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Abstract

A machine learning approach is presented for analyzing complex two-dimensional hyperfine 

sublevel correlation electron paramagnetic resonance (HYSCORE EPR) spectra with the 

proficiency of an expert spectroscopist. The computer vision algorithm requires no training on 

experimental data; rather, all of the spin physics required to interpret the spectra are learned from 

simulations alone. This approach is therefore applicable even when insufficient experimental data 

exist to train the algorithm. The neural network is demonstrated to be capable of utilizing the full 

information content of two-dimensional 14N HYSCORE spectra to predict the magnetic coupling 

parameters and their underlying probability distributions that were previously inaccessible. The 

predicted hyperfine (a, T) and 14N quadrupole (K, η) coupling constants deviate from the previous 

manual analyses of the experimental spectra on average by 0.11 MHz, 0.09 MHz, 0.19 MHz, and 

0.09, respectively.
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Recent advances in machine learning provide computers with an unprecedented visual 

capacity to match or even outperform humans in tasks ranging from everyday image 

recognition1–3 to disease diagnosis,4,5 yet only in a handful of cases have these types of 

neural network architectures been applied to problems in spectroscopy. Central to these 

computer vision algorithms is the convolutional neural network (CNN), which has allowed 

automated assignment of Raman spectra even in the presence of significant baseline 

distortion artifacts6 and has demonstrated a high performance level for automatic spectral 

assignments in multidimensional nuclear magnetic resonance (NMR) spectra.7,8 In this 

Letter, we describe a general purpose CNN architecture for extracting parameters of interest 

directly from two-dimensional (2D) spectra. The spectrum and experimental settings are the 

input to the algorithm, and the predictions and their associated confidence intervals are 

returned as output. As a case study, this neural network’s capabilities are demonstrated for 

the pulsed electron paramagnetic resonance (EPR) experiment HYSCORE (Hyperfine 

Sublevel Correlation), with the pulse sequence shown in Figure 1.9 Specifically, HYSCORE 

is used to differentiate all the connectivities of the hyperfine levels and the coupling 

parameters between electron spins (S = 1/2) and their surrounding nuclear spin 

environments. For spin I = 1/2 nuclei such as 1H, 13C, and 15N, the hyperfine coupling with 

the electron spin gives rise to simple cross-ridge lineshapes in HYSCORE spectra of powder 

samples that allow for the magnetic coupling parameters to be extracted by simple least-

squares fitting.10,11 For 14N nuclei (I = 1) considered in this work, the situation is 

complicated by the nonequivalent splitting of the nuclear levels into the mI = −1, 0, and 1 

spin states because of the quadrupolar interaction. The HYSCORE spectrum for even a 

single 14N spin is generally a multiline pattern with up to nine cross-peak pairs, and the 

cross-ridge intensities are a complicated function of the relative hyperfine and nuclear 

quadrupole couplings and the experimental parameters with which the measurement was 

performed.12 Spectral artifacts from τ-suppression11 and the appearance of diagonal peaks 

from incomplete inversion by the π-pulse can further contribute to complicating the spectral 
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analysis.13 These challenges make 2D 14N HYSCORE an appealing case study for using 

machine learning to extract information convolved with these spectral artifacts.

However, an inherent problem with HYSCORE, as for most multidimensional 

spectroscopies in magnetic resonance, is a paucity of experimental data available to train the 

neural network. Here we present a simple, yet novel solution where a CNN is trained on 

simulations in order to teach it to analyze experimental spectra. A similar strategy of training 

a neural network on simulations was successfully implemented recently to process double 

electron–electron resonance data.15 The result described here is a neural network that solves 

the inverse problem of extracting magnetic coupling parameters from a HYSCORE 

spectrum, revealing the full probability distributions of these parameters for the first time.

Hyperfine and Nuclear Quadrupole Couplings.

