2017; Li et al., 2018b). Setting the

stage, we introduce a few necessary notations and facts. The key object under study is the

function class parametrized by the following fully-connected neural network with depth L:

ℱL ≜ x WLσ WL − 1σ ⋯W 2σ W 1x ∣ W 1, ⋯, WL ∈ W . (7.1)

Here W 1, W 2, ⋯, WL ∈ W represents a certain constraint For instance, one can restrict the

Frobenius norm of each parameter Wl through the constraint ‖Wl‖F ≤ MF(l), where MF(l) is

some positive quantity. With regard to the complexity measure, it is standard to use

Rademacher complexity to control the capacity of the function class of interest.

Definition 7.1 (Empirical Rademacher complexity).—The empirical Rademacher

complexity of a function class ℱ w.r.t. a dataset S ≜ {xi}1≤i≤n is defined as

ℛS(ℱ) = Eε sup
f ∈ ℱ

1
n ∑

i = 1

n
εif xi , (7.2)

where ε ≜ (ε1, ε2, ⋯ , εn) is composed of i.i.d. Rademacher random variables, i.e.,

ℙ εi = 1 = ℙ εi = − 1 = 1/2.

In words, Rademacher complexity measures the ability of the function class to fit the

random noise represented by ε. Intuitively, a function class with a larger Rademacher

10Such attempts have been made in the seminal work Bartlett (1998).

Fan et al. Page 30

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

complexity is more prone to overfitting. We now formalize the connection between the

empirical Rademacher complexity and the out-of-sample error; see Chapter 24 in Shalev-

Shwartz and Ben-David (2014).

Theorem 7.1.—Assume that for all f ∈ ℱ and all (y, x) we have ℒ(f(x), y) ≤ 1. In

addition, assume that for any fixed y, the univariate function ℒ(⋅ , y) is Lipschitz with

constant 1. Then with probability at least 1 − δ over the sample S ≜ yi, xi 1 ≤ i ≤ n
i . i . d .D

E(y, x) D[ℒ(f(x), y)]
out‐of‐sampleerror

≤ 1
n ∑

i = 1

n
ℒ f xi , yi

in‐sampleerror

+ 2ℛS(ℱ) + 4 log(4/δ)
n .

In English, the generalization gap of any function f that lies in ℱ is well-controlled as long

as the Rademacher complexity of is ℱ not too large. With this connection in place, we single

out the following complexity bound.

Theorem 7.2 (Theorem 1 in Golowich, Rakhlin and Shamir, 2017).—Consider the

function class ℱL in (7.1), where each parameter Wl has Frobenius norm at most MF(l).

Further suppose that the element-wise activation function σ(·) is 1-Lipschitz and positive-

homogeneous (i.e., σ(c · x) = cσ(x) for all c ≥ 0). Then the empirical Rademacher

complexity (7.2) w.r.t. S ≜ {xi}1≤i≤n satisfies

ℛS ℱL ≤ max
i

xi 2 ⋅
4 L∏l = 1

L MF(l)
n . (7.3)

The upper bound of the empirical Rademacher complexity (7.3) is in a similar vein that of

linear functions with bounded norm, i.e., maxi xi 2M / n, where L∏l = 1
L MF(l) plays the

role of M in the latter case. Moreover, ignoring the term L, the upper bound (7.3) does not

depend on the size of the network in an explicit way if MF (l) sharply concentrates around 1.

This reveals that the capacity of the neural network is well-controlled, regardless of the

number of parameters, as long as the Frobenius norm of the parameters is bounded.

Extensions to other norm constraints, e.g., spectral norm constraints, path norm constraints

have been considered by Neyshabur, Tomioka and Srebro (2015); Bartlett, Foster and

Telgarsky (2017); Li et al. (2018b); Klusowski and Barron (2016); E, Ma and Wang (2019).

This line of work improves upon traditional capacity analysis of neural networks in the over-

parametrized setting, because the upper bounds derived are often size-independent. Having

said this, two important remarks are in order: (1) the upper bounds (e.g., ∏l = 1
L MF(l))

involve implicit dependence on the size of the weight matrix and the depth of the neural

network, which is hard to characterize; (2) the upper bound on the Rademacher complexity

offers a uniform bound over all functions in the function class, which is a pure statistical

result. However, it stays silent about how and why standard training algorithms like SGD

can obtain a function whose parameters have small norms.

Fan et al. Page 31

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7.2 Algorithm-dependent controls

In this subsection, we bring computational thinking into statistics and investigate the role of

algorithms in the generalization power of deep learning. The consideration of algorithms is

quite natural and well motivated: (1) local/global minima reached by different algorithms

can exhibit totally different generalization behaviors due to extreme nonconvexity, which

marks a huge difference from traditional models, (2) the effective capacity of neural nets is

possibly not large, since a particular algorithm does not explore the entire parameter space.

These demonstrate the fact that on top of the complexity of the function class, the inherent

property of the algorithm we use plays an important role in the generalization ability of deep

learning. In what follows, we survey three different ways to obtain upper bounds on the

generalization errors by exploiting properties of the algorithms.

