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ABSTRACT
Reptiles are the most species-rich terrestrial vertebrate group with a broad diversity
of life history traits. Biotelemetry is an essential methodology for studying reptiles
as it compensates for several limitations when studying their natural history. We
evaluated trends in terrestrial reptile spatial ecology studies focusing upon quantifying
home ranges for the past twenty years. We assessed 290 English-language reptile home
range studies published from 2000–2019 via a structured literature review investigating
publications’ study location, taxonomic group, methodology, reporting, and analytical
techniques. Substantial biases remain in both location and taxonomic groups in the
literature, with nearly half of all studies (45%) originating from the USA. Snakes
were most often studied, and crocodiles were least often studied, while testudines
tended to have the greatest within study sample sizes. More than half of all studies
lacked critical methodological details, limiting the number of studies for inclusion
in future meta-analyses (55% of studies lacked information on individual tracking
durations, and 51% lacked sufficient information on the number of times researchers
recorded positions). Studies continue to rely on outdatedmethods to quantify space-use
(including Minimum Convex Polygons and Kernel Density Estimators), often failing
to report subtleties regarding decisions that have substantial impact on home range
area estimates. Moving forward researchers can select a suite of appropriate analytical
techniques tailored to their research question (dynamic Brownian Bridge Movement
Models for within sample interpolation, and autocorrelated Kernel Density Estimators
for beyond sample extrapolation). Only 1.4% of all evaluated studies linked to available
andusable telemetry data, further hindering scientific consensus.Weultimately implore
herpetologists to adopt transparent reporting practices and make liberal use of open
data platforms to maximize progress in the field of reptile spatial ecology.

Subjects Animal Behavior, Conservation Biology, Ecology, Zoology
Keywords Home range, Reptiles, Open science, Reproducibility, Biotelemetry, Space use, Spatial
ecology

INTRODUCTION
There are at least 11,242 described reptile species worldwide (Uetz, Freed & Hošek, 2020;
accessed 2020-04). Terrestrial reptiles typically have narrower niche requirements and
smaller ranges than other vertebrates such as birds andmammals, leaving them increasingly
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susceptible to threats such as habitat loss or invasive species (Böhm et al., 2013). Nearly
one in five reptilian species are threatened with extinction (17.2%), and 14.4% are Data
Deficient (IUCN, 2021; Böhm et al., 2013). Data deficiency in reptiles is higher than that of
bird and mammal species (0.5% and 14.2%, respectively; Stattersfield, Bennun & Jenkins,
2004; Schipper et al., 2008); in particular for tropical reptiles and those with fossorial habits.
Recent collapses of snake diversity have been reported with rippling effects to the ecosystem
(Zipkin et al., 2020), but baseline data is often unavailable to properly evaluate these events
and is likely understating the cascading effect of disappearing species (Roll et al., 2017).
Many reptile species lack adequate baseline knowledge to inform conservation actions
(Tingley, Meiri & Chapple, 2016; Etard, Morrill & Newbold, 2020). Spatial ecology datasets
can help fill these baseline knowledge gaps: revealing how animals react to human changes
to the landscape (Tucker et al., 2018), informing species conservation status (Fraser et al.,
2018), and offering key prior information to design population assessments (Gupta et al.,
2019).

Efforts to collect baseline data are hindered by reptiles’ natural history—often small,
rare, and cryptic—limiting detection probability. Telemetry studies can counteract low
detection probability (or at least provide baseline detection estimates; Boback et al., 2020),
as we know exactly the number, identity, and location of radio-marked individuals in the
study site—with many potential applications (Refsnider et al., 2011). By tracking animal
movement, we gain valuable insight into habitat requirements, foraging strategies, and
behaviour (Kingsbury & Robinson, 2016).

Radio-telemetry (VHF) is common in terrestrial reptile research, whereas the use of
GPS and other automated telemetry technology in terrestrial reptiles is still relatively rare
(e.g., Hart et al., 2015; Smith et al., 2018) compared to other taxa (Joo et al., 2020). Using
novel technologies and the resulting increased data volume in telemetry studies should
also increase the analytical complexity and encourage greater uptake of more appropriate
statistical methods. However, the uptake of modern techniques by practitioners within
movement ecology has stagnated as the proportion of studies using movement-based area
estimation methods is not matching the available software tools and methods (Joo et al.,
2020).