The goal of analyzing an 14N HYSCORE spectrum is the determination of the hyperfine and 

nuclear quadrupole tensors, which provide a quantum mechanical description of the 

couplings between the nitrogen spin and its nearby electron spin. The principal components 

of the hyperfine tensor (AXX, AYY, and AZZ) can be represented in spherical form as a − T(1 

+ δ), a − T(1 − δ), and a + 2T, respectively, where a is the isotropic constant, T the 

anisotropic constant, and δ the unitless rhombicity factor that varies between 0 and 1. The 

tensor for the nuclear quadrupole interaction is traceless, and therefore, its principal 

components (QXX, QYY, and QZZ) can be represented with only two values, the quadrupole 

coupling constant K = e2Qq/h and the unitless asymmetry parameter η = (QXX − QYY)/QZZ.
13,16

Under most circumstances, currently available analytical expressions allow only for a and 

K2(3 + η2) to be directly estimated from 14N spectra (valid only when the hyperfine 

anisotropy is weak, i.e. T ≈ 0).16,17 In the special case of the cancellation condition, where 

the nuclear Larmor frequency (ν14N) exactly matches the hyperfine interaction (|ν14N − |a|/2| 

≈ 0), direct determinations of K and η may also be possible.16,17 In order to determine the 

remaining parameters, 14N HYSCORE simulations are performed by optimizing a vast 

parameter space of unknown variables. These simulations are often a tedious trial-and-error 

task prone to operator bias.

Machine Learning Algorithm.

A CNN architecture was designed and trained on EasySpin v5.2.1320 simulations to extract 

a, T, δ, K, and η directly from the raw X-band (∼9 GHz) HYSCORE time-domain patterns 

(Figure 2). For spectra with multiple nitrogen couplings, the cross-peaks were manually 

separated such that HYSCORE spectra corresponding to a single 14N served as input to the 

neural network. The machine learning algorithm’s performance was validated on our 

previously analyzed experimental HYSCORE spectra21–25 that exhibit well-resolved 14N 

couplings. The outputs of the CNN are unnormalized probability distributions for each 

parameter, where the amplitudes of the distributions indicate the neural network’s 

confidence in making its predictions (a flat baseline of zeros indicates no confidence in 

making a prediction). The CNN outputs are compared with the literature values in Figure 3. 
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The chemical structures of the spin systems considered in this work are shown in Figure 4. 

Full details on the machine learning architectural design and training are provided in the 

Supporting Information.

The predictions and their associated errors were determined by fitting a Gaussian to the 

CNN output probability distributions (Table S1 in the Supporting Information). The machine 

learning algorithm in Figure 3 utilizes the HYSCORE spectra along with the experimental 

settings B0 and τ to predict a and K to within an average deviation of 0.10 and 0.17 MHz 

from the manually assigned values, respectively. These errors approach the spectral 

frequency resolution of 0.1 MHz used in the HYSCORE preprocessing and analysis. 

Remarkably, the neural network also provides quantitative estimates for the hyperfine 

anisotropy T, for which no algorithm exists to directly extract this parameter from the 

spectrum. While T is best estimated from an analysis of 15N HYSCORE spectra because 

they lack contributions from the nuclear quadrupole coupling (all of the literature values of 

T in Table S1 are based on analyses of 15N-enriched samples), the machine learning 

algorithm is apparently able to extract this information directly from the natural abundance 
14N spectrum. The error in the prediction for T is on average 0.08 MHz with respect to the 

manually assigned values. The nuclear quadrupole asymmetry parameter, η, can be 

determined only in certain cases, but this is understandable as the single-quantum transitions 

necessary to quantify this parameter appear in HYSCORE spectra only when the 

cancellation condition is satisfied.12,16,17 For the spin systems sufficiently near the 

cancellation condition (SQB RC L-H190-Nδ, SQH cyt aa3 H70-Nε, and SQH cyt bo3 R71-

Nε),21–23 an average prediction error for η of 0.10 with respect to manual analysis is 

obtained. We note SQB RC L-H190-Nδ satisfies the cancellation condition poorly at X-band, 

and S-band measurements were required for an accurate determination of η.21 Despite this, 

the machine learning algorithm presented here is able to provide a reasonable estimate of η 
even without the low-frequency measurements. Finally, the CNN is not able to predict the 

hyperfine rhombicity parameter, δ. This is consistent with the previous inability to determine 

δ accurately for these spin systems because of insufficient spectral resolution. The failure of 

the machine learning algorithm to extract δ suggests the information required for specifying 

this parameter simply does not exist in these 14N HYSCORE spectra.

