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Abstract

Deep learning has achieved tremendous success in recent years. In simple words, deep learning 

uses the composition of many nonlinear functions to model the complex dependency between 

input features and labels. While neural networks have a long history, recent advances have greatly 

improved their performance in computer vision, natural language processing, etc. From the 

statistical and scientific perspective, it is natural to ask: What is deep learning? What are the new 

characteristics of deep learning, compared with classical methods? What are the theoretical 

foundations of deep learning?

To answer these questions, we introduce common neural network models (e.g., convolutional 

neural nets, recurrent neural nets, generative adversarial nets) and training techniques (e.g., 

stochastic gradient descent, dropout, batch normalization) from a statistical point of view. Along 

the way, we highlight new characteristics of deep learning (including depth and over-

parametrization) and explain their practical and theoretical benefits. We also sample recent results 

on theories of deep learning, many of which are only suggestive. While a complete understanding 

of deep learning remains elusive, we hope that our perspectives and discussions serve as a stimulus 

for new statistical research.
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1. INTRODUCTION

Modern machine learning and statistics deal with the problem of learning from data: given a 

training dataset {(yi,xi)}1≤i≤n where xi ∈ ℝd is the input and yi ∈ ℝ is the output1, one 

seeks a function f : ℝd ℝ from a certain function class ℱ that has good prediction 

performance on test data. This problem is of fun-damental significance and finds 

applications in numerous scenarios. For instance, in image recognition, the input x (reps. the 

output y) corresponds to the raw image (reps. its category) and the goal is to find a mapping 

f(·) that can classify future images accurately. Decades of research efforts in statistical 

machine learning have been devoted to developing methods to find f(·) efficiently with 

jqfan@princeton.edu;. 
1When the label y is given, this problem is often known as supervised learning. We mainly focus on this paradigm throughout this 
paper and remark sparingly on its counterpart, unsupervised learning, where y is not given.
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provable guarantees. Prominent examples include linear classifiers (e.g., linear / logistic 

regression, linear discriminant analysis), kernel methods (e.g., support vector machines), 

tree-based methods (e.g., decision trees, random forests), nonparametric regression (e.g., 

nearest neighbors, local kernel smoothing), etc. Roughly speaking, each aforementioned 

method corresponds to a different function class ℱ from which the final classifier f(·) is 

chosen.

Deep learning (LeCun, Bengio and Hinton, 2015), in its simplest form, proposes the 

following compositional function class:

f(x; θ) = WLσL WL − 1⋯σ2 W2σ1 W1x ∣ θ = W1, …, WL . (1.1)

Here, for each 1 ≤ l ≤ L, σl( ⋅ ) is some nonlinear function, and θ = {W1,…,WL} consists of 

matrices with appropriate sizes. Though simple, deep learning has made significant progress 

towards addressing the problem of learning from data over the past decade. Specifically, it 

has performed close to or better than humans in various important tasks in artificial 

intelligence, including image recognition (He et al., 2016a), game playing (Silver et al., 

2017), and machine translation (Wu et al., 2016). Owing to its great promise, the impact of 

deep learning is also growing rapidly in areas beyond artificial intelligence; examples 

include statistics (Bauer and Kohler, 2017; Schmidt-Hieber, 2017; Liang, 2017; Romano, 

Sesia and Candès, 2018; Gao et al., 2018), applied mathematics (Weinan, Han and Jentzen, 

2017; Chen et al., 2018), clinical research (De Fauw et al., 2018), etc.

To get a better idea of the success of deep learning, let us take the ImageNet Challenge 

(Russakovsky et al., 2015) (also known as ILSVRC) as an example. In the classification 

task, one is given a training dataset consisting of 1.2 million color images with 1000 

categories, and the goal is to classify images based on the input pixels. The performance of a 

classifier is then evaluated on a test dataset of 100 thousand images, and in the end the top-5 

error2 is reported. Table 1 highlights a few popular models and their corresponding 

performance. As can be seen, deep learning models (the second to the last rows) have a clear 

edge over shallow models (the first row) that fit linear models / tree-based models on 

handcrafted features. This significant improvement raises a foundational question:

Why is deep learning better than classical methods on tasks like image recognition?

1.1 Intriguing new characteristics of deep learning

It is widely acknowledged that two indispensable factors contribute to the success of deep 

learning, namely (1) huge datasets that often contain millions of samples and (2) immense 

computing power resulting from clusters of graphics processing units (GPUs). Admittedly, 

these resources are only recently available: the latter allows to train larger neural networks 

which reduces biases and the former enables variance reduction. However, these two alone 

are not sufficient to explain the mystery of deep learning due to some of its “dreadful” 

characteristics: (1) over-parametrization: the number of parameters in state-of-the-art deep 

learning models is often much larger than the sample size (see Table 1), which gives them 

2The algorithm makes an error if the true label is not contained in the 5 predictions made by the algorithm.
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the potential to overfit the training data, and (2) nonconvexity: even with the help of GPUs, 

training deep learning models is still NP-hard (Arora and Barak, 2009) in the worst case due 

to the highly nonconvex loss function to minimize. In reality, these characteristics are far 

from nightmares. This sharp difference motivates us to take a closer look at the salient 

features of deep learning, which we single out a few below.

1.1.1 Depth.—Deep learning expresses complicated nonlinearity through composing 

many nonlinear functions; see (1.1). The rationale for this multilayer structure is that, in 

many real-world datasets such as images, there are different levels of features and lower-

level features are building blocks of higher-level ones. See Yosinski et al. (2015) for a 

visualization of trained features of convolutional neural nets. This is also supported by 

empirical results from physiology and neuroscience (Hubel and Wiesel, 1962; Abbasi-Asl et 

al., 2018). The use of function composition marks a sharp difference from traditional 

statistical methods such as projection pursuit models (Friedman and Stuetzle, 1981) and 

multi-index models (Li, 1991; Cook et al., 2007). It is often observed that depth helps 

efficiently extract features that are representative of a dataset. In comparison, increasing 

width (e.g., number of basis functions) in a shallow model leads to less improvement. This 

suggests that deep learning models excel at representing a very different function space that 

is suitable for complex datasets.

1.1.2 Algorithmic regularization.—The statistical performance of neural networks 

(e.g., test accuracy) depends heavily on the particular optimization algorithms used for 

training (Wilson et al., 2017). This is very different from many classical statistical problems, 

where the related optimization problems are less complicated. For instance, when the 

associated optimization problem has a relatively simple structure (e.g., convex objective 

functions, linear constraints), the solution to the optimization problem can often be 

unambiguously computed and analyzed. However, in deep neural networks, due to over-

parametrization, there are usually many local minima with different statistical performance 

(Li et al., 2018a). Nevertheless, common practice runs stochastic gradient descent with 

random initialization and finds model parameters with very good prediction accuracy.

1.1.3 Implicit prior learning.—It is well observed that deep neural networks trained 

with only the raw inputs (e.g., pixels of images) can provide a useful representation of the 

data. This means that after training, the units of deep neural networks can represent features 

such as edges, corners, wheels, eyes, etc.; see Yosinski et al. (2015). Importantly, the training 

process is automatic in the sense that no human knowledge is involved (other than hyper-

parameter tuning). This is very different from traditional methods, where algorithms are 

designed after structural assumptions are posited. It is likely that training an over-

parametrized model efficiently learns and incorporates the prior distribution p(x) of the 

input, even though deep learning models are themselves discriminative models. With 

automatic representation of the prior distribution, deep learning typically performs well on 

similar datasets (but not very different ones) via transfer learning.
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1.2 Towards theory of deep learning

Despite the empirical success, theoretical support for deep learning is still in its infancy. 

Setting the stage, for any classifier f, denote by E(f) the expected risk on fresh sample (a.k.a. 

test error, prediction error or generalization error), and by En(f) the empirical risk / training 

error averaged over a training dataset. Arguably, the key theoretical question in deep 

learning is

why is E fn  small, where fn is the classifier returned by the training algorithm?

We follow the conventional approximation-estimation decomposition (sometimes, also bias-

variance tradeoff) to decompose the term E fn  into two parts. Let ℱ be the function space 

expressible by a family of neural nets. Define f* = argminfE(f) to be the best possible 

classifier and fℱ* = argminf ∈ ℱE(f) to be the best classifier in ℱ. Then, we can decompose 

the excess error ℰ ≜ E fn − E f*  into two parts:

ℰ = E fℱ* − E f*
approximationerror

+ E fn − E fℱ*
estimationerror

.
(1.2)

Both errors can small for deep learning (cf. Figure 1), which we explain below.

• The approximation error is determined by the function class ℱ. Intuitively, the 

larger the class, the smaller the approximation error. Deep learning models use 

many layers of nonlinear functions (Figure 2)that can drive this error small. 

Indeed, in Section 5, we provide recent theoretical progress of its representation 

power. For example, deep models allow efficient representation of interactions 

among variable while shallow models cannot.

• The estimation error reflects the generalization power, which is influenced by 

both the complexity of the function class ℱ and the properties of the training 

algorithms. Interestingly, for over-parametrized deep neural nets, stochastic 

gradient descent typically results in a near-zero training error (i.e., En fn ≈ 0; 

see e.g. left panel of Figure 1). Moreover, its generalization error E fn  remains 

small or moderate. This “counterintuitive” behavior suggests that for over-

parametrized models, gradient-based algorithms enjoy benign statistical 

properties; we shall see in Section 7 that gradient descent enjoys implicit 
regularization in the over-parametrized regime even without explicit 

regularization (e.g., l2 regularization).

The above two points lead to the following heuristic explanation of the success of deep 

learning models. The large depth of deep neural nets and heavy over-parametrization lead to 

small or zero training errors, even when running simple algorithms with moderate number of 

iterations. In addition, these simple algorithms with moderate number of steps do not 

explore the entire function space and thus have limited complexities, which results in small 

generalization error with a large sample size. Thus, by combining the two aspects, it 

explains heuristically that the test error is also small.
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1.3 Roadmap of the paper

We first introduce basic deep learning models in Sections 2–4, and then examine their 

representation power via the lens of approximation theory in Section 5. Section 6 is devoted 

to training algorithms and their ability of driving the training error small. Then we sample 

recent theoretical progress towards demystifying the generalization power of deep learning 

in Section 7. Along the way, we provide our own perspectives, and at the end we identify a 

few interesting questions for future research in Section 8. The goal of this paper is to present 

suggestive methods and results, rather than giving conclusive arguments (which is currently 

unlikely) or a comprehensive survey. We hope that our discussion serves as a stimulus for 

new statistics research.

2. FEED-FORWARD NEURAL NETWORKS

Before introducing the vanilla feed-forward neural nets, let us set up necessary notations for 

the rest of this section. We focus primarily on classification problems, as regression 

problems can be addressed similarly. Given the training dataset {(yi, xi)}1≤i≤n where yi ∈ [K] 

≜ {1, 2, …, K} and xi ∈ ℝd are independent across i ∈ [n], supervised learning aims at 

finding a (possibly random) function f(x) that predicts the outcome y for a new input x, 

assuming (y, x) follows the same distribution as (yi, xi). In the terminology of machine 

learning, the input xi is often called the feature, the output yi called the label, and the pair 

(yi, xi) is an example. The function f  is called the classifier, and estimation of f  is training 

or learning. The performance of f  is evaluated through the prediction error ℙ(y ≠ f(x)), 
which can be often estimated from a separate test dataset.

As with classical statistical estimation, for each k ∈ [K], a classifier approximates the 

conditional probability ℙ(y = k ∣ x) using a function fk(x; θk) parametrized by θk. Then the 

category with the highest probability is predicted. Thus, learning is essentially estimating the 

parameters θk. In statistics, one of the most popular methods is (multinomial) logistic 

regression, which stipulates a specific form for the functions fk(x; θk): let zk = x⊤βk + αk 

and fk(x; θk) = Z−1 exp(zk) where Z = ∑k = 1
K exp zk  is a normalization factor to make 

{fk(x; θk)}1≤k≤K a valid probability distribution. It is clear that logistic regression induces 

linear decision boundaries in ℝd, and hence it is restrictive in modeling nonlinear 

dependency between y and x. The deep neural networks we introduce below provide a 

flexible framework for modeling nonlinearity in a fairly general way.