7.2.1 Mean field view of neural nets.—As we have emphasized, modern deep

learning models are highly over-parametrized. A line of work (Mei, Montanari and Nguyen,

2018; Sirignano and Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and

Bach, 2018; Mei, Misiakiewicz and Montanari, 2019; Javanmard, Mondelli and Montanari,

2019) approximates the ensemble of weights by an asymptotic limit as the number of hidden

units tends to infinity, so that the dynamics of SGD can be studied via certain partial

differential equations.

More specifically, let f(x; θ) = N−1∑i = 1
N σ θi

⊤x be a function given by a one-hidden-layer

neural net with N hidden units, where σ(·) is the ReLU activation function and parameters

θ ≜ θ1, …, θN ⊤ ∈ ℝN × d are suitably randomly initialized. Consider the regression setting

where we want to minimize the population risk RN(θ) = E (y − f(x; θ))2 over parameters θ.

A key observation is that this population risk depends on the parameters θ only through its

empirical distribution, i.e., ρ(N) = N−1∑i = 1
N δθi where δθi is a point mass at θi. This

motivates us to view express RN(θ) equivalently as R ρ(N) , where R(·) is a functional that

maps distributions to real numbers. Running SGD for RN(·)—in a suitable scaling limit—

results in a gradient flow on the space of distributions endowed with the Wasserstein metric

that minimizes R(·). It turns out that the empirical distribution ρk
(N) of the parameters after k

steps of SGD is well approximated by the gradient follow, as long as the the neural net is

over-parametrized (i.e., N ≫ d) and the number of steps is not too large. In particular, Mei,

Montanari and Nguyen (2018) have shown that under certain regularity conditions,

sup
k ∈ [0, T /ε] ∩ ℕ

R ρ(N) − R ρkε ≲ eT 1
N ∨ ε ⋅ d + logNε ,

where ε > 0 is an proxy for the step size of SGD and ρkε is the distribution of the gradient

flow at time kε. In words, the out-of-sample error under θk generated by SGD is well-

approximated by that of ρkε. Viewing the optimization problem from the distributional

aspect greatly simplifies the problem conceptually, as the complicated optimization problem

is now passed into its limit version—for this reason, this analytical approach is called the

Fan et al. Page 32

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

mean field perspective. In particular, Mei, Montanari and Nguyen (2018) further

demonstrated that in some simple settings, the out-of-sample error R(ρkε) of the

distributional limit can be fully characterized. Nevertheless, how well does R(ρkε) perform

and how fast it converges remain largely open for general problems.

7.2.2 Stability.—A second way to understand the generalization ability of deep learning

is through the stability of SGD. An algorithm is considered stable if a slight change of the

input does not alter the output much. It has long been observed that a stable algorithm has a

small generalization gap; examples include k nearest neighbors (Rogers and Wagner, 1978;

Devroye and Wagner, 1979), bagging (Breiman, 1996; Breiman et al., 1996), etc. The

precise connection between stability and generalization gap is stated by Bousquet and

Elisseeff (2002); Shalev-Shwartz et al. (2010). In what follows, we formalize the idea of

stability and its connection with the generalization gap. Let A denote an algorithm (possibly

ran domized) which takes a sample S ≜ {(yi, xi)}1≤i ≤n of size n and returns an estimated

parameter θ ≜ A(S). Following Hardt, Recht and Singer (2015), we have the following

definition for stability.

Definition 7.2.—An algorithm (possibly randomized) A is ε-uniformly stable with respect

to the loss function ℒ(⋅ , ⋅) if for all datasets S, S′ of size n which differ in at most one

example, one has

sup
x, y

EA ℒ(f(x; A(S)), y) − ℒ f x; A S′ , y ≤ ε .

Here the Here the expectation is taken w.r.t. the randomness in the algorithm A and ε might

depend on n. The loss function ℒ(⋅ , ⋅) takes an example (say (x, y)) and the estimated

parameter (say A(S)) as inputs and outputs a real value.

Surprisingly, an ε-uniformly stable algorithm incurs small generalization gap in expectation,

which is stated in the following lemma.

Lemma 7.1 (Theorem 2.2 in Hardt, Recht and Singer, 2015).—Let A be ε-

uniformly stable. Then the expected generalization gap is no larger than ε, i.e.,

EA,S
1
n ∑

i = 1

n
ℒ f xi; A(S) , yi − E(x, y) D[ℒ(f(x; A(S)), y)] ≤ ε . (7.4)

With Lemma 7.1 in hand, it suffices to prove stability bound on specific algorithms. It turns

out that SGD introduced in Section 6 is uniformly stable when solving smooth nonconvex

functions.

Theorem 7.3 (Theorem 3.12 in Hardt, Recht and Singer (2015)).—Assume that for

any fixed (y, x), the loss function ℒ(f(x; θ), y), viewed as a function of θ, is L-Lipschitz and

β-smooth. Consider running SGD on the empirical loss function with decaying step size αt ≤
c/t, where c is some small absolute constant. Then SGD is uniformly stable with

Fan et al. Page 33

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ε ≲ T1 − 1
βc + 1
n ,

where we have ignored the dependency on β, c and L.