Comparison of neural network models trained with and without various combinations of B0 

and τ shows that only B0 provides a small but significant improvement to the fit (Table 1). 

This suggests this neural network is able to infer the magnetic field (within the range of 

300–400 mT used in the training set) directly from the spectrum alone. Indeed, when this 

CNN is repurposed to extract B0 from the spectrum instead of a, T, δ, K, and η, it does so 

with an average deviation of 20 mT from the experimental truth value. Therefore, the 

magnetic field of the spectrum is, to some degree of accuracy, encoded into the pattern of 

peaks and cross-ridges. Additional performance benchmarks of the neural network as a 

function of various simulations parameters are provided in the Supporting Information: 

prediction accuracy does not show any dependence on magnetic field (Figure S3) or τ-value 

(Figure S4) within the intervals the neural network was trained, performance degrades as the 

spectrum becomes dominated by diagonal peak intensity (Figure S5), and the machine 

learning algorithm exhibits robust performance for signal-to-noise ratios above ∼4 (Figure 

S6).
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Here we describe a CNN architecture capable of utilizing and interpreting the full 

information content of 2D EPR data and apply this approach for the first time to the analysis 

of 14N HYSCORE spectroscopy. The algorithm is trained only on spectral simulations and is 

robust to variations in diagonal peak intensity, noise, τ-suppression, and variations in t1 and 

t2 step size. However, the training set includes only narrow-line radicals with a maximum g-

tensor span of 0.1 and no resolvable splittings in the EPR spectrum. As such, the CNN 

exhibits instability for cases of complex EPR spectra, such as the VO2+ spin system (strong 

hyperfine interactions with the I = 7/2 vanadium, Figure S7) and to a lesser degree the rat 

mitoNEET spin system (g-tensor span of 0.11 with small splittings in the EPR spectrum, 

Figure S8). Accounting for these complex patterns in the EPR spectrum is outside the scope 

of the present work and is currently not supported in the EasySpin simulation package.20 

However, the SPINACH package can model these features and may help generalize the 

neural network to handle arbitrary EPR spectral patterns.26 An additional limitation of the 

current approach is that it can only analyze spectra corresponding to a single 14N nucleus, 

and therefore, manual intervention is required for analyzing multinuclear spectra. The 

solution to this problem will likely involve semantic image segmentation, unsupervised 

clustering, or a combination of the two for automatically separating the spectrum into its 

different components before being fed into the neural network. Despite the limitations of the 

present algorithm, it can provide a useful starting point for setting up HYSCORE 

simulations bounded by confidence intervals that are bias free (Figure S9). The code is 

provided as an open source package and is available online to download (https://

griffingroup.mit.edu/EPR_Spectroscopy).

Thus, the approach outlined here proposes an alternative paradigm to the typical trial-and-

error simulation process for interpreting multidimensional spectra. Machine learning has 

demonstrated the incredible ability to extract the magnetic coupling parameters of interest 

directly from the multidimensional spectra by treating it as an image classification problem. 