The term ‘‘home range’’ is frequently and irrespectively applied to two distinct concepts:
(1) the Burt (1943) home range definition, i.e., the area an animal uses for all of its
lifetime activities, (2) within sample ‘‘space-use’’ (still commonly referred to as a ‘‘home
range’’), i.e., an area used by an animal throughout the study period duration. While
both concepts have biological value, the chosen research question should govern choice
of concept, and thus the space-use estimation methods researchers should use to answer
their question. Researchers often use terms like ‘‘seasonal home range’’ to refer to animal
space-use within the study period (Viana et al., 2018), delineating boundaries of interest
based on season (Korbelová et al., 2016). Many studies improperly use the term home
range (which by definition will include areas the animal used outside the study period,
i.e., beyond-sample), when they intend to estimate short-term space-use of their animals
(within-sample). Home ranges (in either of its definitions) and movement pattern data
can help us understand population dynamics and habitat use, informing protected area
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size or policy processes (Metcalfe et al., 2015; Fraser et al., 2018), advocating for specific
land-tenure systems (Johansson et al. 2016; Farhadinia et al., 2018), and recovery planning
for threatened species (Parsons, 2016).

We treat reptile home range studies as any study intending to quantify space-use,
regardless of whether the intent was to estimate areas used outside of the study or
bounded by the study period. Initially, geometric methods such as the Minimum
Convex Polygon (MCP) were the norm, but subsequently researchers have turned towards
statistical techniques incorporating underlying probabilistic models, such as Kernel Density
Estimators (KDE; Worton, 1989). The autocorrelated nature of movement data violates
traditional KDEs assumptions led to the development of movement-based area estimation
methods: autocorrelated KDEs (AKDEs; Fleming et al., 2015), and Brownian Bridge
Movement Models (Horne et al., 2007; Kranstauber et al., 2012). Although researchers
have continued to expand and develop analytical methods within movement and spatial
ecology (Laver & Kelly, 2008), the proportion of studies using movement-specific methods
has not increased (Joo et al., 2020).

Macartney, Gregory & Larsen (1988) summarized the landscape of snake home range
studies and suggested developing useful baseline data for comparative purposes requires
longer-term studies and standardised data collection, analysis, and presentation. In 1990,
a general review found most studies focused on mammals and used MCPs to estimate
home ranges (Harris et al., 1990). By 2008, the same patterns were still present, with
mammalian and ornithological home range studies most prevalent, and with 96 out
of 141 studies still utilizing MCPs (51% utilizing both MCPs and KDEs; Laver & Kelly,
2008). Goldingay (2015) reviewed home-range studies for Australian terrestrial vertebrates
between 2001–2012, and only 19% out of 150 papers pertained to reptiles, even though
Australia has over 860 native reptile species (39% of Australian’s land species). As for
home range estimators, MCPs appeared in 84% of these studies, followed by KDEs (45%),
illustrating a lack of methodology advancement despite a growing field. Taken together,
previous reviews suggest the potential for shortfalls in reptile spatial studies and reliance on
MCP or KDE methods. If trends in data missingness also apply (Etard, Morrill & Newbold,
2020), the shortfall in studies may be greatest in the tropics where reptiles are most diverse
(Roll et al., 2017).

Here, we reviewed reptile telemetry literature to assess whether the field has shifted
collection methods (e.g., GPS and satellite tags), and participated in the uptake of newer
home range estimation techniques. We also sought to reveal underlying reptile home range
study biases, both geographically and taxonomically, to determine future limitations in
undertaking global syntheses and analyses. As most home range estimates are sensitive
to study design and data collection protocol (e.g., number of locations and duration),
we also evaluated reptile telemetry studies within the framework of open, reproducible,
and comparable science, to determine the number of available datasets from our review.
Finally, we make recommendations for improving reporting standards to aid in making
reptile home range studies more broadly applicable and reproducible.
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Survey methodology
We performed a comprehensive literature review by searching in Google Scholar, Web of
Science, and Scopus on 30th of January, 2020 for articles relating to reptile spatial ecology
using the terms (‘‘reptile’’ OR ‘‘tortoise’’ OR ‘‘crocodile’’ OR ‘‘alligator’’ OR ‘‘snake’’ OR
‘‘lizard’’) AND (‘‘home range’’ OR ‘‘home-range’’ OR ‘‘space use’’ OR ‘‘spatial ecology’’).
Following Haddaway et al. (2015) we only included the first 300 results from Google
Scholar. We limited the search to papers from 2000-2019 published in peer-reviewed
journals, because we were interested in the changes/uptake of different computational
home range methods (prior to 2000 researchers had to rely heavily on manual cartographic
methods).