Theorem 7.3 reveals that SGD operating on nonconvex loss functions is indeed uniformly

stable as long as the number of steps T is not large compared with n. This together with

Lemma 7.1 demonstrates the generalization ability of SGD in expectation. Nevertheless, two

important limitations are worth mentioning. First, Lemma 7.1 provides an upper bound on

the out-of-sample error in expectation, but ideally, instead of an on-average guarantee under

EA,S, we would like to have a high probability guarantee as in the convex case (Feldman

and Vondrak, 2019). Second, controlling the generalization gap alone is not enough to

achieve a small out-of-sample error, since it is unclear whether SGD can achieve a small

training error within T steps.

7.2.3 Implicit regularization—In the presence of over-parametrization (number of

parameters larger than the sample size), conventional wisdom informs us that we should

apply some regularization techniques (e.g., l1 / l2 regularization) so that the model will not

overfit the data. However, in practice, neural networks without explicit regularization

generalize well. This phenomenon motivates researchers to look at the regularization effects

introduced by training algorithms (e.g., SGD) in this over-parametrized regime. While there

might exits multiple, if not infinite global minima of the empirical loss (6.1), it is possible

that practical algorithms tend to converge to solutions with better generalization powers.

Take the underdetermined linear system Xθ = y as a starting point. Here x ∈ ℝn × p and

θ ∈ ℝp with p much larger than n. Running gradient descent on the loss 1
2 Xθ − y 2

2
 from

the origin (i.e., θ0 = 0) results in the solution with the minimum Euclidean norm, that is GD

converges to

min
θ ∈ ℝp

‖θ‖2subject toXθ = y .

In words, without any l2 regularization in the loss function, gradient descent automatically

finds the solution with the least l2 norm. This phenomenon, often called as implicit

regularization, not only has been empirically observed in training neural networks, but also

has been theoretically understood in some simplified cases, e.g., logistic regression with

separable data. In logistic regression, given a training set {(yi, xi)}1≤i≤n with xi ∈ ℝp and yi

∈ {1, −1}, one aims to fit a logistic regression model by solving the following program:

min
θ ∈ ℝp

1
n ∑

i = 1

n
l yixi⊤θt . (7.5)

Fan et al. Page 34

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Here, l(u) ≜ log 1 + e−u denotes the logistic loss. Further assume that the data is separable,

i.e., there exists θ* ∈ ℝp such that yiθ*┬xi > 0 for all i. Under this condition, the loss

function (7.5) can be arbitrarily close to zero for certain θ with ‖θ‖2 → ∞. What happens

when we minimize (7.5) using gradient descent? Soudry et al. (2018) uncovers a striking

phenomenon.

Theorem 7.4 (Theorem 3 in Soudry et al., 2018).—Consider the logistic regression

(7.5) with separable data. If we run GD

θt + 1 = θt − η1
n ∑

i = 1

n
yixil′ yixi⊤θt

from any initialization θ0 with appropriate step size η > 0, then normalized θt converges to a

solution with the maximum l2 margin. That is,

lim
t ∞

θt

θt
2

= θ , (7.6)

where θ is the solution to the hard margin support vector machine:

θ ≜ arg min
θ ∈ ℝp

θ
2
subject toyixi⊤θ ≥ 1forall1 ≤ i ≤ n . (7.7)

The above theorem reveals that gradient descent, when solving logistic regression with

separable data, implicitly regularizes the iterates towards the l2 max margin vector (cf.

(7.6)), without any explicit regularization as in (7.7). Similar results have been obtained by Ji

and Telgarsky (2018). In addition, Gunasekar et al. (2018a) studied algorithms other than

gradient descent and showed that coordinate descent produces a solution with the maximum

l1 margin.

Moving beyond logistic regression, which can be viewed as a one-layer neural net, the

theoretical understanding of implicit regularization in deeper neural networks is still limited;

see Gunasekar et al. (2018b) for an illustration in deep linear convolutional neural networks.

8. DISCUSSION

Due to space limitations, we have omitted several important deep learning models; notable

examples include deep reinforcement learning (Mnih et al., 2015), deep probabilistic

graphical models (Salakhutdinov and Hinton, 2009), variational autoencoders (Kingma and

Welling, 2013), transfer learning (Yosinski et al., 2014), etc. Apart from the modeling

aspect, interesting theories on generative adversarial networks (Arora et al., 2017; Bai, Ma

and Risteski, 2018), recurrent neural networks (Allen-Zhu and Li, 2019), connections with

kernel methods (Jacot, Gabriel and Hongler, 2018; Arora et al., 2019) are also emerging. We

have also omitted the inverse-problem view of deep learning where the data are assumed to

be generated from a certain neural net and the goal is to recover the weights in the NN with

Fan et al. Page 35

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

as few examples as possible. Various algorithms (e.g., GD with spectral initialization) have

been shown to recover the weights successfully in some simplified settings (Zhong et al.,

2017; Soltanolkotabi, 2017; Goel, Klivans and Meka, 2018; Mondelli and Montanari, 2018;

Chen et al., 2019a; Fu, Chi and Liang, 2018).

In the end, we identify a few important directions for future research.

• New characterization of data distributions. The success of deep learning re-lies

on its power of efficiently representing complex functions relevant to real data.

Comparatively, classical methods often have optimal guarantee if a problem has

a certain known structure, such as smoothness, sparsity, and low-rankness

(Stone, 1982; Donoho and Johnstone, 1994; Candès and Tao, 2009; Chen et al.,

2019b), but they are insufficient for complex data such as images. How to

characterize the high-dimensional real data that can free us from known barriers,

such as the curse of dimensionality is an interesting open question?