2.1 Model setup

From the high level, deep neural networks (DNNs) use composition of a series of simple 

nonlinear functions to model nonlinearity

h(L) = g(L) ○ g(L − 1) ○ … ○ g(1)(x),

where ○ denotes composition of two functions and L is the number of hidden layers, and is 

usually called depth of a NN model. Letting h(0) ≜ x, one can recursively define 
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h(l) = g(l) h(l − 1)  for all l = 1, 2, …, L. The feed-forward neural networks, also called the 

multilayer perceptrons (MLPs), are neural nets with a specific choice of g(l) : forl = 1, …, L, 

define

h(l) = g(l) h(l − 1) ≜ σ W(l)h(l − 1) + b(l) , (2.1)

where W(l) and b(l) are the weight matrix and the bias / intercept, respectively, associated 

with the l-th layer, and σ(·) is usually a simple given (known) nonlinear function called the 

activation function. In words, in each layer l, the input vector h(l − 1) goes through an affine 

transformation first and then passes through a fixed nonlinear function σ(·). See Figure 2 for 

an illustration of a simple MLP with two hidden layers. The activation function (·) is usually 

applied element-wise, and a popular choice is the ReLU (Rectified Linear Unit) function:

[σ(z)]j = max zj, 0 . (2.2)

Other choices of activation functions include leaky ReLU, tanh function (Maas, Hannun and 

Ng, 2013) and the classical sigmoid function (1 + e−z)−1, which is less used now.

Given an output h(L) from the final hidden layer and a label y, we can define a loss function 

to minimize. A common loss function for classification problems is the multinomial logistic 

loss. Using the terminology of deep learning, we say that h(L) goes through an affine 

transformation and then the soft-max function:

fk(x; θ) ≜
exp zk

∑kexp zk
, ∀ k ∈ [K], wherez = W(L + 1)h(L) + b(L + 1) ∈ ℝK .

Then the loss is defined to be the cross-entropy between the label y (in the form of an 

indicator vector) and the score vector (f1(x; θ), … , fK(x; θ))┬, which is exactly the 

negative log-likelihood of the multinomial logistic regression model:

ℒ(f(x; θ), y) = − ∑
k = 1

K
1 y = k logfk(x; θ), (2.3)

where θ ≜ W(l), b(l) : 1 ≤ l ≤ L + 1 . As a final remark, the number of parameters scales 

with both the depth L and the width (i.e., the dimensionality of W(l), and hence it can be 

quite large for deep neural nets.

2.2 Back-propagation in computational graphs

Training neural networks follows the empirical risk minimization paradigm that minimizes 

the loss (e.g., (2.3)) over all the training data. This minimization is usually done via 

stochastic gradient descent (SGD). In a way similar to gradient descent, SGD starts from a 

certain initial value θ0 and then iteratively updates the parameters θt by moving it in the 

direction of the negative gradient. The difference is that, in each update, a small subsample 

ℬ ⊂ [n] called a mini-batch—which is typically of size 32–512—is randomly drawn and the 
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gradient calculation is only on ℬ instead of the full batch [n]. This saves considerably the 

computational cost in calculation of gradient. By the law of large numbers, this stochastic 

gradient should be close to the full sample one, albeit with some random fluctuations. A pass 

of the whole training set is called an epoch. Usually, after several or tens of epochs, the error 

on a validation set levels off and training is complete. See Section 6 for more details and 

variants on training algorithms.

The key to the above training procedure, namely SGD, is the calculation of the gradient 

∇lℬ(θ), where

lℬ(θ) ≜ |ℬ|−1 ∑
i ∈ ℬ

ℒ f xi; θ , yi . (2.4)

Gradient computation, however, is in general nontrivial for complex models, and it is 

susceptible to numerical instability for a model with large depth. Here, we introduce an 

efficient approach, namely back-propagation, for computing gradients in neural networks.

Back-propagation (Rumelhart, Hinton and Williams, 1985) is a direct application of the 

chain rule in networks. As the name suggests, the calculation is performed in a backward 

fashion: one first computes ∂lℬ/ ∂h(L), then ∂lℬ/ ∂h(L − 1),…, and finally ∂lℬ/ ∂h(1). For 

example, in the case of the ReLU activation function3, we have the following recursive / 

backward relation

∂lℬ
∂h(l − 1) = ∂h(l)

∂h(l − 1) ⋅ ∂lℬ
∂h(l) = W(l) ⊤diag

1 W(l)h(l − 1) + b(l) ≥ 0 ∂lℬ
∂h(l)

(2.5)

where diag(·) denotes a diagonal matrix with elements given by the argument. Note that the 

calculation of ∂lℬ/ ∂h(l − 1) depends on ∂lℬ/ ∂h(l), which is the partial derivatives from the 

next layer. In this way, the derivatives are “back-propagated” from the last layer to the first 

layer. These derivatives ∂lℬ/ ∂h(l)  are then used to update the parameters. For instance, 

the gradient update for W(l) is given by

W(l) W(l) − η ∂lℬ
∂W(l) , where ∂lℬ

∂W jm
(l) = ∂lℬ

∂ℎj
(l) ⋅ σ′ ⋅ ℎm

(l − 1), (2.6)

where σ′ = 1 if the j-th element of W(l)h(l − 1) + b(l) is nonnegative, and σ′ = 0 otherwise. 

The step size η > 0, also called the learning rate, controls how much parameters are changed 

in a single update.

A more general way to think about neural network models and training is to consider 

computational graphs. Computational graphs are directed acyclic graphs that represent 

3The issue of non-differentiability at the origin is often ignored in implementation.
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functional relations between variables. They are very convenient and flexible to represent 

function composition, and moreover, they also allow an efficient way of computing 

gradients. Consider an MLP with a single hidden layer and an l2 regularization:

lℬ
λ (θ) = lℬ(θ) + rλ(θ) = lℬ(θ) + λ ∑

j, j′
W j, j′

(1) 2 + ∑
j, j′

W j, j′
(2) 2 , (2.7)

where lℬ(θ) is the same as (2.4), and λ ≥ 0 is a tuning parameter. A similar example is 

considered in Goodfellow, Bengio and Courville (2016). The corresponding computational 

graph is shown in Figure 3. Each node represents a function (inside a circle), which is 

associated with an output of that function (outside a circle). For example, we view the term 

lℬ(θ) as a result of 4 compositions: first the input data x multiplies the weight matrix W(1) 

resulting in u(1), then it goes through the ReLU activation function relu resulting in h(1), then 

it multiplies another weight matrix W(2) leading to p, and finally it produces the cross-

entropy with label y as in (2.3). The regularization term is incorporated in the graph 

similarly.

A forward pass is complete when all nodes are evaluated starting from the input x. A 

backward pass then calculates the gradients of lℬ
λ  with respect to all other nodes in the 

reverse direction. Due to the chain rule, the gradient calculation for a variable (say, 

∂lℬ/ ∂u(1)) is simple: it only depends on the gradient value of the variables ∂lℬ/ ∂h  the 

current node points to, and the function derivative evaluated at the current variable value (σ′
(u(1))). Thus, in each iteration, a computation graph only needs to (1) calculate and store the 

function evaluations at each node in the forward pass, and then (2) calculate all derivatives in 

the backward pass.

Back-propagation in computational graphs forms the foundations of popular deep learning 

programming softwares, including TensorFlow (Abadi and et. al., 2015) and PyTorch 

(Paszke et al., 2017), which allows more efficient building and training of complex neural 

net models.

3. POPULAR MODELS

Moving beyond vanilla feed-forward neural networks, we introduce two other popular deep 

learning models, namely, the convolutional neural networks (CNNs) and the recurrent neural 

networks (RNNs). One important characteristic shared by the two models is weight sharing, 

that is some model parameters are identical across locations in CNNs or across time in 

RNNs. This is related to the notion of translational invariance in CNNs and stationarity in 

RNNs. At the end of this section, we introduce a modular thinking for constructing more 

flexible neural nets.

3.1 Convolutional neural networks

The convolutional neural network (CNN) (LeCun et al., 1998; Fukushima and Miyake, 

1982) is a special type of feed-forward neural networks that is tailored for image processing. 

More generally, it is suitable for analyzing data with salient spatial structures. In this 
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subsection, we focus on image classification using CNNs, where the raw input (image 

pixels) and features of each hidden layer are represented by a 3D tensor X ∈ ℝd1 × d2 × d3. 

Here, the first two dimensions d1, d2 of X indicate spatial coordinates of an image while the 

third d3 indicates the number of channels. For instance, d3 is 3 for the raw inputs due to the 

red, green and blue channels, and d3 can be much larger (say, 256) for hidden layers. Each 

channel is also called a feature map, because each feature map is specialized to detect the 

same feature at different locations of the input, which we will soon explain. We now 

introduce two building blocks of CNNs, namely the convolutional layer and the pooling 

layer.

1. Convolutional layer (CONV). A convolutional layer has the same functionality 

as described in (2.1), where the input feature X ∈ ℝd1 × d2 × d3 goes through an 

affine transformation first and then an element-wise nonlinear activation. The 

difference lies in the specific form of the affine transformation. A convolutional 

layer uses a number of filters to extract local features from the previous input. 

More precisely, each filter is represented by a 3D tensor 

Fk ∈ ℝw × w × d3 1 ≤ k ≤ d3 , where w is the size of the filter (typically 3 or 5) 

and d3 denotes the total number of filters. Note that the third dimension d3 of Fk 

is equal to that of the input feature X. For this reason, one usually says that the 

filter has size w × w, while suppressing third the dimension d3. Each filter Fk 

then convolves with the input feature X to obtain one single feature map 

Ok ∈ ℝ d1 − w + 1 × d1 − w + 1 , where4

Oij
k = [X]ij, Fk = ∑

i′ = 1

w
∑

j′ = 1

w
∑
l=1

d3
[X]i + i′ − 1, j + j′ − 1, l Fk i′, j′, l . (3.1)

Here [X]ij ∈ ℝw × w × d3 is a small “patch” of X starting at location (i, j). See 

Figure 4 for an illustration of the convolution operation. If we view the 3D 

tensors [X]ij and Fk as vectors, then each filter essentially computes their inner 

product with a part of X indexed by i, j (which can be also viewed as 

convolution, as its name suggests). One then pack the resulted feature maps 

where {Ok} into a 3D tensor O with size d1 − w + 1 × d1 − w + 1 × d3, 

where

[O]ijk = Ok
ij . (3.2)

The outputs of convolutional layers are then followed by nonlinear activation 

functions. In the ReLU case, we have

Xijk = σ Oijk , ∀i ∈ d1 − w + 1 , j ∈ d2 − w + 1 , k ∈ d3 . (3.3)

4To simplify notation, we omit the bias/intercept term associated with each filter.
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The convolution operation (3.1) and the ReLU activation (3.3) work together to 

extract features X from the input X. Different from feed-forward neural nets, the 

filters Fk are hared across all locations (i, j). A patch [X]ij of an input responds 

strongly (that is, producing a large value) to a filter Fk if they are positively 

correlated. Therefore intuitively, each filter Fk serves to extract features similar 

to Fk.

As a side note, after the convolution (3.1), the spatial size d1 × d2 of the input X 
shrinks to (d1 − w + 1) (d2 − w + 1) of X However one may want the spatial size 

unchanged. This can be achieved via padding, where one appends zeros to the 

margins of the input X to enlarge the spatial size to (d1+w−1)×(d2+w−1). In 

addition, a stride in the convolutional layer determines the gap i′ − i and j′ − j 
between two patches Xij and Xi′j′: in (3.1) the stride is 1, and a larger stride 

would lead to feature maps with smaller sizes.