Our aim was solely terrestrial/semi-terrestrial reptile home range studies, so we excluded
studies on marine species (e.g., sea turtles, sea snakes). However, we did include studies
from semi-aquatic or typically range-limited to waterway species (e.g., crocodilians,
freshwater turtles). We did not include marine species as they represent unique challenges
and opportunities for modeling space-use such as 3D space use. We excluded studies
lacking home range or space-use area estimates, such as those that only used movement
measurements. As multiple field sampling techniques can generate home ranges, we
defined our inclusion criteria as only studies using an attached telemetric device (e.g., VHF
transmitters, GPS). We further excluded clear re-analyses of previously published datasets
to avoid pseudoreplication. In these cases, we included only the oldest published article
returned from the systematic search for review. However, we did include studies pooling
previous data with newly collected data.

When studies included multiple species, we considered the overall methodology
rather than for each species individually to avoid pseudoreplication. We only collected
multiple values for a study’s methodology if researchers used two different tracking devices
(e.g., both VHF and GPS), as different tracking devices are subject to different limitations
in data recording. We used the distinct biotransmitter type to review tracking protocols
(e.g., sample frequency, number of locations) and trends in biotransmitter selection
(e.g., VHF vs GPS), but used study level effort to review geographic and taxonomic
patterns. From each included paper, we collected basic study information (country, year,
species, number of individuals tracked) as well as more detailed information about the
data sampling regime and home range estimation methods. To assess the field sampling
protocols, we collected data concerning the reporting of tracking duration, number of
locations, and tracking frequency (number of fixes per day) for studied individuals.

Regular temporal sampling is an assumption in several movement analyses, so we also
identified whether studies conducted regular sampling. We defined two cases of regular
temporal sampling: (1) sampling occurred at an equal hourly sampling rate (e.g., one fix
every 2 h, one fix every 15min), (2) individualswere located at least once per day consistently
throughout the study (e.g., data with temporal resolution sufficient for subsetting to one
location for every day the animal was tracked). We converted the reported tracking
methodology into the number of tracks per day, recording both the minimum possible
and maximum possible frequency. In cases where authors used ambiguous language
(e.g., biweekly), or provided insufficient detail, we classified the tracking frequency as ‘‘not
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Table 1 Scoring category definitions for both number of location and study durations.

Data Field Type Score of 0 Score of 1 Score of 2 Score of 3

Duration
Reproducibility

No reporting - includes
cases when authors report
at least ## days without a
maximum

Population-level reporting -
mean only or sum of dura-
tion (as number of days or
number of weeks)

Population-level reporting
- Mean only or sum of du-
ration + a metric of spread
(such as standard deviation
or error)

Individual-level reporting -
actual date ranges or num-
ber of days for each indi-
vidual included in the pa-
per.

Location
Reproducibility

No reporting - includes
cases when authors report
at least ## locations with-
out a maximum

Population-level reporting -
mean only or sum of num-
ber of locations.

Population-level reporting -
Mean only or sum of num-
ber of locations + a metric
of spread (such as standard
deviation or error)

Individual-level reporting
- actual number of times
each individual was located
during the study.

reported’’. We also documented whether the study used multiple regular tracking regimes
(e.g., tracking once per day in the summer months, and only weekly during the winter).

We coded each article’s adherence to two key reporting characteristics that can impact
space-use and home range estimates: tracking time duration, and number of fixes. Tracking
time duration differs from study duration and refers to the period of time over which
researchers tracked an individual. In contrast, study duration is the overall study period,
and thus represents a study-level characteristic, while tracking duration represents an
individual-level characteristic. We scored articles on a scale of zero to three. For example,
zero indicated reporting only study duration/study-level number of fixes (e.g., ‘‘...tracked
individuals from 2018-01-01 to 2018-09-23...’’ or ‘‘...collected a total of 356 fixes...’’) while
failing to report the exact data quantity per individual (See Table 1 for details).

For each included study, we also recorded the method for estimating home range
area. Kernel Density Estimation is a common technique but is highly dependent on the
smoothing factor (h) selection method. To address this, we recorded the method used
to determine the h-value for KDEs (when reported). We recorded whether the authors
reported a movement metric based on time (e.g., mean daily displacement), as field
sampling regime can also affect such metrics. Finally, we recorded if the study attempted to
‘‘validate’’ the home range estimation—i.e., included any form of analysis that assessed the
relationship between number of locations and the home range area estimate (e.g., linear
regressions, bootstrapped asymptotes). Each source was assigned a primary reviewer from
the author team; however, any ambiguities in how a source should be coded was flagged
and reviewed by all authors to remain consistent.

Exploratory model
We used a Logistic Bayesian Regression Model to explore the relationship between a
reptile’s body mass and the likelihood of them being studied. We used the log10 body
mass data compiled by Meiri et al. (2021) and matched it to the study species within our
literature search. We manually corrected 25 names that had changed or had been misspelt
in our dataset. We inserted missing body mass data for Platysternon megacephalum with
results from Sung, Hau & Karraker (2014) suggesting an average body mass of 393.3 g.