In the case of HYSCORE spectroscopy, the CNN derives an entirely new algorithm for 

estimating the hyperfine anisotropy parameter T directly from the spectrum. Importantly, the 

neural network extracts the full underlying probability distributions of each parameter for 

the first time, allowing for error estimates free from bias. Future efforts will be applied 

toward adapting these neural network architectures to the three- and four-dimensional 

spectra often encountered in NMR, where automation of structure calculations directly from 

the raw spectra may eventually become a reality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
HYSCORE pulse sequence investigated in this work. The delay between the first and second 

π/2-pulses is held at a fixed value τ. The intensity of the inverted echo (dashed) is acquired 

as a function of t1 and t2, resulting in a 2D time-domain pattern correlating the change in 

nuclear resonant frequencies as the electron spin is flipped between its +1/2 and −1/2 spin 

states. All spectra were acquired with a 4-step phase cycle.14
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Figure 2. 
Machine learning architecture for predicting the 14N hyperfine and nuclear quadrupole 

coupling constants directly from the raw HYSCORE data. (A) Spectral preprocessing 

involves 2D Fourier transformation of the time-domain data, followed by averaging and 

rearranging of the nearly symmetrical triangular halves into a compact square matrix 

representation. The experimental settings (in this case the magnetic field B0 and pulse delay 

time τ) are then concatenated onto the back of the HYSCORE spectrum. (B) Preprocessed 

HYSCORE spectra are passed through 3 convolutional layers with 16, 32, and 64 channels 

(kernel size = 3 × 3, stride = 2), and the output is flattened along the image dimensions. 

After passage through one fully connected layer of size 256, the network branches into 5 

parallel fully connected layers each of size 64 for predicting the values of a, T, δ, K, and η. 

ReLU18 activations are applied to all layer outputs except for the five final classification 

layers, where the SoftPlus19 activation ln(1 + ex) is used instead. The full details of the 

spectral preprocessing, CNN architectural design, and network training are provided in the 

Supporting Information.
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Figure 3. 
Comparison of the CNN probability distributions for a, T, δ, K, and η (black) with the 

previously reported literature values (blue) where available: (i) SQB RC (L-H190-Nδ) – 

semiquinone (SQ) in the QB ubiquinone binding site of the reaction center from 

Rhodobacter sphaeroides interacting with Nδ of residue L-H190;21 (ii) SQB RC (L-G225-

Np) – same as previous for Np of L-G225;21 (iii) SQH cyt aa3 (H70-Nε) – SQ in the QH 

high-affinity menaquinone binding site of the R70H mutant of cytochrome aa3-600 

menaquinol oxidase from Bacillus subtilis interacting with Nε of residue H70;22 (iv) SQH 

cyt bo3 (R71-Nε) – semiquinone in the QH high-affinity ubiquinone binding site of the 

cytochrome bo3 ubiquinol oxidase from Escherichia coli interacting with Nε of residue 

R71;23 (v) [2Fe-2S] rat mitoNEET (H87-Nδ) – reduced [2Fe-2S](Cys)3(His)1 cluster in rat 

mitoNEET interacting with Nδ of residue H87;24 (vi) [2Fe-2S] rat mitoNEET (H87-Nε) – 

same as previous for Nε of residue H87;24 [2Fe-2S] rat mitoNEET (Np) – same as previous 

for Np in the cluster environment;24 (viii) VO2+ (Imidazole) – VO2+ ion interaction with 

coordinating imidazole ligand nitrogens;25 and (ix) VO2+ (Histidine-Nα)2 – VO2+ ion 

interaction with coordinating NαH2 of histidine ligands.25 The final predictions and their 

standard deviation errors are determined by a Gaussian fit to the probability distributions 

(dashed red). It took ∼3 s for the machine learning algorithm to process the time-domain 
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patterns and generate this figure on a desktop equipped with an Intel Core i5–4570 processor 

(3.2 GHz) and 16 GB of RAM.
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Figure 4. 
Chemical structures of the three major electron spin systems studied in this work (each 

shown in complex with an example of one of the 14N ligands from this Letter): (left) 

semiquinone hydrogen bonded to Nε of arginine, (middle) reduced [2Fe-2S] cluster in 

coordination with histidine, and (right) VO2+ ion coordinated to an imidazole. The spin 

systems in Figure 3 belonging to each class are listed at the bottom.
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