• Understanding various computational algorithms for deep learning. As we have

emphasized throughout this survey, computational algorithms (e.g., variants of

SGD) play a vital role in the success of deep learning. They allow fast training of

deep neural nets and probably contribute towards the good generalization

behavior of deep learning in practice. Understanding these computational

algorithms and devising better ones are crucial components in understanding

deep learning.

• Robustness. It has been well documented that DNNs are sensitive to small

adversarial perturbations that are indistinguishable to humans (Szegedy et al.,

2013). This raises serious safety issues once deep learning models are deployed

in applications such as self-driving cars, healthcare, etc. It is therefore crucial to

refine current training practice to enhance robustness in a principled way (Singh,

Murdoch and Yu, 2018).

• Low SNRs. Arguably, for image data and audio data where the signal-to-noise

ratio (SNR) is high, deep learning has achieved great success. In many other

statistical problems, the SNR may be very low. For example, in financial

applications, the firm characteristic and covariates may only explain a small part

of the financial returns; in healthcare systems, the uncertainty of an illness may

not be predicted well from a patient’s medical history. How to adapt deep

learning models to excel at such tasks is an interesting direction to pursue?

ACKNOWLEDGEMENTS

Cong Ma thanks Ruying Bao, Yuxin Chen, Chenxi Liu, Qingcan Wang and Pengkun Yang for helpful comments
and discussions.

J. Fan is supported in part by the NSF grants DMS-1712591 and DMS-1662139, the NIH grant R01-GM072611
and the ONR grant N00014-19-1-2120.

Fan et al. Page 36

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

REFERENCES

Abadi M and et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org.

Abbasi-Asl R, Chen Y, Bloniarz A, Oliver M, Willmore BD, Gallant JL and Yu B (2018). The
DeepTune framework for modeling and characterizing neurons in visual cortex area V4. bioRxiv
465534.

Allen-Zhu Z, Li Y and Song Z (2018). A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962

Allen-Zhu Z and Li Y (2019). Can SGD Learn Recurrent Neural Networks with Provable
Generalization? ArXiv e-prints abs/1902.01028.

Anthony M and Bartlett PL (2009). Neural network learning: Theoretical foundations. cambridge
university press.

Arjovsky M, Chintala S and Bottou L (2017). Wasserstein Generative Adversarial Networks. 70 214–
223.

Arnold VI (2009). On functions of three variables. Collected Works: Representations of Functions,
Celestial Mechanics and KAM Theory, 1957–1965 5–8.

Arora S and Barak B (2009). Computational complexity: a modern approach. Cambridge University
Press.

Arora S, Ge R, Liang Y, Ma T and Zhang Y (2017). Generalization and equilibrium in generative
adversarial nets (gans). In Proceedings of the 34th International Conference on Machine Learning-
Volume 70 224–232. JMLR. org.

Arora S, Du SS, Hu W, Li Z and Wang R (2019). Fine-Grained Analysis of Optimization and
Generalization for Overparameterized Two-Layer Neural Networks. arXiv preprint
arXiv:1901.08584

Bai Y, Ma T and Risteski A (2018). Approximability of discriminators implies diversity in GANs.
arXiv preprint arXiv:1806.10586

Barron AR (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information theory 39 930–945.

Bartlett PL (1998). The sample complexity of pattern classification with neural networks: the size of
the weights is more important than the size of the network. IEEE transactions on Information
Theory 44 525–536.

Bartlett PL, Foster DJ and Telgarsky MJ (2017). Spectrally-normalized margin bounds for neural
networks. In Advances in Neural Information Processing Systems 30 (Guyon I, Luxburg UV,
Bengio S, Wallach H, Fergus R, Vishwanathan S and Garnett R, eds.) 6240–6249. Curran
Associates, Inc.

Bauer B and Kohler M (2017). On Deep Learning as a remedy for the curse of dimensionality in
nonparametric regression Technical Report, Technical report.

Bottou L (1998). Online learning and stochastic approximations. On-line learning in neural networks
17 142.

Bousquet O and Elisseeff A (2002). Stability and generalization. Journal of machine learning research
2 499–526.

Breiman L (1996). Bagging predictors. Machine learning 24 123–140.

Breiman L et al. (1996). Heuristics of instability and stabilization in model selection. The annals of
statistics 24 2350–2383.

Candès EJ and Tao T (2009). The power of convex relaxation: Near-optimal matrix completion. arXiv
preprint arXiv:0903.1476

Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X and Xie Z (2018). Deep learning and its
applications in biomedicine. Genomics, proteomics & bioinformatics 16 17–32.

Chen TQ, Rubanova Y, Bettencourt J and Duvenaud D (2018). Neural Ordinary Differential Equations.
arXiv preprint arXiv:1806.07366

Chen Y, Chi Y, Fan J and Ma C (2019a). Gradient descent with random initialization: Fast global
convergence for nonconvex phase retrieval. Mathematical Programming 1–33.