We used the resulting log10 bodymass values to predict a binary of whether a species was
studied (Bernoulli distribution), and allowed both gradient and intercept to vary based on
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order: studied∼1 + log10mass + (1 + order | order). We excluded orders Rhynchocephalia
and Squamata (Amphisbaenia) because of the low species richness and zero studied species
respectively, and (sub-)families Hydrophiinae, Dermochelyidae, and Cheloniidae as they
are predominantly marine (final model n= 11,037 species). We implemented weakly
informative priors cauchy(location = 0.1, scale = 3) for the log10mass coefficient and
cauchy(location = 0, scale = 1) for the standard deviation between orders.

We ran themodel using fourMCMC chains each with 5000 iterations and 2000 warmup,
then thinned by a factor of two. To achieve convergence, we increased the adaptive delta
to 0.999 and maximum tree depth of 15. We assessed model convergence using r̂ values
∼1 and visual examinations of autocorrelation and trace plots.

Data and software availability
We used R v.3.6.3 (R Core Team, 2020) and RStudio v.1.4.1029 (RStudio Team, 2020) to
summarise all data. We summarised data with dplyr v.1.0.2 (Wickham et al., 2020), raster
v.3.4.5 (Hijmans, 2020), forcats v.0.5.0 (Wickham, 2019a), reshape2 v.1.4.4 (Wickham,
2007), stringr v.1.4.0 (Wickham, 2019b), and tidybayes v.2.3.1 (Kay, 2020) packages.
We ran Bayesian Regression Models using brms v.2.14.2 (Bürkner, 2017; Bürkner, 2018)
and rstan v.2.21.2 (Stan Development Team, 2020). We visualised data with cowplot v.1.1.0
(Wilke, 2019), ggplot2 v.3.3.2 (Wickham, 2016), ggpubr v.0.4.0 (Kassambara, 2018), ggrepel
v.0.8.2 (Slowikowski, 2018), ggridges v.0.5.2 (Wilke, 2018), ggtext v.0.1.1 (Wilke, 2020), and
scico v.1.2.0 (Pedersen & Crameri, 2018).

We have included all data, summary code, and model output at Zenodo: (http:
//doi.org/10.5281/zenodo.4303643). Data file ‘‘reptileHRReview_References.csv’’ includes
the results of the stages of the literature review alongside article information; the data file
‘‘reptileHRReview_LiteratureReview.csv’’ contains the raw data from the literature review
process; metadata file ‘‘reptileHRReview_Metadata.csv’’ includes full descriptions of all
columns in both main data files. An additional file from Reptile Database (Uetz, Freed &
Hošek, 2020; accessed 2020-04) ‘‘reptileChecklist_2020_04.csv’’ includes the information
used for genus- and clade-based summaries. We created the reptile diversity using Global
Assessment of Reptile Distributions (GARD) data (representing 99% of reptile species’
distributions at time of its publication [10,064 species]; Roll et al., 2017) and functionality
from sf v.0.9.6 (Pebesma, 2018) and fasterize v.1.0.3 (Ross, 2020) packages. We counted
terms used and produced the word cloud using pdftools v.2.3.1 (Ooms, 2019) and quanteda
v.2.1.2 (Benoit et al., 2018).

RESULTS
Data collection
From 1,028 unique articles returned from the literature searches (Fig. S1), our exclusion
criteria produced a final sample of 290 reptile spatial ecology studies consisting of 302
tracking subsets (accounting for multiple tracking protocols, i.e., GPS and VHF, within
each study) involving 7,861 individual animals. However, one study failed to report
the number of animals tracked. The majority of studies used VHF telemetry devices
(277), with 22 using GPS, and a further three instances of ultrasonic or satellite tracking.
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Regardless of the tracking method used, tracking frequency varied dramatically (Fig. 1):
ranging from 480 (24 if automated VHF is excluded) to 0.0328 tracks per day for VHF,
and 144 to 0.143 per day for GPS. In other words, tracking 0.0328 times per day is
equivalent to tracking approximately once a month (i.e., 1/30.5), and 0.143 times per
day is the equivalent to tracking once per week (i.e., 1/7). Eighty-eight tracking subsets
(29.4%) had consistent tracking frequencies throughout the study (i.e., minimum and
maximum tracking frequency are the same, with no seasonal variation or multiple tracking
regimes), and 65 tracking subsets had a tracking frequency of at least once per day (i.e.,
minimum tracking frequency greater than one throughout the study period). The number
of tracks/fixes per day was not always reported (n= 26; 9%), or reported ambiguous
maximum and minimum number of tracks per day (e.g., ‘‘bi-weekly’’, ‘‘at least’’); this
number increases to 78 tracking subsets that failed to clearly report one extreme of the
tracking frequency. Such reporting is key when measurements of movement rate (or
any metric that incorporates time) are calculated, and 190 out of 290 studies reported a
movement metric.