2. Pooling layer (POOL). A pooling layer aggregates the information of nearby 

features into a single one. This downsampling operation reduces the size of the 

features for subsequent layers and saves computation. One common form of the 

pooling layer is composed of the 2 × 2 max-pooling filter. It computes 

max{Xi,j,k, Xi+1,j,k, Xi,j+1,k, Xi+1,j+1,k}, that is, the maximum of the 2 × 2 

neighborhood in the spatial coordinates; see Figure 5 for an illustration. Note that 

the pooling operation is done separately for each feature map k. As a 

consequence, a 2 × 2 max-pooling filter acting on X ∈ ℝd1 × d2 × d3 will result in 

an output of size d1/2 × d2/2 × d3. In addition, the pooling layer does not involve 

any parameters to optimize. Pooling layers serve to reduce redundancy since a 

small neighborhood around a location (i, j) in a feature map is likely to contain 

the same information.

In addition, we also use fully-connected layers as building blocks, which we have already 

seen in Section 2. Each fully-connected layer treats input tensor X as a vector Vec(X), and 

computes X = σ(WVec(X)). A fully-connected layer does not use weight sharing and is 

often used in the last few layers of a CNN. As an example, Figure 6 depicts the well-known 

LeNet 5 (LeCun et al., 1998), which is composed of two sets of CONV-POOL layers and 

three fully-connected layers.

3.2 Recurrent neural networks

Recurrent neural nets (RNNs) are another family of powerful models, which are designed to 

process time series data and other sequence data. RNNs have successful applications in 

speech recognition (Sak, Senior and Beaufays, 2014), machine translation (Wu et al., 2016), 

genome sequencing (Cao et al., 2018), etc. The structure of an RNN naturally forms a 

computational graph, and can be easily combined with other structures such as CNNs to 

build large computational graph models for complex tasks. Here we introduce vanilla RNNs 

and improved variants such as long short-term memory (LSTM).
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3.2.1 Vanilla RNNs.—Suppose we have general time series inputs x1, x2, …, xT. A 

vanilla RNN models the “hidden state” at time t by a vector ht, which is subject to the 

recursive formula

ht = fθ ht − 1, xt . (3.4)

Here, fθ is generally a nonlinear function parametrized by θ. Concretely, a vanilla RNN with 

one hidden layer has the following form5

ht = tanh Wℎℎht − 1 + Wxℎxt + bh , where tanh(a) = e2a − 1
e2a + 1

,

zt = σ Wℎyht + bz ,

where Whh, Wxh, Why are trainable weight matrices, bh, bz are trainable bias vectors, and zt 

is the output at time t. Like many classical time series models, those parameters are shared 

across time. Note that in different applications, we may have different input/output settings 

(cf. Figure 7). Examples include

• One-to-many: a single input with multiple outputs; see Figure 7(a). A typical 

application is image captioning, where the input is an image and outputs are a 

series of words.

• Many-to-one: multiple inputs with a single output; see Figure 7(b). One 

application is text sentiment classification, where the input is a series of words in 

a sentence and the output is a label (e.g., positive vs. negative).

• Many-to-many: multiple inputs and outputs; see Figure 7(c). This is adopted in 

machine translation, where inputs are words of a source language (say Chinese) 

and outputs are words of a target language (say English).

As the case with feed-forward neural nets, we minimize a loss function using back-

propagation, where the loss is typically

lT(θ) = ∑
t ∈ T

ℒ yt, zt = − ∑
t ∈ T

∑
k = 1

K
1 yt = k log

exp zt k
∑kexp zt k

,

where K is the number of categories for classification (e.g., size of the vocabulary in 

machine translation), and T ⊂ [T ] is the length of the output sequence. During the training, 

the gradients ∂lT/ ∂ht are computed in the reverse time order (from T to t). For this reason, 

the training process is often called back-propagation through time.

One notable drawback of vanilla RNNs is that, they have difficulty in capturing long-range 

dependencies in sequence data when the length of the sequence is large. This is sometimes 

5Similar to the activation function (·), the function tanh(·) means element-wise operations.
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due to the phenomenon of exploding / vanishing gradients. Take Figure 7(c) as an example. 

Computing ∂lT/ ∂h1 involves the product ∏t = 1
3 ∂ht + 1/ ∂ht  by the chain rule. However, if 

the sequence is long, the product will be the multiplication of many Jacobian matrices, 

which usually results in exponentially large or small singular values. To alleviate this issue, 

in practice, the forward pass and backward pass are implemented in a shorter sliding window 

{t1, t1 + 1, …, t2}, instead of the full sequence {1, 2, …, T}.Though effective in some cases, 

this technique alone does not fully address the issue of long-term dependency.

3.2.2 GRUs and LSTM.—There are two improved variants that alleviate the above 

issue: gated recurrent units (GRUs) (Cho et al., 2014) and long short-term memory (LSTM) 

(Hochreiter and Schmidhuber, 1997).

• A GRU refines the recursive formula (3.4) by introducing gates, which are 

vectors of the same length as ht. The gates, which take values in [0, 1] 

elementwise, multiply with ht−1 elementwise and determine how much they keep 

the old hidden states.

• An LSTM similarly uses gates in the recursive formula. In addition to ht, an 

LSTM maintains a cell state, which takes values in ℝ elementwise and are 

analogous to counters.

Here we only discuss LSTM in detail. Denote by ⊙ the element-wise multiplication. We 

have a recursive formula in replace of (3.4):

it
ft
ot
gt

=

σ
σ
σ

tanh

W
ht − 1

xt
1

,

ct = ft ⊙ ct − 1 + it ⊙ gt,

ht = ot ⊙ tanh ct ,

where W is a big weight matrix with appropriate dimensions. The cell state vector ct carries 

information of the sequence (e.g., singular/plural form in a sentence). The forget gate ft 

determines how much the values of ct−1 are kept for time t, the input gate it controls the 

amount of update to the cell state, and the output gate ot gives how much ct reveals to ht. 

Ideally, the elements of these gates have nearly binary values. For example, an element of ft 

being close to 1 may suggest the presence of a feature in the sequence data. Similar to the 

skip connections in residual nets, the cell state ct has an additive recursive formula, which 

helps back-propagation and thus captures long-range dependencies.
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3.2.3 Multilayer RNNs.—Multilayer RNNs are generalization of the one-hidden-layer 

RNN discussed above. Figure 8 shows a vanilla RNN with two hidden layers. In place of 

(3.4), the recursive formula for an RNN with L hidden layers now reads

htl = tanh Wl
htl − 1

ht − 1
l

1

, for alll ∈ [L], ht0 ≜ xt .

Note that a multilayer RNN has two dimensions: the sequence length T and depth L. Two 

special cases are the feed-forward neural nets (where T = 1) introduced in Section 2, and 

RNNs with one hidden layer (where L = 1). Multilayer RNNs usually do not have very large 

depth (e.g., 2–5), since T is already very large.

Finally, we remark that CNNs, RNNs, and other neural nets can be easily combined to tackle 

tasks that involve different sources of input data. For example, in image captioning, the 

images are first processed through a CNN, and then the high-level features are fed into an 

RNN as inputs. Theses neural nets combined together form a large computational graph, so 

they can be trained using back-propagation. This generic training method provides much 

flexibility in various applications.

3.3 Modules

Deep neural nets are essentially composition of many nonlinear functions. A component 

function may be designed to have specific properties in a given task, and it can be itself 

resulted from composing a few simpler functions. In LSTM, we have seen that the building 

block consists of several intermediate variables, including cell states and forget gates that 

can capture long-term dependency and alleviate numerical issues.

This leads to the idea of designing modules for building more complex neural net models. 

Desirable modules usually have low computational costs, alleviate numerical issues in 

training, and lead to good statistical accuracy. Since modules and the resulting neural net 

models form computational graphs, training follows the same principle briefly described in 

Section 2.

Here, we use the examples of Inception and skip connections to illustrate the ideas behind 

modules. Figure 9(a) is an example of “Inception” modules used in GoogleNet (Szegedy et 

al., 2015). As before, all the convolutional layers are followed by the ReLU activation 

function. The concatenation of information from filters with different sizes give the model 

great flexibility to capture spatial information. Note that 1 × 1 filters is an 1 × 1 × d3 tensor 

(where d3 is the number of feature maps), so its convolutional operation does not interact 

with other spatial coordinates, only serving to aggregate information from different feature 

maps at the same coordinate. This reduces the number of parameters and speeds up the 

computation. Similar ideas appear in other work (Lin, Chen and Yan, 2013; Iandola et al., 

2016).
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Another module, usually called skip connections, is widely used to alleviate numerical 

issues in very deep neural nets, with additional benefits in optimization efficiency and 

statistical accuracy. Training very deep neural nets are generally more difficult, but the 

introduction of skip connections in residual networks (He et al., 2016a,b) has greatly eased 

the task.

The high level idea of skip connections is to add an identity map to an existing nonlinear 

function. Let F(x) be an arbitrary nonlinear function represented by a (fragment of) neural 

net, then the idea of skip connections is simply replacing F(x) with x + F(x). Figure 9(b) 

shows a well-known structure from residual networks (He et al., 2016a)—for every two 

layers, an identity map is added:

x σ(x + F(x)) = σ x + W′σ(Wx + b) + b′ , (3.5)

where x can be hidden nodes from any layer and W, W′, b, b′ are corresponding 

parameters. By repeating (namely composing) this structure throughout all layers, He et al. 

(2016a,b) are able to train neural nets with hundreds of layers easily, which overcomes well-

observed training difficulties in deep neural nets. Moreover, deep residual networks also 

improve statistical accuracy, as the classification error on ImageNet challenge was reduced 

by 46% from 2014 to 2015. As a side note, skip connections can be used flexibly. They are 

not restricted to the form in (3.5), and can be used between any pair of layers l, l′ (Huang et 

al., 2017).

4. DEEP UNSUPERVISED LEARNING

In supervised learning, given labelled training set {(yi, xi)}, we focus on discriminative 

models, which essentially represents ℙ(y ∣ x) by a deep neural net f(x; θ) with parameters θ. 

Unsupervised learning, in contrast, aims at extracting information from unlabeled data {xi}, 

where the labels {yi} are absent. In regard to this information, it can be a low-dimensional 

embedding of the data {xi} or a generative model with latent variables to approximate the 

distribution ℙX(x). To achieve these goals, we introduce two popular unsupervised deep 

leaning models, namely, autoencoders and generative adversarial networks (GANs). The 

first one can be viewed as a dimension reduction technique, and the second as a density 

estimation method. DNNs are the key elements for both of these two models.

4.1 Autoencoders

Recall that in dimension reduction, the goal is to reduce the dimensionality of the data and at 

the same time preserve its salient features. In particular, in principal component analysis 

(PCA), the goal is to embed the data {xi}1≤i≤n into a low-dimensional space via a linear 

function f such that maximum variance can be explained. Equivalently, we want to find 

linear functions f : ℝd ℝk and g : ℝk ℝd (k ≤ d) such that the difference between xi and 

g(f(xi)) is minimized. Formally, we let

f(x) = W fx ≜ handg(h) = Wgh, whereW f ∈ ℝk × dandWg ∈ ℝd × k .
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Here, for simplicity, we assume that the intercept/bias terms for f and g are zero. Then, PCA 

amounts to minimizing the quadratic loss function

minimizeW f,Wg
1
n ∑

i = 1

n
xi − W fW gxi 2

2 . (4.1)

It is the same as minimizing X − WX F
2 subject to rank(W) ≤ k, where X ∈ ℝp × n is the 

design matrix. The solution is given by the singular value decomposition of X (Golub and 

Van Loan, 2013, Thm. 2.4.8), which is exactly what PCA does. It turns out that PCA is a 

special case of autoencoders, which is often known as the undercomplete linear autoencoder.