Fan et al. Page 37

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen Y, Chi Y, Fan J, Ma C and Yan Y (2019b). Noisy Matrix Completion: Understanding Statistical
Guarantees for Convex Relaxation via Nonconvex Optimization. arXiv preprint arXiv:1902.07698

Chizat L and Bach F (2018). On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in neural information processing systems 3040–3050.

Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H and Bengio Y (2014).
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078

Cook RD et al. (2007). Fisher lecture: Dimension reduction in regression. Statistical Science 22 1–26.

De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot
X, O’Donoghue B, Visentin D et al. (2018). Clinically applicable deep learning for diagnosis and
referral in retinal disease. Nature medicine 24 1342.

Devroye L and Wagner T (1979). Distribution-free performance bounds for potential function rules.
IEEE Transactions on Information Theory 25 601–604.

Donoho DL (2000). High-dimensional data analysis: The curses and blessings of dimensionality. AMS
math challenges lecture 1 32.

Donoho DL and Johnstone JM (1994). Ideal spatial adaptation by wavelet shrinkage. biometrika 81
425–455.

Du SS, Lee JD, Li H, Wang L and Zhai X (2018). Gradient descent finds global minima of deep neural
networks. arXiv preprint arXiv:1811.03804

Duchi J, Hazan E and Singer Y (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research 12 2121–2159.

E W, Ma C and Wang Q (2019). A Priori Estimates of the Population Risk for Residual Networks.
arXiv preprint arXiv:1903.02154

Eldan R and Shamir O (2016). The power of depth for feedforward neural networks. In Conference on
Learning Theory 907–940.

Fan J and Li R (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association 96 1348–1360.

Feldman V and Vondrak J (2019). High probability generalization bounds for uniformly stable
algorithms with nearly optimal rate. arXiv preprint arXiv:1902.10710

Friedman JH and Stuetzle W (1981). Projection pursuit regression. Journal of the American statistical
Association 76 817–823.

Fu H, Chi Y and Liang Y (2018). Local geometry of one-hidden-layer neural networks for logistic
regression. arXiv preprint arXiv:1802.06463

Fukushima K and Miyake S (1982). Neocognitron: A self-organizing neural network model for a
mechanism of visual pattern recognition. In Competition and cooperation in neural nets 267–285.
Springer.

Gao C, Liu J, Yao Y and Zhu W (2018). Robust Estimation and Generative Adversarial Nets. arXiv
preprint arXiv:1810.02030

Goel S, Klivans A and Meka R (2018). Learning one convolutional layer with overlapping patches.
arXiv preprint arXiv:1802.02547

Golowich N, Rakhlin A and Shamir O (2017). Size-independent sample complexity of neural
networks. arXiv preprint arXiv:1712.06541

Golub GH and Van Loan CF (2013). Matrix computations, 4 ed. JHU Press.

Goodfellow I, Bengio Y and Courville A (2016). Deep Learning. MIT Press.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A and Bengio Y
(2014). Generative adversarial nets. In Advances in neural information processing systems 2672–
2680.

Gunasekar S, Lee J, Soudry D and Srebro N (2018a). Characterizing implicit bias in terms of
optimization geometry. arXiv preprint arXiv:1802.08246

Gunasekar S, Lee JD, Soudry D and Srebro N (2018b). Implicit bias of gradient descent on linear
convolutional networks. In Advances in Neural Information Processing Systems 9482–9491.

Hardt M, Recht B and Singer Y (2015). Train faster, generalize better: Stability of stochastic gradient
descent. arXiv preprint arXiv:1509.01240

Fan et al. Page 38

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

He K, Zhang X, Ren S and Sun J (2016a). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition 770–778.

He K, Zhang X, Ren S and Sun J (2016b). Identity mappings in deep residual networks. In European
conference on computer vision 630–645. Springer.

Hinton G, Srivastava N and Swersky K (2012). Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent.

Hinton GE, Srivastava N, Krizhevsky A, Sutskever I and Salakhutdinov RR (2012). Improving neural
networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580

Hochreiter S and Schmidhuber J (1997). Long short-term memory. Neural computation 9 1735–1780.
[PubMed: 9377276]

Huang G, Liu Z, Van Der Maaten L and Weinberger KQ (2017). Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition
4700–4708.

Hubel DH and Wiesel TN (1962). Receptive fields, binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of physiology 160 106–154. [PubMed: 14449617]

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ and Keutzer K (2016). SqueezeNet:
AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint
arXiv:1602.07360

Ioffe S and Szegedy C (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167

Jacot A, Gabriel F and Hongler C (2018). Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in neural information processing systems 8580–8589.

Jain P, Kakade SM, Kidambi R, Netrapalli P and Sidford A (2017). Accelerating stochastic gradient
descent. arXiv preprint arXiv:1704.08227

Javanmard A, Mondelli M and Montanari A (2019). Analysis of a Two-Layer Neural Network via
Displacement Convexity. arXiv preprint arXiv:1901.01375

Ji Z and Telgarsky M (2018). Risk and parameter convergence of logistic regression. arXiv preprint
arXiv:1803.07300

Kidambi R, Netrapalli P, Jain P and Kakade S (2018). On the insůciency of existing momentum
schemes for stochastic optimization. In 2018 Information Theory and Applications Workshop
(ITA) 1–9. IEEE.