Despite the extensive field effort expended tracking 7,861 animals, we identified serious
gaps in basic reporting that undermine understanding basic study characteristics. The gaps
in reporting appear relatively consistent over the 20 years reviewed (Fig. 2). In addition
to the 26 instances of incomplete tracking frequency data (Fig. 2A), 162 (56%) studies
provided very limited or missing descriptions of tracking duration (135 [47%] scored 0, 27
[9%] scored 1; Fig. 2B), and number of fixes obtained (95 [33%] scored 0, 52 [18%] scored
1, sum 147 [51%]; Fig. 2B). Reporting standards of 2 and higher (i.e., likely sufficient to
enable meta-analyses inclusion) were reached in 128 [44%] studies for durations and 143
[49%] for the number of fixes. Location reporting was further hindered by ambiguous
terms, we found 34 different terms describing how many times an animal was tracked:
studies largely used terms stemming from locat*, but even within a single study we often
foundmultiple terms used to describe when researchers located animals (Fig. S2). Providing
raw data could mitigate reporting deficiencies; however, we found only 24 [8%] studies
included links to external data and only 4 [1% of all studies] of those links led to raw
tracking data.

Estimation methods
Between 2000–2019 the number of studies per year increased from 6 in 2000 to 18 in 2019,
with a low of 4 in 2001 and a peak of 25 in 2017 (Fig. 3A). Minimum Convex Polygons
(MCP) and Kernel Density Estimations (KDE) use has dominated reptile home range
studies for the past 20 years (272/290 studies; Fig. 3B) and were present in over 75% of
studies each year (Fig. 3B). Frequently, studies include estimations from both methods,
and rarely use KDEs without including MCPs (Fig. S3). A minority of studies (n= 19)
used ‘‘other’’ methods without pairing to estimations via MCPs and KDEs. These methods
included: alpha-hull methods, harmonic means, linear home ranges, Brownian Bridge
kernels among others (for full list see Table S1). Of all other methods listed, only dynamic
(and standard) Brownian Bridge Movement Models directly incorporate movement to
estimate space-use (i.e., movement models).
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Figure 1 Reported number of tracks per day. (A) Density and boxplot plot showing the distribution of
all reported tracking frequencies (minimums and maximums), x-axis is square-root transformed. Shaded
grey area highlights instances of< 1 track per day. Text labels show the minimum, median, mean, and
max numbers of tracks per day. (B) The variation per study between the maximum and minimum track-
ing frequencies, provided both are< 1 per day. Both plots exclude all unreported tracking frequencies.

Full-size DOI: 10.7717/peerj.11742/fig-1

Studies using MCPs largely made use of high % contours (100% and 95%; Fig. S4).
KDEs used a greater diversity of contour values (5 to 100%), but with clear concentration
towards 95% and 50%. Studies more frequently (n = 97/270 studies using MCPs) failed
to report the contour used with MCPs than other methods, potentially connected to the
assumption that MCPs default to 100%.

For studies usingKDEs, we found 14 smoothing factor selectionmethods, but researchers
primarily used Least Squares Cross-validation (LSCV; 73/159; Fig. S5). Similar to basic
reporting, we show that 27 (17.4%) studies failed to report a smoothing factor, either by
omission or by only stating the ‘‘default’’ for a software.

Geographic and taxonomic biases
The United States of America is a clear hotspot where 133 of 290 studies were conducted.
All other countries are dramatically lower (<8 studies, 30 countries with a single study),
with only Australia (35), Canada (22), and South Africa (12) breaking the trend. Despite
high reptile diversity, Africa exhibited a dearth of reptile home range papers (Fig. 4).

The 7,861 tracked individuals, 302 tracking subsets, and tracking subset sample sizes
were not split evenly across the major clades of Crocodylia (mean individuals per subset=
11.1 ± 1.62), Serpentes (23.6 ± 1.71), Sauria (28.4 ± 3.53), and Testudines (35.4 ± 6.80;

Crane et al. (2021), PeerJ, DOI 10.7717/peerj.11742 8/25

https://peerj.com
https://doi.org/10.7717/peerj.11742/fig-1
http://dx.doi.org/10.7717/peerj.11742#supp-5
http://dx.doi.org/10.7717/peerj.11742#supp-6
http://dx.doi.org/10.7717/peerj.11742


Figure 2 Reporting scores over time. (A) Whether the study fully reported tracking frequency (complete
in blue versus incomplete in red). (B) Percent of studies scoring 0 through 3 on location and duration re-
porting, where a score of 3 is the most complete reporting.