More broadly, autoencoders are neural network models for (nonlinear) dimension reduction, 

which generalize PCA. An autoencoder has two key components, namely, the encoder 

function f(·), which maps the input x ∈ ℝd to a hidden code/representation h ≜ f(x) ∈ ℝk, 

and the decoder function g(·), which maps the hidden representation h to a point g(h) ∈ ℝd. 

Both functions can be multi-layer neural networks as (2.1). See Figure 10 for an illustration 

of autoencoders. Let ℒ x1, x2  be a loss function that measures the difference between x1 

and x2 in ℝd. Similar to PCA, an autoencoder is used to find the encoder f and decoder g 

such that ℒ(x, g(f(x))) is as small as possible. Mathematically, this amounts to solving the 

following minimization problem

minimizef, g
1
n ∑

i = 1

n
ℒ xi, g hi withhi = f xi , foralli ∈ [n] . (4.2)

One needs to make structural assumptions on the functions f and g in order to find useful 

representations of the data, which leads to different types of autoencoders. Indeed, if no 

assumption is made, choosing f and g to be identity functions clearly minimizes the above 

optimization problem. To avoid this trivial solution, one natural way is to require that the 

encoder f maps the data onto a space with a smaller dimension, i.e., k < d. This is the 

undercomplete autoencoder that includes PCA as a special case. There are other structured 

autoencoders which add desired properties to the model such as sparsity or robustness, 

mainly through regularization terms. Below we present two other common types of 

autoencoders.

• Sparse autoencoders. One may believe that the dimension k of the hidden code hi 

is larger than the input dimension d, and that hi admits a sparse representation. 

As with LASSO (Tibshirani, 1996) or SCAD (Fan and Li, 2001), one may add a 

regularization term to the reconstruction loss ℒ in (4.2) to encourage sparsity 

(Poultney et al., 2007). A sparse autoencoder solves

minf, g
1
n ∑

i = 1

n
ℒ xi, g hi

loss

+ λ hi 1
regularizer

withhi = f xi , for all i ∈ [n] .
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This is similar to dictionary learning, where one aims at finding a sparse 

representation of input data on an overcomplete basis. Due to the imposed 

sparsity, the model can potentially learn useful features of the data.

• Denoising autoencoders. One may hope that the model is robust to noise in the 

data: even if the input data xi are corrupted by small noise ξi or miss some 

components (the noise level or the missing probability is typically small), an 

ideal autoencoder should faithfully recover the original data. A denoising 

autoencoder (Vincent et al., 2008) achieves this robustness by explicitly building 

a noisy data xi = xi + ξi as the new input, and then solves an optimization 

problem similar to (4.2) where ℒ xi, g hi  is replaced by ℒ xi, g f xi . A 

denoising autoencoder encourages the encoder/decoder to be stable in the 

neighborhood of an input, which is generally a good statistical property. An 

alternative way could be constraining f and g in the optimization problem, but 

that would be very difficult to optimize. Instead, sampling by adding small 

perturbations in the input provides a simple implementation. We shall see similar 

ideas in Section 6.3.3.

4.2 Generative adversarial networks

Given unlabeled data {xi}1≤i≤n, density estimation aims to estimate the underlying 

probability density function ℙX from which the data is generated. Both parametric and 

nonparametric estimators (Silverman, 1998) have been proposed and studied under various 

assumptions on the underlying distribution. Different from these classical density estimators, 

where the density function is explicitly defined in relatively low dimension, generative 

adversarial networks (GANs) (Goodfellow et al., 2014) can be categorized as an implicit 
density estimator in much higher dimension. The reasons are twofold: (1) GANs put more 

emphasis on sampling from the distribution ℙX than estimation; (2) GANs define the density 

estimation implicitly through a source distribution ℙZ and a generator function g(·), which is 

usually a deep neural network. We introduce GANs from the perspective of sampling from 

ℙX and later we will generalize the vanilla GANs using its relation to density estimators.

4.2.1 Sampling view of GANs.—Suppose the data {xi}1≤i≤n at hand are all real 

images, and we want to generate new natural images. With this goal in mind, GAN models a 

zero-sum game between two players, namely, the generator G and the discriminator D. The 

generator G tries to generate fake images akin to the true images {xi}1≤i≤n while the 

discriminator D aims at differentiating the fake ones from the true ones. Intuitively, one 

hopes to learn a generator G to generate images where the best discriminator D cannot 

distinguish. Therefore the payoff is higher for the generator G if the probability of the 

discriminator D getting wrong is higher, and correspondingly the payoff for the 

discriminator correlates positively with its ability to tell wrong from truth.

Mathematically, the generator G consists of two components, an source distribution ℙZ
(usually a standard multivariate Gaussian distribution with hundreds of dimensions) and a 

function g(·) which maps a sample z from ℙZ to a point g(z) living in the same space as x. 
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For generating images, g(z) would be a 3D tensor. Here g(z) is the fake sample generated 

from G. Similarly the discriminator D is composed of one function which takes an image x 

(real or fake) and return a number d(x) ∈ [0, 1], the probability of x being a real sample from 

ℙX or not. Oftentimes, both the generating function g(·) and the discriminating function d(·) 

are realized by deep neural networks, e.g., CNNs introduced in Section 3.1. See Figure 11 

for an illustration for GANs. Denote θG and θD the parameters in g(·) and d(·), respectively. 

Then GAN tries to solve the following min-max problem:

min
θG

max
θD

Ex ℙX[log(d(x))] + Ez ℙZ[log(1 − d(g(z)))] .
(4.3)

Recall that d(x) models the belief / probability that the discriminator thinks that x is true 

sample. Fix the parameters θG and hence the generator G and consider the inner 

maximization problem. We can see that the goal of the discriminator is to maximize its 

ability of differentiation. Similarly, if we fix θD (and hence the discriminator), the generator 

tries to generate more realistic images g(z) to fool the discriminator.

4.2.2 Density estimation view of GANs.—Let us now take a density-estimation view 

of GANs. Fixing the source distribution ℙZ, any generator G induces a distribution ℙG over 

the space of images. Removing the restrictions on d(·), one can then rewrite (4.3) as

min
ℙG

max
d( ⋅ )

Ex ℙX[log(d(x))] + Ex ℙG[log(1 − d(x))] .
(4.4)

Observe that the inner maximization problem is solved by the likelihood ratio, i.e.

d*(x) =
ℙX (x)

ℙX(x) + ℙG(x) .

As a result, (4.4) can be simplified as

min
ℙG

JS ℙX ℙG ,
(4.5)

where JS(·||·) denotes the Jensen–Shannon divergence between two distributions

JS ℙX‖ℙG = 1
2KL ℙX ‖

ℙX + ℙG
2 + 1

2KL ℙG‖
ℙX + ℙG

2 .

In words, the vanilla GAN (4.3) seeks a density ℙG that is closest to ℙX in terms of the 

Jensen–Shannon divergence. This view allows to generalize GANs to other variants, by 

changing the distance metric. Examples include f-GAN (Nowozin, Cseke and Tomioka, 

2016), Wasserstein GAN (W-GAN) (Arjovsky, Chintala and Bottou, 2017), MMD GAN (Li, 

Swersky and Zemel, 2015), etc. We single out the Wasserstein GAN (W-GAN) (Arjovsky, 

Chintala and Bottou, 2017) to introduce due to its popularity. As the name suggests, it 

minimizes the Wasserstein distance between ℙX and ℙG:
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min
θG

WS ℙX‖ℙG = min
θG

sup
f :f 1 − Lipschitz

Ex ℙX[f(x)] − Ex ℙG[f(x)],
(4.6)

where f(·) is taken over all Lipschitz functions with coefficient 1. Comparing W-GAN (4.6) 

with the original formulation of GAN (4.3), one finds that the Lipschitz function f in (4.6) 

corresponds to the discriminator D in (4.3) in the sense that they share similar objectives to 

differentiate the true distribution ℙX from the fake one ℙG. In the end, we would like to 

mention that GANs are more difficult to train than supervised deep learning models such as 

CNNs (Salimans et al., 2016). Apart from the training difficulty, how to evaluate GANs 

objectively and effectively is an ongoing research.

5. REPRESENTATION POWER: APPROXIMATION THEORY

Having seen the building blocks of deep learning models in the previous sections, it is 

natural to ask: what is the benefits of composing multiple layers of nonlinear functions. In 

this section, we address this question from a approximation theoretical point of view. 

Mathematically, letting ℋ be the space of functions representable by neural nets (NNs), how 

well can a function f (with certain properties) be approximated by functions in ℋ. We first 

revisit universal approximation theories, which are mostly developed for shallow neural nets 

(neural nets with a single hidden layer), and then provide recent results that demonstrate the 

benefits of depth in neural nets. Other notable works include Kolmogorov-Arnold 

superposition theorem (Arnold, 2009; Sprecher, 1965), and circuit complexity for neural 

nets (Parberry, 1994).

5.1 Universal approximation theory for shallow NNs

The universal approximation theories study the approximation of f in a space ℱ by a 

function represented by a one-hidden-layer neural net

g(x) = ∑
j = 1

N
cjσ* wj⊤x − bj , (5.1)

where σ* : ℝ ℝ is certain activation function and N is the number of hidden units in the 

neural net. For different space ℱ and activation function σ*, there are upper bounds and 

lower bounds on the approximation error ‖f − g‖ See Pinkus (1999) for a comprehensive 

overview. Here we present representative results.

First, as N → ∞, any continuous function f can be approximated by some g under mild 

conditions. Loosely speaking, this is because each component σ* wj⊤x − bj  behaves like a 

basis function and functions in a suitable space ℱ admits a basis expansion. Given the above 

heuristics, the next natural question is: what is the rate of approximation for a finite N?

Let us restrict the domain of x to a unit ball Bd in ℝd. For p ∈ [1, ∞) and integer m ≥ 1, 

consider the Lp space and the Sobolev space with standard norms
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‖f‖p = ∫Bn|g(x) |p dx
1/p

, ‖f‖m, p = ∑
0 ≤ k ≤ m

‖Dkf‖p
p

1/p
,

where Dkf denotes partial derivatives indexed by k ∈ ℤ+
d . Let ℱ ≜ ℱp

m be the space of 

functions f in the Sobolev space with ‖f‖m,p ≤ 1. Note that functions in ℱ have bounded 

derivatives up to m-th order, and that smoothness of functions is controlled by m (larger m 
means smoother). Denote by ℋN the space of functions with the form (5.1). The following 

general upper bound is due to Mhaskar (1996).

Theorem 5.1 (Theorem 2.1 in Mhaskar (1996)).—Assume σ* : ℝ ℝ is such that σ* 

has arbitrary order derivatives in an open interval I, and that σ* is not a polynomial on I. 
Then, for any p ∈ [1, ∞), d ≥ 2, and integer m ≥ 1,

sup
f ∈ ℱpm

inf
g ∈ ℋN

‖f − g‖p ≤ Cd, m, pN−m/d,

where Cd,m,p is independent of N, the number of hidden units.

In the above theorem, the condition on σ*(·) is mainly technical. This upper bound is useful 

when the dimension d is not large. It clearly implies that the one-hidden-layer neural net is 

able to approximate any smooth function with enough hidden units. However, it is unclear 

how to find a good approximator g; nor do we have control over the magnitude of the 

parameters (huge weights are impractical). While increasing the number of hidden units N 
leads to better approximation, the exponent −m/d suggests the presence of the curse of 
dimensionality. The following (nearly) matching lower bound is stated in Maiorov and Meir 

(2000).

Theorem 5.2 (Theorem 5 in Maiorov and Meir (2000)).—Let p ≥ 1, m ≥ 1 and N ≥ 2. 

If the activation function is the standard sigmoid function σ(t) = (1 + e−t)−1, then

sup
f ∈ ℱpm

inf
g ∈ ℋN

‖f − g‖p ≥ Cd, m, p′ (N logN)−m/d,
(5.2)

where Cd, m, p′  is independent of N.

Results for other activation functions are also obtained by Maiorov and Meir (2000). 

Moreover, the term log N can be removed if we assume an additional continuity condition 

(Mhaskar, 1996).