Kiefer J, Wolfowitz J et al. (1952). Stochastic estimation of the maximum of a regression function. The
Annals of Mathematical Statistics 23 462–466.

Kingma DP and Ba J (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980

Kingma DP and Welling M (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114

Klusowski JM and Barron AR (2016). Risk bounds for high-dimensional ridge function combinations
including neural networks. arXiv preprint arXiv:1607.01434

Krizhevsky A, Sutskever I and Hinton GE (2012). Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems 1097–1105.

Kushner H and Yin GG (2003). Stochastic approximation and recursive algorithms and applications
35. Springer Science & Business Media.

LeCun Y, Bengio Y and Hinton G (2015). Deep learning. nature 521 436. [PubMed: 26017442]

LeCun Y, Bottou L, Bengio Y and Haffner P (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86 2278–2324.

Li K-C (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical
Association 86 316–327.

Li Y, Swersky K and Zemel R (2015). Generative moment matching networks. In International
Conference on Machine Learning 1718–1727.

Li H, Xu Z, Taylor G, Studer C and Goldstein T (2018a). Visualizing the loss landscape of neural nets.
In Advances in Neural Information Processing Systems 6391–6401.

Li X, Lu J, Wang Z, Haupt J and Zhao T (2018b). On tighter generalization bound for deep neural
networks: CNNs, ResNets, and beyond. arXiv preprint arXiv:1806.05159

Fan et al. Page 39

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Liang T (2017). How Well Can Generative Adversarial Networks (GAN) Learn Densities: A
Nonparametric View. arXiv preprint arXiv:1712.08244

Lin M, Chen Q and Yan S (2013). Network in network. arXiv preprint arXiv:1312.4400

Lin HW, Tegmark M and Rolnick D (2017). Why does deep and cheap learning work so well? Journal
of Statistical Physics 168 1223–1247.

Maas AL, Hannun AY and Ng AY (2013). Rectifier nonlinearities improve neural network acoustic
models. In Proc. icml 30 3.

Maiorov V and Meir R (2000). On the near optimality of the stochastic approximation of smooth
functions by neural networks. Advances in Computational Mathematics 13 79–103.

Makovoz Y (1996). Random approximants and neural networks. Journal of Approximation Theory 85
98–109.

Mei S, Misiakiewicz T and Montanari A (2019). Mean-field theory of two-layers neural networks:
dimension-free bounds and kernel limit. arXiv preprint arXiv:1902.06015

Mei S, Montanari A and Nguyen P-M (2018). A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences 115 E7665–E7671.

Mhaskar HN (1996). Neural networks for optimal approximation of smooth and analytic functions.
Neural computation 8 164–177.

Mhaskar H, Liao Q and Poggio T (2016). Learning functions: when is deep better than shallow. arXiv
preprint arXiv:1603.00988

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M,
Fidjeland AK, Ostrovski G et al. (2015). Human-level control through deep reinforcement
learning. Nature 518 529. [PubMed: 25719670]

Mondelli M and Montanari A (2018). On the connection between learning two-layers neural networks
and tensor decomposition. arXiv preprint arXiv:1802.07301

Nesterov YE (1983). A method for solving the convex programming problem with convergence rate O
(1/k^ 2). In Dokl. Akad. Nauk SSSR 269 543–547.

Neyshabur B, Tomioka R and Srebro N (2015). Norm-based capacity control in neural networks. In
Conference on Learning Theory 1376–1401.

Nowozin S, Cseke B and Tomioka R (2016). f-gan: Training generative neural samplers using
variational divergence minimization. In Advances in Neural Information Processing Systems 271–
279.

Parberry I (1994). Circuit complexity and neural networks. MIT press.

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L and Lerer
A (2017). Automatic differentiation in PyTorch.

Pinkus A (1999). Approximation theory of the MLP model in neural networks. Acta numerica 8 143–
195.

Poggio T, Mhaskar H, Rosasco L, Miranda B and Liao Q (2017). Why and when can deep-but not
shallow-networks avoid the curse of dimensionality: a review. International Journal of Automation
and Computing 14 503–519.

Polyak BT (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics 4 1–17.

Polyak BT and Juditsky AB (1992). Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization 30 838–855.

Polyak BT and Tsypkin YZ (1979). Adaptive estimation algorithms: convergence, optimality, stability.
Avtomatika i Telemekhanika 3 71–84.

Poultney C, Chopra S, Cun YL et al. (2007). Efficient learning of sparse representations with an
energy-based model. In Advances in neural information processing systems 1137–1144.

Reddi SJ, Kale S and Kumar S (2018). On the convergence of adam and beyond.

Robbins H and Monro S (1951). A Stochastic Approximation Method. The Annals of Mathematical
Statistics 22 400–407.

Rogers WH and Wagner TJ (1978). A finite sample distribution-free performance bound for local
discrimination rules. The Annals of Statistics 506–514.

Fan et al. Page 40

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rolnick D and Tegmark M (2017). The power of deeper networks for expressing natural functions.
arXiv preprint arXiv:1705.05502

Romano Y, Sesia M and Candès EJ (2018). Deep Knockoffs. arXiv preprint arXiv:1811.06687

Rotskoff GM and Vanden-Eijnden E (2018). Neural networks as interacting particle systems:
Asymptotic convexity of the loss landscape and universal scaling of the approximation error.
arXiv preprint arXiv:1805.00915

Rumelhart DE, Hinton GE and Williams RJ (1985). Learning internal representations by error
propagation Technical Report, California Univ San Diego La Jolla Inst for Cognitive Science.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC and Fei-Fei L (2015). ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV) 115 211–252.