Full-size DOI: 10.7717/peerj.11742/fig-2

Figure 3 Changes in the field from 2000 to 2019. (A) Number of articles over per year and the telemetry
devices used: dark grey= only VHF used, middle grey= GPS was used exclusively or in conjunction with
VHF, light grey= other device used (ultrasonic and satellite). (B) The percentage of studies using Min-
imum Convex Polygon (MCP), Kernel Density Estimations (KDE), both or other estimation methods.
‘‘Other’’ only includes studies that did not use either MCPs or KDEs. Lower text labels highlight the year
select papers were published aiming to guide, or enable new, space-use estimation.

Full-size DOI: 10.7717/peerj.11742/fig-3
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Figure 4 Number of studies undertaken in each country. Colour scale is detailed in the insert density
plot bottom right [blues indicating more studies, reds indicating fewer studies, grey indicating zero stud-
ies], showing the distribution of per country study counts. Count of studies is shown on a log scale to help
differentiate between countries with fewer studies, a diverging colour scheme was selected to highlight the
high-count outliers. Smaller territories are highlighted with a label denoting the number of studies. Insert
map bottom left, shows the distribution of reptile species globally, ranging from zero species (black) to
182 species (yellow); the heatmap was generated using GARD data (Roll et al., 2017).

Full-size DOI: 10.7717/peerj.11742/fig-4

Figure 5 Density and box plots showing the distribution of sample sizes (tracked individuals)
per study by clade. Species names highlight the top two outlying sample sizes for clades other than
Crocodylia.

Full-size DOI: 10.7717/peerj.11742/fig-5

Fig. 5). Serpentes was themost studied clade and with themost tracked individuals, whereas
Crocodylia was the lowest. However, in terms of percentage of genera studied, Crocodylia
leads with 44.4% (4/9; Testudines 27/94, 28.7%; Serpentes 40/522, 7.66%; Sauria 28/564,
4.96%).
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Figure 6 Fitted model values split by group effect of order, flanked top and below by the distribution
of studied and unstudied species log10 bodymass (jittered on the y-axis).

Full-size DOI: 10.7717/peerj.11742/fig-6

Overall, of the 1,186 terrestrial reptile genera (Uetz, Freed & Hošek, 2020; accessed
2020-04), 99 (8%) have been tracked (but there are genera untrackable with current
telemetry equipment, e.g., Amphisbaena and Ramphotyphlops). Two genera (Crotalus &
Gopherus) stand out having been studied 22 and 23 times (Fig. S6), whereas 45 genera had
only a single study.

The Bayesian Regression Model successfully converged, revealing a very low base chance
of a species being studied (and detected in the literature review): 0.06% (CrI 0.02 –0.18%).
A species study chance increased at a population level with increased log10 body mass
(βlog10mass = 1.40, 95% median HDI CrI 1.23–1.58; Fig. 6); however, the overall model
fit was poor (conditional R2 0.115, and marginal R2 0.113). While there were differences
among the orders, the direction andmagnitude of the differences was neither unambiguous
nor large (Credible intervals all overlapped zero).

DISCUSSION
We identified key issues limiting study comparability. Study design decisions regarding
tracking frequency and duration are critical considerations when attempting to produce
biologically relevant space-use estimates (Girard et al., 2002; Börger et al., 2006; Silva et al.,
2020). These decisions determine total individual sampling effort; an individual with 12
locations over a single day is unequal to one with 12 locations over an entire year. Reporting
solely the study duration (e.g., stating that tracking occurred between X and Y date) would
then obscure individual variation—further hindering our ability to generalise across the
study population. By reporting at the individual level, researchers can highlight potential
sources of heterogeneity between studies (e.g., tracking an animal once every week while
tracking others twice a week would hinder daily movement comparisons) (Alexander &
Maritz, 2015; Riotte-Lambert & Matthiopoulos, 2019). As we found a wide range of tracking
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frequencies throughout reptile spatial ecology studies (and gaps in reporting), it limits our
ability to conduct large inter-study comparisons and undermines inter-study comparison
validity.