For the natural space ℱp
m of smooth functions, the exponential dependence on d in the upper 

and lower bounds may look unappealing. However, Barron (1993) showed that for a 

different function space, there is a good dimension-free approximation by the neural nets. 

Suppose that a function f : ℝd ℝ has a Fourier representation
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f(x) = ∫
ℝdei ω, x f(ω)dω, (5.3)

where f(ω) ∈ ℂ. Assume that f(0) = 0 and that the following quantity is finite

Cf = ∫
ℝd ω 2 |f(ω) |dω . (5.4)

Barron (1993) uncovers the following dimension-free approximation guarantee.

Theorem 5.3 (Proposition 1 in Barron (1993)).—Fix a C > 0 and an arbitrary 

probability measure μ on the unit ball Bd in ℝd. For every function f with Cf ≤ C and every N 
≥ 1, there exists some g ∈ ℋN such that

∫Bd(f(x) − g(x))2μ(dx)
1/2

≤ 2C
N .

Moreover, the coefficients of g may be restricted to satisfy ∑j = 1
N cj ≤ 2C

The upper bound is now independent of the dimension d. However, Cf may implicitly 

depend on d, as the formula in (5.4) involves an integration over ℝd (so for some functions 

Cf may depend exponentially on d). Nevertheless, this theorem does characterize an 

interesting function space with an improved upper bound. Details of the function space are 

discussed by Barron (1993). This theorem can be generalized; see Makovoz (1996) for an 

example.

To help understand why a dimensionality-free approximation holds, let us appeal to a 

heuristic argument given by Monte Carlo simulations. It is well-known that Monte Carlo 

approximation errors are independent of dimensionality in evaluation of high-dimensional 

integrals. Let us generate {ωj}1≤j≤N randomly from a given density p(·) in ℝd. Consider the 

approximation to (5.3) by

gN(x) = 1
N ∑

j = 1

N
cjei ωj, x , cj = f ωj

p ωj
. (5.5)

Then, gN(x) is a one-hidden-layer neural network with N units and the sinusoid activation 

function. Note that EgN(x) = f(x), where the expectation is taken with respect to 

randomness {ωj}. Now, by independence, we have

E gN(x) − f(x) 2 = 1
NVar cjei ωj, x ≤ 1

NEcj2,

if Ecj2 < ∞. Therefore, the rate is independent of the dimensionality d, though the constant 

can be.
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5.2 Approximation theory for multi-layer NNs

The approximation theory for multilayer neural nets is less understood compared with neural 

nets with one hidden layer. Driven by the success of deep learning, there are many recent 

papers focusing on expressivity of deep neural nets. As studied by Telgarsky (2016); Eldan 

and Shamir (2016); Mhaskar, Liao and Poggio (2016); Poggio et al. (2017); Bauer and 

Kohler (2017); Schmidt-Hieber (2017); Lin, Tegmark and Rolnick (2017); Rolnick and 

Tegmark (2017), deep neural nets excel at representing composition of functions. This is 

perhaps not surprising, since deep neural nets are themselves defined by composing layers of 

functions. Nevertheless, it points to a new territory rarely studied in statistics before. Below 

we present a result based on Lin, Tegmark and Rolnick (2017); Rolnick and Tegmark 

(2017).

Suppose that the inputs x have a bounded domain [−1, 1]d for simplicity. As before, let 

σ* : ℝ ℝ be a generic function, and σ* = (σ*, …, σ*)┬ be element-wise application σ*. 

Consider a neural net which is similar to (2.1) but with scaler output: 

g(x) = Wlσ* ⋯σ* W2σ* W1x ⋯ . A unit or neuron refers to an element of vectors σ* (Wk 

⋯ σ*(W2σ* (W1x))⋯) for any k = 1, …, l − 1.For a multivariate polynomial p, define 

mk(p) to be the smallest integer such that, for any ϵ > 0, there exists a neural net g(x) 

satisfying supx |p(x) − g(x)| < ϵ, with k hidden layers (i.e., l = k + 1) and no more than 

mk(p) neurons in total. Essentially, mk(p) is the minimum number of neurons required to 

approximate p arbitrarily well.

Theorem 5.4 (Theorem 4.1 in Rolnick and Tegmark (2017)).—Let p(x) be a 

monomial x1
r1x2

r2⋯xd
rd with q = ∑j = 1

d rj. Suppose that σ* has derivatives of order 2q at the 

origin, and that they are nonzero. Then,

(i)m1(p) = ∏j = 1
d rj + 1 ;

(ii)mink mk(p) ≤ ∑j = 1
d 7 log2 rj + 4 .

This theorem reveals a sharp distinction between shallow networks (one hidden layer) and 

deep networks. To represent a monomial function, a shallow network requires exponentially 

many neurons in terms of the dimension d, whereas linearly many neurons suffice for a deep 

network (with bounded rj). The exponential dependence on d, as shown in Theorem 5.4(i), is 

resonant with the curse of dimensionality widely seen in many fields; see Donoho (2000). 

One may ask: how does depth help? Depth circumvents this issue, at least for certain 

functions, by allowing us to represent function composition efficiently. Indeed, Theorem 

5.4(ii) offers a nice result with clear intuitions: it is known that the product of two scalar 

inputs can be represented using 4 neurons (Lin, Tegmark and Rolnick, 2017), so by 

composing multiple products, we can express monomials with O(d) neurons.
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Recent advances in nonparametric regressions also support the idea that deep neural nets 

excel at representing composition of functions (Bauer and Kohler, 2017; Schmidt-Hieber, 

2017). In particular, Bauer and Kohler (2017) considered the nonparametric regression 

setting where we want to estimate a function fn(x) from i.i.d. data Dn = yi, xi 1 ≤ i ≤ n. If 

the true regression function f(x) has certain hierarchical structure with intrinsic 

dimensionality6 d*, then the error

EDnEx fn(x) − f(x) 2

has an optimal minimax convergence rate O n− 2q
2q + d* , rather than the usual rate O n− 2q

2q + d

that depends on the ambient dimension d. Here q is the smoothness parameter. This provides 

another justification for deep neural nets: if data are truly hierarchical, then the quality of 

approximators by deep neural nets depends on the intrinsic dimensionality, which avoids the 

curse of dimensionality.

We point out that the approximation theory for deep learning is far from complete. For 

example, in Theorem 5.4, the condition on σ* excludes the widely used ReLU activation 

function, there are no constraints on the magnitude of the weights (so they can be 

unreasonably large).

6. TRAINING DEEP NEURAL NETS

The existence of a good function approximator in the NN function class does not explain 

why in practice we can easily find them. In this section, we introduce standard methods, 

namely stochastic gradient descent (SGD) and its variants, to train deep neural networks (or 

to find such a good approximator). As with many statistical machine learning tasks, training 

DNNs follows the empirical risk minimization (ERM) paradigm which solves the following 

optimization problem

minimizeθ ∈ ℝpln(θ) ≜ 1
n ∑

i = 1

n
ℒ f xi; θ , yi . (6.1)

Here ℒ f xi; θ , yi  measures the discrepancy between the prediction f(xi; θ) of the neural 

network and the true label yi. Correspondingly, denote by l(θ) ≜ E(x, y) D[ℒ(f(x; θ), y)] the 

out-of-sample error, where D is the joint distribution over (y, x). Solving ERM (6.1) for deep 

neural nets faces various challenges that roughly fall into the following three categories.

• Scalability and nonconvexity. Both the sample size n and the number of 

parameters p can be huge for modern deep learning applications, as we have seen 

in Table 1. Many optimization algorithms are not practical due to the 

computational costs and memory constraints. What is worse, the empirical loss 

6Roughly speaking, the true regression function can be represented by a tree where each node has at most d* children. See Bauer and 
Kohler (2017) for the precise definition.
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function ln(θ) in deep learning is often nonconvex. It is a priori not clear whether 

an optimization algorithm can drive the empirical loss (6.1) small.

• Numerical stability. With a large number of layers in DNNs, the magnitudes of 

the hidden nodes can be drastically different, which may result in the “exploding 

gradients” or “vanishing gradients” issue during the training process. This is 

because the recursive relations across layers often lead to exponentially 

increasing / decreasing values in both forward passes and backward passes.

• Generalization performance. Our ultimate goal is to find a parameter θ  such that 

the out-of-sample error l(θ ) is small. However, in the over-parametrized regime 

where p is much larger than n, the underlying neural network has the potential to 

fit the training data perfectly while performing poorly on the test data. To avoid 

this overfitting issue, proper regularization, whether explicit or implicit, is 

needed in the training process for the neural nets to generalize.

In the following three subsections, we discuss practical solutions / proposals to address these 

challenges.

6.1 Stochastic gradient descent

Stochastic gradient descent (SGD) (Robbins and Monro, 1951) is by far the most popular 

optimization algorithm to solve ERM (6.1) for large-scale problems. It has the following 

simple update rule:

θt + 1 = θt − ηtG θt withG θt = ∇ℒ f xit; θt , yit (6.2)

for t = 0, 1, 2, …, where ηt > 0 is the step size (or learning rate), θ0 ∈ ℝp is an initial point 

and it is chosen randomly from {1, 2,… , n}. It is easy to verify that G(θt) is an unbiased 

estimate of ∇ln θt . The advantage of SGD is clear: compared with gradient descent, which 

goes over the entire dataset in every update, SGD uses a single example in each update and 

hence is considerably more efficient in terms of both computation and memory (especially in 

the first few iterations).

Apart from practical benefits of SGD, how well does SGD perform theoretically in terms of 

minimizing ln(θ)? We begin with the convex case, i.e., the case where the loss function is 

convex w.r.t. θ. It is well understood in literature that with proper choices of the step sizes 

{ηt}, SGD is guaranteed to achieve both consistency and asymptotic normality.

• Consistency. If l(θ) is a strongly convex function7, then under some mild 

conditions8, learning rates that satisfy

7For results on consistency and asymptotic normality, we consider the case where in each step of SGD, the stochastic gradient is 
computed using a fresh sample (y, x) from D. This allows to view SGD as an optimization algorithm to minimize the population loss 
l(θ).
8One example of such condition can be constraining the second moment of the gradients: 

E ‖∇ℒ xi, yi; θt
2
2 ≤ C1 + C2‖θt − θ*‖2

2.for some C1, C2 > 0. See Bottou (1998) for details.
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∑
t = 0

∞
ηt = + ∞and ∑

t = 0

∞
ηt2 < + ∞ (6.3)

guarantee almost sure convergence to the unique minimizer θ* ≜ argminθl(θ), 

i.e., θta . s . θ* as t → ∞ (Robbins and Monro, 1951; Kiefer et al., 1952; Bottou, 

1998; Kushner and Yin, 2003). The requirements in (6.3) can be viewed from the 

perspective of bias-variance tradeoff: the first condition ensures that the iterates 

can reach the minimizer (controlled bias), and the second ensures that 

stochasticity does not prevent convergence (controlled variance).

• Asymptotic normality. It is proved by Polyak and Tsypkin (1979) that for robust 

linear regression with fixed dimension p, under the choice ηt = t−1, t θt − θ*  is 

asymptotically normal under some regularity conditions (but θtis not 

asymptotically efficient in general). Moreover, by averaging the iterates of SGD, 

Polyak and Juditsky (1992) proved that even with a larger step size ηt = t−α, α ∈ 

(1/2, 1) the averaged iterate θt = t−1∑s = 1
t θs is asymptotic efficient for robust 

linear regression. These strong results show that SGD with averaging performs as 

well as the MLE asymptotically, in addition to its computational efficiency.

These classical results, however, fail to explain the effectiveness of SGD when dealing with 

nonconvex loss functions in deep learning. Admittedly, finding global minima of nonconvex 

functions is computationally infeasible in the worst case. Nevertheless, recent work (Allen-

Zhu, Li and Song, 2018; Du et al., 2018) bypasses the worst case scenario by focusing on 

losses incurred by over-parametrized deep learning models. In particular, they show that 

(stochastic) gradient descent converges linearly towards the global minimizer of ln(θ) as 

long as the neural network is sufficiently over-parametrized. This phenomenon is formalized 

below.