Sak H, Senior A and Beaufays F (2014). Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In Fifteenth annual conference of the
international speech communication association.

Salakhutdinov R and Hinton G (2009). Deep boltzmann machines. In Artificial intelligence and
statistics 448–455.

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A and Chen X (2016). Improved
techniques for training gans. In Advances in Neural Information Processing Systems 2234–2242.

Schmidt-Hieber J (2017). Nonparametric regression using deep neural networks with ReLU activation
function. arXiv preprint arXiv:1708.06633

Shalev-Shwartz S and Ben-David S (2014). Understanding machine learning: From theory to
algorithms. Cambridge university press.

Shalev-Shwartz S, Shamir O, Srebro N and Sridharan K (2010). Learnability, stability and uniform
convergence. Journal of Machine Learning Research 11 2635–2670.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M,
Bolton A et al. (2017). Mastering the game of go without human knowledge. Nature 550 354.
[PubMed: 29052630]

Silverman BW (1998). Density estimation for statistics and data analysis. Chapman & Hall, CRC.

Singh C, Murdoch WJ and Yu B (2018). Hierarchical interpretations for neural network predictions.
arXiv preprint arXiv:1806.05337

Sirignano J and Spiliopoulos K (2018). Mean field analysis of neural networks. arXiv preprint
arXiv:1805.01053

Soltanolkotabi M (2017). Learning relus via gradient descent. In Advances in Neural Information
Processing Systems 2007–2017.

Soudry D, Hoffer E, Nacson MS, Gunasekar S and Srebro N (2018). The implicit bias of gradient
descent on separable data. The Journal of Machine Learning Research 19 2822–2878.

Sprecher DA (1965). On the structure of continuous functions of several variables. Transactions of the
American Mathematical Society 115 340–355.

Stone CJ (1982). Optimal global rates of convergence for nonparametric regression. The annals of
statistics 1040–1053.

Sutskever I, Martens J, Dahl G and Hinton G (2013). On the importance of initialization and
momentum in deep learning. In International conference on machine learning 1139–1147.

Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I and Fergus R (2013). Intriguing
properties of neural networks. arXiv preprint arXiv:1312.6199

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V and Rabinovich A
(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition 1–9.

Telgarsky M (2016). Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485

Tibshirani R (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological) 58 267–288.

Vapnik V and Chervonenkis AY (1971). On the Uniform Convergence of Relative Frequencies of
Events to Their Probabilities. Theory of Probability & Its Applications 16 264–280.

Fan et al. Page 41

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vincent P, Larochelle H, Bengio Y and Manzagol P-A (2008). Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning 1096–1103. ACM.

Wager S, Wang S and Liang PS (2013). Dropout training as adaptive regularization. In Advances in
neural information processing systems 351–359.

Weinan E, Han J and Jentzen A (2017). Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations.
Communications in Mathematics and Statistics 5 349–380.

Wilson AC, Roelofs R, Stern M, Srebro N and Recht B (2017). The Marginal Value of Adaptive
Gradient Methods in Machine Learning. In Advances in Neural Information Processing Systems
30 (Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S and Garnett R, eds.)
4148–4158. Curran Associates, Inc.

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K
et al. (2016). Google’s neural machine translation system: Bridging the gap between human and
machine translation. arXiv preprint arXiv:1609.08144

Yosinski J, Clune J, Bengio Y and Lipson H (2014). How transferable are features in deep neural
networks? In Advances in neural information processing systems 3320–3328.

Yosinski J, Clune J, Nguyen A, Fuchs T and Lipson H (2015). Understanding neural networks through
deep visualization. arXiv preprint arXiv:1506.06579

Zhang C, Bengio S, Hardt M, Recht B and Vinyals O (2016). Understanding deep learning requires
rethinking generalization. arXiv preprint arXiv:1611.03530

Zhong K, Song Z, Jain P, Bartlett PL and Dhillon IS (2017). Recovery guarantees for one-hidden-layer
neural networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70 4140–4149. JMLR. org.

Fan et al. Page 42

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 1:
(a) shows the images in the public dataset MNIST; and (b) depicts the training and test

accuracies along the training dynamics. Note that the training accuracy is approaching 100%

and the test accuracy is still high (no overfitting).

Fan et al. Page 43

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 2:
A feed-forward neural network with an input layer, two hidden layers and an output layer.

The input layer represents raw features {xi}1≤i≤n. Both hidden layers compute an affine

transform (a.k.a. indices) of the input and then apply an element-wise activation function (·).

Finally, the output returns a linear transform followed by the softmax activation (resp.

simply a linear transform) of the hidden layers for the classification (resp. regression)

problem.

Fan et al. Page 44

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 3:
The computational graph illustrates the loss (2.7). For simplicity, we omit the bias terms.

Symbols inside nodes represent functions, and symbols outside nodes represent function

outputs (vectors/scalars). matmul is matrix multiplication, relu is the ReLU activation, cross

entropy is the cross entropy loss, and SoS is the sum of squares.