Our review also reveals major biases in the study of reptile home ranges. Geographically,
nearly 50% of studies originated from a single country, the United States of America. We
found a stark mismatch between reptile diversity and reptile home range study locations
(Roll et al., 2017), reflecting similar gaps seen in reptile abundance studies (Doherty et al.,
2020); in particular, the Middle East and Central Africa. Taxonomically, we observed less
severe biases, but should still be considered in evaluating the patterns in the available data.
Only 8% of genera have been studied and a relatively small number of genera dominate
the available reptile spatial ecology data (e.g., Gopherus, Crotalus, Pituophis). Although the
model fit was poor, our results show a greater chance that larger (by log10 mass) species
are studied. The more frequent tracking of larger species likely stems from limitations
surrounding biotelemetry device size to body mass ratio, and attachment/implantation
methods required to track species with fossorial and arboreal habits. Efforts to synthesise
reptile home range or movement must recognise that any results may be biased towards
patterns in larger temperate western hemisphere species, rather than global trends. Global
syntheses may be inhibited by the drastic differences in seasonal climate between well-
studied temperate areas and neglected tropical regions, which is likely key to reptiles as
ectotherms (Shine & Madsen, 1996). If the exceptional value and extent of reptile diversity
in tropical areas (De Miranda, 2017; Roll et al., 2017) is underappreciated due to lack of
data or representation, global conservation strategies may inadvertently tailor to larger
temperate western hemisphere species.

Many of the issues that we revealed in the reptile spatial ecology literature can be
mitigated with greater transparency, adopting open science and reproducible analyses (i.e.,
code-based analysis avoiding language ambiguities by comprising, and describing, the exact
analytical procedure performed; (Ince, Hatton & Graham-Cumming, 2012;Archmiller et al.,
2020). Open science presents a vital resource for replication efforts and can facilitate better
meta-analyses. It also benefits the original researchers by increasing citations, boosting
publication chances, and creating more potential collaborations (Piwowar & Vision, 2013;
Markowetz, 2015; Allen & Mehler, 2019). The disparity between reptile data and other taxa
onMoveBank (a prominentmovement data repository) re-emphasizes our review findings.
When searching either ‘‘reptilia’’ or ‘‘reptile’’, 24 reptile studies have available movement
data onMoveBank as of 2020-02-12, and only 11 of those studies focus on terrestrial species
out of over 6,000 available studies. Ecology journals (and herpetology journals especially;
Marshall & Strine, 2021) should redouble efforts to enforce data availability statements
(Roche et al., 2015) and counteract the reluctance to biotelemetry data sharing expressed
by late career researchers (Campbell, Micheli-Campbell & Udyawer, 2019), making data
availability the default and refusing to accept ‘‘on request’’ statements (Aalbersberg et al.,
2018). K’[ Researchers can make use of free data repositories (movement specific like
MoveBank, or generic like Zenodo or OSF) to ease this process. We hope the opening of
reptile movement data can facilitate broader studies similar to those undertaken in avian
and mammalian fields (e.g., Tucker et al., 2019; Noonan et al., 2020).
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Researchers often justify using KDEs and/or MCPs to compare with the wider reptile
spatial ecology literature. However, methodological choices in reptile space-use studies
hinder inter-study comparisons, as KDEs andMCPs are sensitive to differences in sampling
effort (e.g., number of locations, tracking duration and frequency) (Mitchell, White &
Arnold, 2019; Silva et al., 2020). Reptile studies also used a wide range of smoothing factors
for KDEs, which can also result in considerable home range over- or underestimations
(Bauder et al., 2015; Silva et al., 2020). For example, two widely used smoothing factors,
href and LSCV, produce dramatically different area estimations. Failure to report or account
for smoothing factors is thus a major concern, as it would significantly alter meta-analysis
patterns. Although Row & Blouin-Demers (2006) suggested MCPs over KDEs for home
range size comparisons across groups or time periods, MCP and KDE comparability is
unreliable rendering their use generally inappropriate for most ecological studies (Nilsen,
Pedersen & Linnell, 2008; Silva et al., 2020).