Theorem 6.1 (Theorem 2 in Allen-Zhu, Li and Song, 2018).—Let {(yi, xi)}1≤i≤n be 

a training set satisfying mini,j:i≠j ‖xi − xj‖2 ≥ δ > 0. Consider fitting the data using a feed-

forward neural network (1.1) with ReLU activations. Denote by L (resp. W) the depth (resp. 

width) of the network. Suppose that the neural network is sufficiently over-parametrized, 

i.e.,

W ≫ poly n, L, 1
δ , (6.4)

where poly means a polynomial function. Then with high probability, running SGD (6.2) 

with certain random initialization and properly chosen step sizes yields ln θt ≤ ε in 

t ≍ log 1
ε  iterations.

Two notable features are worth mentioning: (1) first, the network under consideration is 

sufficiently over-parametrized (cf. (6.4)) in which the number of parameters is much larger 

than the number of samples, and (2) one needs to initialize the weight matrices to be in near-
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isometry such that the magnitudes of the hidden nodes do not blow up or vanish. In a 

nutshell, over-parametrization and random initialization together ensure that the loss 

function (6.1) has a benign landscape9 around the initial point, which in turn implies fast 

convergence of SGD iterates.

There are certainly other challenges for vanilla SGD to train deep neural nets: (1) training 

algorithms are often implemented in GPUs, and therefore it is important to tailor the 

algorithm to the infrastructure, (2) the vanilla SGD might converge very slowly for deep 

neural networks, albeit good theoretical guarantees for well-behaved problems, and (3) the 

learning rates {ηt} can be difficult to tune in practice. To address the aforementioned 

challenges, three important variants of SGD, namely mini-batch SGD, momentum-based 
SGD, and SGD with adaptive learning rates are introduced.

6.1.1 Mini-batch SGD.—Modern computational infrastructures (e.g., GPUs) can 

evaluate the gradient on a number (say 64) of examples as efficiently as evaluating that on a 

single example. To utilize this advantage, mini-batch SGD with batch size K ≥ 1 forms the 

stochastic gradient through K random samples:

θt + 1 = θt − ηtG θt withG θt = 1
K ∑

k = 1

K
∇ℒ f xitk; θt , yitk , (6.5)

where for each 1 ≤ k ≤ K, itk is sampled uniformly from {1. 2, …, n}. Mini-batch SGD, 

which is an “interpolation” between gradient descent and stochastic gradient descent, 

achieves the best of both worlds: (1) using 1 ≪ K ≪ n samples to estimate the gradient, one 

effectively reduces the variance and hence accelerates the convergence, and (2) by taking the 

batch size K appropriately (say 64 or 128), the stochastic gradient G(θt) can be efficiently 

computed using the matrix computation toolboxes on GPUs.

6.1.2 Momentum-based SGD.—While mini-batch SGD forms the foundation of 

training neural networks, it can sometimes be slow to converge due to its oscillation 

behavior (Sutskever et al., 2013). Optimization community has long investigated how to 

accelerate the convergence of gradient descent, which results in a beautiful technique called 

momentum methods (Polyak, 1964; Nesterov, 1983). Similar to gradient descent with 

moment, momentum-based SGD, instead of moving the iterate θt in the direction of the 

current stochastic gradient G(θt), smooth the past (stochastic) gradients {G(θt)} to stabilize 

the update directions. Mathematically, let vt ∈ ℝp be the direction of update in the tth 

iteration, i.e.,

θt + 1 = θt − ηtvt .

Here v0 = G(θ0) and for t = 1, 2, ⋯

9In Allen-Zhu, Li and Song (2018), the loss function ln(θ) satisfies the PL condition.
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vt = ρvt − 1 + G θt (6.6)

with 0 < ρ < 1. A typical choice of ρ is 0.9. Notice that ρ = 0 recovers the mini-batch SGD 

(6.5), where no past information of gradients is used. A simple unrolling of vt reveals that vt 

is actually an exponential averaging of the past gradients, i.e., vt = ∑j = 0
t ρt − jG θj . 

Compared with vanilla mini-batch SGD, the inclusion of the momentum “smoothes” the 

oscillation direction and accumulates the persistent descent direction. We want to emphasize 

that theoretical justifications of momentum in the stochastic setting is not fully understood 

(Kidambi et al., 2018; Jain et al., 2017).

6.1.3 SGD with adaptive learning rates.—In optimization, preconditioning is often 

used to accelerate first-order optimization algorithms. In principle, one can apply this to 

SGD, which yields the following update rule:

θt + 1 = θt − ηtP t
−1G θt (6.7)

with Pt ∈ ℝp × p being a preconditioner at the t-th step. Newton’s method can be viewed as 

one type of preconditioning where Pt = ∇2ln θt . The advantages of preconditioning are 

two-fold: first, a good preconditioner reduces the condition number by changing the local 

geometry to be more homogeneous, which is amenable to fast convergence; second, a good 

preconditioner frees practitioners from laboring tuning of the step sizes, as is the case with 

Newton’s method. Ada-Grad, an adaptive gradient method proposed by Duchi, Hazan and 

Singer (2011), builds a preconditioner Pt based on information of the past gradients:

P t = diag ∑
j = 0

t
G θt G θt ⊤

1/2
. (6.8)

Since we only require the diagonal part, this preconditioner (and its inverse) can be 

efficiently computed in practice. In addition, investigating (6.7) and (6.8), one can see that 

AdaGrad adapts to the importance of each coordinate of the parameters by setting smaller 

learning rates for frequent features, whereas larger learning rates for those infrequent ones. 

In practice, one adds a small quantity δ > 0 (say 10−8) to the diagonal entries to avoid 

singularity (numerical underflow). A notable drawback of AdaGrad is that the effective 

learning rate vanishes quickly along the learning process. This is because the historical sum 

of the gradients can only increase with time. RMSProp (Hinton, Srivastava and Swersky, 

2012) is a popular remedy for this problem which incorporates the idea of exponential 

averaging:

P t = diag ρP t − 1 + (1 − ρ)G θt G θt ⊤ 1/2
. (6.9)

Again, the decaying parameter ρ is usually set to be 0.9. Later, Adam (Kingma and Ba, 

2014; Reddi, Kale and Kumar, 2018) combines the momentum method and adaptive 
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learning rate and becomes the default training algorithms in many deep learning 

applications.

6.2 Easing numerical instability

For very deep neural networks or RNNs with long dependencies, training difficulties often 

arise when the values of nodes have different magnitudes or when the gradients “vanish” or 

“explode” during back-propagation. Here we discuss three partial solutions to alleviate this 

problem.

6.2.1 ReLU activation function.—One useful characteristic of the ReLU function is 

that its derivative is either 0 or 1, and the derivative remains 1 even for a large input. This is 

in sharp contrast with the standard sigmoid function (1 + e−t)−1 which results in a very small 

derivative when inputs have large magnitude. The consequence of small derivatives across 

many layers is that gradients tend to be “killed”, which means that gradients become 

approximately zero in deep nets.

The popularity of the ReLU activation function and its variants (e.g., leaky ReLU) is largely 

attributable to the above reason. It has been well observed that the ReLU activation function 

has superior training performance over the sigmoid function (Krizhevsky, Sutskever and 

Hinton, 2012; Maas, Hannun and Ng, 2013).

6.2.2 Skip connections.—We have introduced skip connections in Section 3.3. Why 

are skip connections helpful for reducing numerical instability? This structure does not 

introduce a larger function space, since the identity map can be also represented with ReLU 

activations: x = σ(x) − σ(−x).

One explanation is that skip connections bring ease to the training / optimization process. 

Suppose that we have a general nonlinear function F xl; θl . With a skip connection, we 

represent the map as xl + 1 = xl + F xl; θl  instead. Now the gradient ∂xl + 1/ ∂xl becomes

∂xl + 1
∂xl

= I + ∂F xl; θl
∂xl

insteadof ∂F xl; θl
∂xl

, (6.10)

where I is an identity matrix. By the chain rule, gradient update requires computing products 

of many components, e.g., 
∂xL
∂x1

= ∏l = 1
L − 1 ∂xl + 1

∂xl
, so it is desirable to keep the spectra 

(singular values) of each component 
∂xl + 1

∂xl
 close to 1. In neural nets, with skip connections, 

this is easily achieved if the parameters have small values; otherwise, this may not be 

achievable even with careful initialization and tuning. Notably, training neural nets with 

hundreds of layers is possible with the help of skip connections.

6.2.3 Batch normalization.—Recall that in regression analysis, one often standardizes 

the design matrix so that the features have zero mean and unit variance. Batch normalization 

extends this standardization procedure from the input layer to all the hidden layers. 

Mathematically, fix a mini-batch of input data xi, yi i ∈ ℬ, where ℬ ⊂ [n]. Let hi
(l) be the 

Fan et al. Page 27

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature of the i-th example in the l-th layer (l = 0 corresponds to the input xi). The batch 

normalization layer computes the normalized version of hi
(l) via the following steps:

μ ≜ 1
ℬ ∑

i ∈ ℬ
hi

(l), σ2 ≜ 1
ℬ ∑

i ∈ ℬ
hi

(l) − μ
2

andhi, norm
(l) ≜

hi
(l) − μ

σ .

Here all the operations are element-wise. In words, batch normalization computes the z-

score for each feature over the mini-batch ℬ and use that as inputs to subsequent layers. To 

make it more versatile, a typical batch normalization layer has two additional learnable 

parameters γ(l) and β(l) such that

hi, new
(l) = γ(l) ⊙ hi, norm

(l) + β(l) .

Again ⊙ denotes the element-wise multiplication. As can be seen, γ(l) and β(l) set the new 

feature hinew
(l)  to have mean β(l) and standard deviation γ(l). The introduction of batch 

normalization makes the training of neural networks much easier and smoother. More 

importantly, it allows the neural nets to perform well over a large family of hyper-parameters 

including the number of layers, the number of hidden units, etc. At test time, the batch 

normalization layer needs more care. For brevity we omit the details and refer to Ioffe and 

Szegedy (2015).

6.3 Regularization techniques

So far we have focused on training techniques to drive the empirical loss (6.1) small 

efficiently. Here we proceed to discuss common practice to improve the generalization 

power of trained neural nets.

6.3.1 Weight decay.—One natural regularization idea is to add an l2 penalty to the loss 

function. This regularization technique is known as the weight decay in deep learning. We 

have seen one example in (2.7). For general deep neural nets, the loss to optimize is 

ln
λ(θ) = ln(θ) + rλ(θ) where

rλ(θ) = λ ∑
l = 1

L
∑
j, j′

W j, j′
(l) 2

.

Note that the bias (intercept) terms are not penalized. If ln(θ) is a least square loss, then 

regularization with weight decay gives precisely ridge regression. The penalty rλ(θ) is a 

smooth function and thus it can be also implemented efficiently with back-propagation.

6.3.2 Dropout.—Dropout, introduced by Hinton et al. (2012), prevents overfitting by 

randomly dropping out subsets of features during training. Take the l-th layer of the feed-

forward neural network as an example. Instead of propagating all the features in h(l) for later 

computations, dropout randomly omits some of its entries by
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hdrop
(l) = h(l) ⊙ maskl,

where ⊙ denotes element-wise multiplication as before, and maskl is a vector of Bernoulli 

variables with success probability p. It is sometimes useful to rescale the features 

hinvdrop
(l) = hdrop

(l) /p, which is called inverted dropout. During training, maskl are i.i.d. vectors 

across mini-batches and layers. However, when testing on fresh samples, dropout is disabled 

and the original features h(l) are used to compute the output label y. It has been nicely 

shown by Wager, Wang and Liang (2013) that for generalized linear models, dropout serves 

as adaptive regularization. In the simplest case of linear regression, it is equivalent to l2
regularization. Another possible way to understand the regularization effect of dropout is 

through the lens of bagging (Goodfellow, Bengio and Courville, 2016). Since different mini-

batches has different masks, dropout can be viewed as training a large ensemble of 

classifiers at the same time, with a further constraint that the parameters are shared. 