Fan et al. Page 45

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 4:

X ∈ ℝ28 × 28 × 3 represents the input feature consisting of 28 × 28 spatial coordinates in a

total number of 3 channels / feature maps. Fk ∈ ℝ5 × 5 × 3 denotes the k-th filter with size 5

× 5 The third matches the number 3 of the filter automatically matches the number 3 of

channels in the previous input. Every 3D patch of X gets convolved with the filter Fk and

this as a whole results in a single output feature map X: , : , k with size 24 × 24 ×1. Stacking

the outputs of all the filters {Fk}1×k×K will lead to the output feature with size 24 × 24 ×K.

Fan et al. Page 46

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 5:
A 2 × 2 max pooling layer extracts the maximum of 2 by 2 neighboring pixels / features

across the spatial dimension.

Fan et al. Page 47

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 6:
LeNet is composed of an input layer, two convolutional layers, two pooling layers and three

fully-connected layers. Both convolutions are valid and use filters with size 5 × 5. In

addition, the two pooling layers use 2 × 2 average pooling.

Fan et al. Page 48

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 7:
Vanilla RNNs with different inputs/outputs settings. (a) has one input but multiple outputs;

(b) has multiple inputs but one output; (c) has multiple inputs and outputs. Note that the

parameters are shared across time steps.

Fan et al. Page 49

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 8:

A vanilla RNN with two hidden layers. Higher-level hidden states ht
l are determined by the

old states ht − 1
l and lower-level hidden states ht

l − 1. Multilayer RNNs generalize both feed-

forward neural nets and one-hidden-layer RNNs.

Fan et al. Page 50

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 9:
(a) The “Inception” module from GoogleNet. Concat means combining all features maps

into a tensor. (b) Skip connections are added every two layers in ResNets.

Fan et al. Page 51

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 10:
First an input x goes through the encoder f(·), and we obtain its hidden representation h =

f(x). Then, we use the decoder g(·) to get g(h) as a reconstruction of x. Finally, the loss is

determined from the difference between the original input x and its reconstruction g(f(x)).

Fan et al. Page 52

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 11:
GANs consist of two components, a generator G which generates fake samples and a

discriminator D which differentiate the true ones from the fake ones.

Fan et al. Page 53

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fan et al. Page 54

Table 1

Winning models for ILSVRC image classification challenge.

Model Year # Layers # Params Top-5 error

Shallow < 2012 — — > 25%

AlexNet 2012 8 61M 16.4%

VGG19 2014 19 144M 7.3%

GoogleNet 2014 22 7M 6.7%

ResNet-152 2015 152 60M 3.6%

Stat Sci. Author manuscript; available in PMC 2021 July 23.

	Abstract
	INTRODUCTION
	Intriguing new characteristics of deep learning
	Depth.
	Algorithmic regularization.
	Implicit prior learning.

	Towards theory of deep learning
	Roadmap of the paper

	FEED-FORWARD NEURAL NETWORKS
	Model setup
	Back-propagation in computational graphs

	POPULAR MODELS
	Convolutional neural networks
	Recurrent neural networks
	Vanilla RNNs.
	GRUs and LSTM.
	Multilayer RNNs.

	Modules

	DEEP UNSUPERVISED LEARNING
	Autoencoders
	Generative adversarial networks
	Sampling view of GANs.
	Density estimation view of GANs.

	REPRESENTATION POWER: APPROXIMATION THEORY
	Universal approximation theory for shallow NNs
	Theorem 5.1 (Theorem 2.1 in Mhaskar (1996)).
	Theorem 5.2 (Theorem 5 in Maiorov and Meir (2000)).
	Theorem 5.3 (Proposition 1 in Barron (1993)).

	Approximation theory for multi-layer NNs
	Theorem 5.4 (Theorem 4.1 in Rolnick and Tegmark (2017)).

	TRAINING DEEP NEURAL NETS
	Stochastic gradient descent
	Theorem 6.1 (Theorem 2 in Allen-Zhu, Li and Song, 2018).
	Mini-batch SGD.
	Momentum-based SGD.
	SGD with adaptive learning rates.

	Easing numerical instability
	ReLU activation function.
	Skip connections.
	Batch normalization.

	Regularization techniques
	Weight decay.
	Dropout.
	Data augmentation.

	GENERALIZATION POWER
	Algorithm-independent controls: uniform convergence
	Definition 7.1 (Empirical Rademacher complexity).
	Theorem 7.1.
	Theorem 7.2 (Theorem 1 in Golowich, Rakhlin and Shamir, 2017).

	Algorithm-dependent controls
	Mean field view of neural nets.
	Stability.
	Definition 7.2.
	Lemma 7.1 (Theorem 2.2 in Hardt, Recht and Singer, 2015).
	Theorem 7.3 (Theorem 3.12 in Hardt, Recht and Singer (2015)).
	Implicit regularization
	Theorem 7.4 (Theorem 3 in Soudry et al., 2018).

	DISCUSSION
	References
	Fig 1:
	Fig 2:
	Fig 3:
	Fig 4:
	Fig 5:
	Fig 6:
	Fig 7:
	Fig 8:
	Fig 9:
	Fig 10:
	Fig 11:
	Table 1