Theoretical justification remains elusive.

6.3.3 Data augmentation.—Data augmentation is a technique of enlarging the dataset 

when we have knowledge about invariance structure of data. It implicitly increases the 

sample size and usually regularizes the model effectively. For example, in image 

classification, we have strong prior knowledge about what invariance properties a good 

classifier should possess. The label of an image should not be affected by translation, 

rotation, flipping, and even crops of the image. Hence one can augment the dataset by 

randomly translating, rotating and cropping the images in the original dataset.

Formally, during training we want to minimize the loss ln(θ) = ∑iℒ f xi; θ , yi  w.r.t. 

parameters θ, and we know a priori that certain transformation T ∈ T where T : ℝd ℝd

(e.g., affine transformation) should not change the category / label of a training sample. In 

principle, if computation costs were not a consideration, we could convert this knowledge to 

a constraint fθ(Txi) = fθ(xi), ∀ T ∈ T in the minimization formulation. Instead of solving a 

constrained optimization problem, data augmentation enlarges the training dataset by 

sampling T ∈ T and generating new data {(T xi, yi)}. In this sense, data augmentation 

induces invariance properties through sampling, which results in a much bigger dataset than 

the original one.

7. GENERALIZATION POWER

Section 6 has focused on the in-sample / training error obtained via SGD, but this alone does 

not guarantee good performance with respect to the out-of-sample / test error. The gap 

between the in-sample error and the out-of-sample error, namely the generalization gap, has 

been the focus of statistical learning theory since its birth; see Shalev-Shwartz and Ben-

David (2014) for an excellent introduction to this topic.

While understanding the generalization power of deep neural nets is difficult (Zhang et al., 

2016), we sample recent endeavors in this section. From a high level point of view, these 
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approaches can be divided into two categories, namely algorithm-independent controls and 

algorithm-dependent controls. More specifically, algorithm-independent controls focus 

solely on bounding the complexity of the function class represented by certain deep neural 

networks. In contrast, algorithm-dependent controls take into account the algorithm (e.g., 

SGD) used to train the neural network.

7.1 Algorithm-independent controls: uniform convergence

The key to algorithm-independent controls is the notion of complexity of the function class 

parametrized by certain neural networks. Informally, as long as the complexity is not too 

large, the generalization gap of any function in the function class is well-controlled. 

However, the standard complexity measure (e.g., VC dimension (Vapnik and Chervonenkis, 

1971)) is at least proportional to the number of weights in a neural network (Anthony and 

Bartlett, 2009; Shalev-Shwartz and Ben-David, 2014), which fails to explain the practical 

success of deep learning. The caveat here is that the function class under consideration is all 
the functions realized by certain neural networks, with no restrictions on the size of the 

weights at all. On the other hand, for the class of linear functions with bounded norm, i.e., 

x w⊤x ∣ w 2 ≤ M , it is well understood that the complexity of this function class 

(measured in terms of the empirical Rademacher complexity) with respect to a random 

sample {xi}1≤i≤n upper is bounded by maxi xi 2M / n, which is independent of the number 

of parameters in w. This motivates researchers to investigate the complexity of norm-
controlled deep neural networks10 (Neyshabur, Tomioka and Srebro, 2015; Bartlett, Foster 

and Telgarsky, 2017; Golowich, Rakhlin and Shamir, 2017; Li et al., 2018b). Setting the 

stage, we introduce a few necessary notations and facts. The key object under study is the 

function class parametrized by the following fully-connected neural network with depth L:

ℱL ≜ x WLσ WL − 1σ ⋯W 2σ W 1x ∣ W 1, ⋯, WL ∈ W . (7.1)

Here W 1, W 2, ⋯, WL ∈ W represents a certain constraint For instance, one can restrict the 

Frobenius norm of each parameter Wl through the constraint ‖Wl‖F ≤ MF(l), where MF(l) is 

some positive quantity. With regard to the complexity measure, it is standard to use 

Rademacher complexity to control the capacity of the function class of interest.

Definition 7.1 (Empirical Rademacher complexity).—The empirical Rademacher 

complexity of a function class ℱ w.r.t. a dataset S ≜ {xi}1≤i≤n is defined as

ℛS(ℱ) = Eε sup
f ∈ ℱ

1
n ∑

i = 1

n
εif xi , (7.2)

where ε ≜ (ε1, ε2, ⋯ , εn) is composed of i.i.d. Rademacher random variables, i.e., 

ℙ εi = 1 = ℙ εi = − 1 = 1/2.

In words, Rademacher complexity measures the ability of the function class to fit the 

random noise represented by ε. Intuitively, a function class with a larger Rademacher 

10Such attempts have been made in the seminal work Bartlett (1998).
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complexity is more prone to overfitting. We now formalize the connection between the 

empirical Rademacher complexity and the out-of-sample error; see Chapter 24 in Shalev-

Shwartz and Ben-David (2014).

Theorem 7.1.—Assume that for all f ∈ ℱ and all (y, x) we have ℒ(f(x), y) ≤ 1. In 

addition, assume that for any fixed y, the univariate function ℒ( ⋅ , y) is Lipschitz with 

constant 1. Then with probability at least 1 − δ over the sample S ≜ yi, xi 1 ≤ i ≤ n
i . i . d .D

E(y, x) D[ℒ(f(x), y)]
out‐of‐sampleerror

≤ 1
n ∑

i = 1

n
ℒ f xi , yi

in‐sampleerror

+ 2ℛS(ℱ) + 4 log(4/δ)
n .

In English, the generalization gap of any function f that lies in ℱ is well-controlled as long 

as the Rademacher complexity of is ℱ not too large. With this connection in place, we single 

out the following complexity bound.

Theorem 7.2 (Theorem 1 in Golowich, Rakhlin and Shamir, 2017).—Consider the 

function class ℱL in (7.1), where each parameter Wl has Frobenius norm at most MF(l). 

Further suppose that the element-wise activation function σ(·) is 1-Lipschitz and positive-

homogeneous (i.e., σ(c · x) = cσ(x) for all c ≥ 0). Then the empirical Rademacher 

complexity (7.2) w.r.t. S ≜ {xi}1≤i≤n satisfies

ℛS ℱL ≤ max
i

xi 2 ⋅
4 L∏l = 1

L MF(l)
n . (7.3)

The upper bound of the empirical Rademacher complexity (7.3) is in a similar vein that of 

linear functions with bounded norm, i.e., maxi xi 2M / n, where L∏l = 1
L MF(l) plays the 

role of M in the latter case. Moreover, ignoring the term L, the upper bound (7.3) does not 

depend on the size of the network in an explicit way if MF (l) sharply concentrates around 1. 

This reveals that the capacity of the neural network is well-controlled, regardless of the 

number of parameters, as long as the Frobenius norm of the parameters is bounded. 

Extensions to other norm constraints, e.g., spectral norm constraints, path norm constraints 

have been considered by Neyshabur, Tomioka and Srebro (2015); Bartlett, Foster and 

Telgarsky (2017); Li et al. (2018b); Klusowski and Barron (2016); E, Ma and Wang (2019). 

This line of work improves upon traditional capacity analysis of neural networks in the over-

parametrized setting, because the upper bounds derived are often size-independent. Having 

said this, two important remarks are in order: (1) the upper bounds (e.g., ∏l = 1
L MF(l)) 

involve implicit dependence on the size of the weight matrix and the depth of the neural 

network, which is hard to characterize; (2) the upper bound on the Rademacher complexity 

offers a uniform bound over all functions in the function class, which is a pure statistical 

result. However, it stays silent about how and why standard training algorithms like SGD 

can obtain a function whose parameters have small norms.

Fan et al. Page 31

Stat Sci. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7.2 Algorithm-dependent controls

In this subsection, we bring computational thinking into statistics and investigate the role of 

algorithms in the generalization power of deep learning. The consideration of algorithms is 

quite natural and well motivated: (1) local/global minima reached by different algorithms 

can exhibit totally different generalization behaviors due to extreme nonconvexity, which 

marks a huge difference from traditional models, (2) the effective capacity of neural nets is 

possibly not large, since a particular algorithm does not explore the entire parameter space.

These demonstrate the fact that on top of the complexity of the function class, the inherent 

property of the algorithm we use plays an important role in the generalization ability of deep 

learning. In what follows, we survey three different ways to obtain upper bounds on the 

generalization errors by exploiting properties of the algorithms.

7.2.1 Mean field view of neural nets.—As we have emphasized, modern deep 

learning models are highly over-parametrized. A line of work (Mei, Montanari and Nguyen, 

2018; Sirignano and Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and 

Bach, 2018; Mei, Misiakiewicz and Montanari, 2019; Javanmard, Mondelli and Montanari, 

2019) approximates the ensemble of weights by an asymptotic limit as the number of hidden 

units tends to infinity, so that the dynamics of SGD can be studied via certain partial 

differential equations.

More specifically, let f(x; θ) = N−1∑i = 1
N σ θi

⊤x  be a function given by a one-hidden-layer 

neural net with N hidden units, where σ(·) is the ReLU activation function and parameters 

θ ≜ θ1, …, θN ⊤ ∈ ℝN × d are suitably randomly initialized. Consider the regression setting 

where we want to minimize the population risk RN(θ) = E (y − f(x; θ))2  over parameters θ. 

A key observation is that this population risk depends on the parameters θ only through its 

empirical distribution, i.e., ρ(N) = N−1∑i = 1
N δθi where δθi is a point mass at θi. This 

motivates us to view express RN(θ) equivalently as R ρ(N) , where R(·) is a functional that 

maps distributions to real numbers. Running SGD for RN(·)—in a suitable scaling limit—

results in a gradient flow on the space of distributions endowed with the Wasserstein metric 

that minimizes R(·). It turns out that the empirical distribution ρk
(N) of the parameters after k 

steps of SGD is well approximated by the gradient follow, as long as the the neural net is 

over-parametrized (i.e., N ≫ d) and the number of steps is not too large. In particular, Mei, 

Montanari and Nguyen (2018) have shown that under certain regularity conditions,

sup
k ∈ [0, T /ε] ∩ ℕ

R ρ(N) − R ρkε ≲ eT 1
N ∨ ε ⋅ d + logNε ,

where ε > 0 is an proxy for the step size of SGD and ρkε is the distribution of the gradient 

flow at time kε. In words, the out-of-sample error under θk generated by SGD is well-

approximated by that of ρkε. Viewing the optimization problem from the distributional 

aspect greatly simplifies the problem conceptually, as the complicated optimization problem 

is now passed into its limit version—for this reason, this analytical approach is called the 
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mean field perspective. In particular, Mei, Montanari and Nguyen (2018) further 

demonstrated that in some simple settings, the out-of-sample error R(ρkε) of the 

distributional limit can be fully characterized. Nevertheless, how well does R(ρkε) perform 

and how fast it converges remain largely open for general problems.

7.2.2 Stability.—A second way to understand the generalization ability of deep learning 

is through the stability of SGD. An algorithm is considered stable if a slight change of the 

input does not alter the output much. It has long been observed that a stable algorithm has a 

small generalization gap; examples include k nearest neighbors (Rogers and Wagner, 1978; 

Devroye and Wagner, 1979), bagging (Breiman, 1996; Breiman et al., 1996), etc. The 

precise connection between stability and generalization gap is stated by Bousquet and 

Elisseeff (2002); Shalev-Shwartz et al. (2010). In what follows, we formalize the idea of 

stability and its connection with the generalization gap. Let A denote an algorithm (possibly 

ran domized) which takes a sample S ≜ {(yi, xi)}1≤i ≤n of size n and returns an estimated 

parameter θ ≜ A(S). Following Hardt, Recht and Singer (2015), we have the following 

definition for stability.

Definition 7.2.—An algorithm (possibly randomized) A is ε-uniformly stable with respect 

to the loss function ℒ( ⋅ , ⋅ ) if for all datasets S, S′ of size n which differ in at most one 

example, one has

sup
x, y

EA ℒ(f(x; A(S)), y) − ℒ f x; A S′ , y ≤ ε .

Here the Here the expectation is taken w.r.t. the randomness in the algorithm A and ε might 

depend on n. The loss function ℒ( ⋅ , ⋅ ) takes an example (say (x, y)) and the estimated 

parameter (say A(S)) as inputs and outputs a real value.

Surprisingly, an ε-uniformly stable algorithm incurs small generalization gap in expectation, 

which is stated in the following lemma.

Lemma 7.1 (Theorem 2.2 in Hardt, Recht and Singer, 2015).—Let A be ε-

uniformly stable. Then the expected generalization gap is no larger than ε, i.e.,

EA,S
1
n ∑

i = 1

n
ℒ f xi; A(S) , yi − E(x, y) D[ℒ(f(x; A(S)), y)] ≤ ε . (7.4)

With Lemma 7.1 in hand, it suffices to prove stability bound on specific algorithms. It turns 

out that SGD introduced in Section 6 is uniformly stable when solving smooth nonconvex 

functions.

Theorem 7.3 (Theorem 3.12 in Hardt, Recht and Singer (2015)).—Assume that for 

any fixed (y, x), the loss function ℒ(f(x; θ), y), viewed as a function of θ, is L-Lipschitz and 

β-smooth. Consider running SGD on the empirical loss function with decaying step size αt ≤ 
c/t, where c is some small absolute constant. Then SGD is uniformly stable with
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ε ≲ T1 − 1
βc + 1
n ,

where we have ignored the dependency on β, c and L.

Theorem 7.3 reveals that SGD operating on nonconvex loss functions is indeed uniformly 

stable as long as the number of steps T is not large compared with n. This together with 

Lemma 7.1 demonstrates the generalization ability of SGD in expectation. Nevertheless, two 

important limitations are worth mentioning. First, Lemma 7.1 provides an upper bound on 

the out-of-sample error in expectation, but ideally, instead of an on-average guarantee under 

EA,S, we would like to have a high probability guarantee as in the convex case (Feldman 

and Vondrak, 2019). Second, controlling the generalization gap alone is not enough to 

achieve a small out-of-sample error, since it is unclear whether SGD can achieve a small 

training error within T steps.

7.2.3 Implicit regularization—In the presence of over-parametrization (number of 

parameters larger than the sample size), conventional wisdom informs us that we should 

apply some regularization techniques (e.g., l1 / l2 regularization) so that the model will not 

overfit the data. However, in practice, neural networks without explicit regularization 

generalize well. This phenomenon motivates researchers to look at the regularization effects 

introduced by training algorithms (e.g., SGD) in this over-parametrized regime. While there 

might exits multiple, if not infinite global minima of the empirical loss (6.1), it is possible 

that practical algorithms tend to converge to solutions with better generalization powers.

Take the underdetermined linear system Xθ = y as a starting point. Here x ∈ ℝn × p and 

θ ∈ ℝp with p much larger than n. Running gradient descent on the loss 1
2 Xθ − y 2

2
 from 

the origin (i.e., θ0 = 0) results in the solution with the minimum Euclidean norm, that is GD 

converges to

min
θ ∈ ℝp

‖θ‖2subject toXθ = y .

In words, without any l2 regularization in the loss function, gradient descent automatically 

finds the solution with the least l2 norm. This phenomenon, often called as implicit 

regularization, not only has been empirically observed in training neural networks, but also 

has been theoretically understood in some simplified cases, e.g., logistic regression with 

separable data. In logistic regression, given a training set {(yi, xi)}1≤i≤n with xi ∈ ℝp and yi 

∈ {1, −1}, one aims to fit a logistic regression model by solving the following program:

min
θ ∈ ℝp

1
n ∑

i = 1

n
l yixi⊤θt . (7.5)
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Here, l(u) ≜ log 1 + e−u  denotes the logistic loss. Further assume that the data is separable, 

i.e., there exists θ* ∈ ℝp such that yiθ*┬xi > 0 for all i. Under this condition, the loss 

function (7.5) can be arbitrarily close to zero for certain θ with ‖θ‖2 → ∞. What happens 

when we minimize (7.5) using gradient descent? Soudry et al. (2018) uncovers a striking 

phenomenon.

Theorem 7.4 (Theorem 3 in Soudry et al., 2018).—Consider the logistic regression 

(7.5) with separable data. If we run GD

θt + 1 = θt − η1
n ∑

i = 1

n
yixil′ yixi⊤θt

from any initialization θ0 with appropriate step size η > 0, then normalized θt converges to a 

solution with the maximum l2 margin. That is,

lim
t ∞

θt

θt
2

= θ , (7.6)

where θ  is the solution to the hard margin support vector machine:

θ ≜ arg min
θ ∈ ℝp

θ
2
subject toyixi⊤θ ≥ 1forall1 ≤ i ≤ n . (7.7)

The above theorem reveals that gradient descent, when solving logistic regression with 

separable data, implicitly regularizes the iterates towards the l2 max margin vector (cf. 

(7.6)), without any explicit regularization as in (7.7). Similar results have been obtained by Ji 

and Telgarsky (2018). In addition, Gunasekar et al. (2018a) studied algorithms other than 

gradient descent and showed that coordinate descent produces a solution with the maximum 

l1 margin.

Moving beyond logistic regression, which can be viewed as a one-layer neural net, the 

theoretical understanding of implicit regularization in deeper neural networks is still limited; 

see Gunasekar et al. (2018b) for an illustration in deep linear convolutional neural networks.

8. DISCUSSION

Due to space limitations, we have omitted several important deep learning models; notable 

examples include deep reinforcement learning (Mnih et al., 2015), deep probabilistic 

graphical models (Salakhutdinov and Hinton, 2009), variational autoencoders (Kingma and 

Welling, 2013), transfer learning (Yosinski et al., 2014), etc. Apart from the modeling 

aspect, interesting theories on generative adversarial networks (Arora et al., 2017; Bai, Ma 

and Risteski, 2018), recurrent neural networks (Allen-Zhu and Li, 2019), connections with 

kernel methods (Jacot, Gabriel and Hongler, 2018; Arora et al., 2019) are also emerging. We 

have also omitted the inverse-problem view of deep learning where the data are assumed to 

be generated from a certain neural net and the goal is to recover the weights in the NN with 
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as few examples as possible. Various algorithms (e.g., GD with spectral initialization) have 

been shown to recover the weights successfully in some simplified settings (Zhong et al., 

2017; Soltanolkotabi, 2017; Goel, Klivans and Meka, 2018; Mondelli and Montanari, 2018; 

Chen et al., 2019a; Fu, Chi and Liang, 2018).

In the end, we identify a few important directions for future research.

• New characterization of data distributions. The success of deep learning re-lies 

on its power of efficiently representing complex functions relevant to real data. 

Comparatively, classical methods often have optimal guarantee if a problem has 

a certain known structure, such as smoothness, sparsity, and low-rankness 

(Stone, 1982; Donoho and Johnstone, 1994; Candès and Tao, 2009; Chen et al., 

2019b), but they are insufficient for complex data such as images. How to 

characterize the high-dimensional real data that can free us from known barriers, 

such as the curse of dimensionality is an interesting open question?

• Understanding various computational algorithms for deep learning. As we have 

emphasized throughout this survey, computational algorithms (e.g., variants of 

SGD) play a vital role in the success of deep learning. They allow fast training of 

deep neural nets and probably contribute towards the good generalization 

behavior of deep learning in practice. Understanding these computational 

algorithms and devising better ones are crucial components in understanding 

deep learning.

• Robustness. It has been well documented that DNNs are sensitive to small 

adversarial perturbations that are indistinguishable to humans (Szegedy et al., 

2013). This raises serious safety issues once deep learning models are deployed 

in applications such as self-driving cars, healthcare, etc. It is therefore crucial to 

refine current training practice to enhance robustness in a principled way (Singh, 

Murdoch and Yu, 2018).

• Low SNRs. Arguably, for image data and audio data where the signal-to-noise 

ratio (SNR) is high, deep learning has achieved great success. In many other 

statistical problems, the SNR may be very low. For example, in financial 

applications, the firm characteristic and covariates may only explain a small part 

of the financial returns; in healthcare systems, the uncertainty of an illness may 

not be predicted well from a patient’s medical history. How to adapt deep 

learning models to excel at such tasks is an interesting direction to pursue?
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Fig 1: 
(a) shows the images in the public dataset MNIST; and (b) depicts the training and test 

accuracies along the training dynamics. Note that the training accuracy is approaching 100% 

and the test accuracy is still high (no overfitting).
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Fig 2: 
A feed-forward neural network with an input layer, two hidden layers and an output layer. 

The input layer represents raw features {xi}1≤i≤n. Both hidden layers compute an affine 

transform (a.k.a. indices) of the input and then apply an element-wise activation function (·). 

Finally, the output returns a linear transform followed by the softmax activation (resp. 

simply a linear transform) of the hidden layers for the classification (resp. regression) 

problem.
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Fig 3: 
The computational graph illustrates the loss (2.7). For simplicity, we omit the bias terms. 

Symbols inside nodes represent functions, and symbols outside nodes represent function 

outputs (vectors/scalars). matmul is matrix multiplication, relu is the ReLU activation, cross 

entropy is the cross entropy loss, and SoS is the sum of squares.
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Fig 4: 

X ∈ ℝ28 × 28 × 3 represents the input feature consisting of 28 × 28 spatial coordinates in a 

total number of 3 channels / feature maps. Fk ∈ ℝ5 × 5 × 3 denotes the k-th filter with size 5 

× 5 The third matches the number 3 of the filter automatically matches the number 3 of 

channels in the previous input. Every 3D patch of X gets convolved with the filter Fk and 

this as a whole results in a single output feature map X: , : , k with size 24 × 24 ×1. Stacking 

the outputs of all the filters {Fk}1×k×K will lead to the output feature with size 24 × 24 ×K.
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Fig 5: 
A 2 × 2 max pooling layer extracts the maximum of 2 by 2 neighboring pixels / features 

across the spatial dimension.
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Fig 6: 
LeNet is composed of an input layer, two convolutional layers, two pooling layers and three 

fully-connected layers. Both convolutions are valid and use filters with size 5 × 5. In 

addition, the two pooling layers use 2 × 2 average pooling.
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Fig 7: 
Vanilla RNNs with different inputs/outputs settings. (a) has one input but multiple outputs; 

(b) has multiple inputs but one output; (c) has multiple inputs and outputs. Note that the 

parameters are shared across time steps.
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Fig 8: 

A vanilla RNN with two hidden layers. Higher-level hidden states ht
l are determined by the 

old states ht − 1
l  and lower-level hidden states ht

l − 1. Multilayer RNNs generalize both feed-

forward neural nets and one-hidden-layer RNNs.
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Fig 9: 
(a) The “Inception” module from GoogleNet. Concat means combining all features maps 

into a tensor. (b) Skip connections are added every two layers in ResNets.
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Fig 10: 
First an input x goes through the encoder f(·), and we obtain its hidden representation h = 

f(x). Then, we use the decoder g(·) to get g(h) as a reconstruction of x. Finally, the loss is 

determined from the difference between the original input x and its reconstruction g(f(x)).
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Fig 11: 
GANs consist of two components, a generator G which generates fake samples and a 

discriminator D which differentiate the true ones from the fake ones.
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Table 1

Winning models for ILSVRC image classification challenge.

Model Year # Layers # Params Top-5 error

Shallow < 2012 — — > 25%

AlexNet 2012 8 61M 16.4%

VGG19 2014 19 144M 7.3%

GoogleNet 2014 22 7M 6.7%

ResNet-152 2015 152 60M 3.6%
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