There is a growing body of work demonstrating the versatility of newer analytical
methods (Noonan et al., 2019; Silva et al., 2020; Silva et al., 2021), and how they can be
applied to the coarser resolution radio-telemetry data and the particulars of reptile
movement (e.g., zero-inflated step lengths arising from long and frequent periods
when the animal is stationary; Averill-Murray, Fleming & Riedle, 2020; Hromada et al.,
2020; Silva et al., 2020). Reptile spatial ecology so far has largely failed to capitalise on
the wealth of analytical options available, namely integrating movement information
explicitly into estimations of space-use. Unlike traditional estimation methods (KDEs and
MCPs), movement-based area estimation models do not operate under the assumptions
breached by tracking data (independence of points) and guard better against under-
and overestimation (Fleming & Calabrese, 2017; Silva et al., 2020). One of the common
solutions to autocorrelation is the thinning of data; this procedure is inherently wasteful
and inefficient, defeating the purpose of collecting high temporal-resolution data and
reducing the biological relevance of telemetry datasets (Fleming et al., 2015; Calabrese et al.,
2021). With low temporal-resolution data (typical of VHF data), analytic approaches will
not necessarily reveal the correct home range patterns and need to be applied with caution;
in these cases, it may be necessary to reconsider the research questions or re-evaluate
study design for additional data collection. However, low sample sizes do not immediately
exclude the use of newer methods; although typically designed to handle high volumes of
data, AKDE will account for low sample sizes and can be used in conjugation with VHF
data to obtain home range area estimates (Fleming et al., 2019). Similarly, dBBMMs can
estimate movement pathways with low-volume VHF reptile data (Silva et al., 2020).

Conceptualising home range as within sample versus beyond sample space-use requires
distinguishing between occurrence distribution versus range distributionmethods (Fleming
et al., 2015;Horne et al., 2019; Fig. 7).While occurrence distributions (e.g., dBBMMs) allow
us to answer research questions regarding the movement trajectory of an animal (and its
confidence region), range distributions (e.g., AKDEs) consider the processes underlying
animal movements and long-term space-use (Horne et al., 2019). Some research questions
investigated in the reptile home range literature are actually targeting within sample space-
use, requiring no extrapolation beyond the sampling period. In many cases, the sampling
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Figure 7 A breakdown of the two complimentary conceptualisations of animal space-use.Displayed
alongside are examples of the 99% contour derived from dynamic Brownian Bridge Movement Models
(Kranstauber, Smolla & Scharf, 2016) and autocorrelated Kernel Density Estimators (Calabrese, Fleming
& Gurarie, 2016; Fleming & Calabrese, 2020). Data used is fromMarshall et al. (2020) and can be found in
File S4.

Full-size DOI: 10.7717/peerj.11742/fig-7

duration was too short to confidently identify range stability, which is a prerequisite for
beyond sample home range estimates. To help unify the terminology used in reptile spatial
ecology studies we draw attention to definitions from existing literature and reiterate them
in Fig. 7.

Ambiguous language further compounded reporting issues. Failing to report estimation
methods (or reporting with ambiguous or ill-defined acronyms) and associated smoothing
parameters completely undermines computational reproducibility and inter-study
comparability. Relatively few studies failed to attempt reporting their tracking frequency;
many of the 79 failures to determine minimum or maximum tracking frequency were a
direct result of ambiguous language, such as using words with multiple definitions (e.g.,
‘‘bi-weekly’’) or using imprecise summaries (e.g., ‘‘at least’’). We also found semantic
ambiguity when describing locations. Studies used a wide range of terms to refer to
locations, relocations, fixes, datapoints, etc., yet are selecting contrasting or overlapping
definitions for these terms. The key distinction for the definition of location is whether it
refers each time researchers documented the animal’s spatial position or whether it refers
only to a unique spatial position (a movement from the previously recorded location)
used by the study animal (often referred to as ‘‘relocations’’). Standardising and unifying
terminology is essential for creating widely useful methods and comparable databases
(Schneider et al., 2019), when in doubt researchers can explicitly define how they are using
a given term in the study.

Answering specific questions requires appropriate protocols and, to draw broad
inferences among a single study, those protocols must remain consistent. Between study
comparisons also require consistency (or at least clear reporting on inconsistencies). The
compound effect of geographical, taxonomical, and methodological biases undermine
robust generalisations when ignored. Recent macroecological investigations did not
explicitly model key methodological variables which affect MCP and KDE home range
area estimates (e.g., tracking duration, number of locations, KDE bandwidth selection)
(Slavenko et al., 2016; Todd & Nowakowski, 2021). While the general patterns described in
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such studies (e.g., home range area increasing with body mass) likely remain unchanged,
not explicitly accounting for varying tracking regimes and different estimation methods
(or variation within single estimation method) may obscure more nuanced patterns
or differences in space-use. However, both MCPs and KDEs should be avoided when
comparing studies for global meta-analyses because of sensitivity to sampling design;
whereas methods such as AKDEs explicitly account for movement data biases (Noonan et
al., 2020).

Researchers should aim to explore the sensitivity of the estimations to researcher
choices (Signer & Fieberg, 2021), while ensuring that their method suits their question.
Home range estimation is not always the correct tool to answer short-term space-use or
movement-related questions. In these cases, methods such as step selection analysis (Avgar
et al., 2016), state-space (Patterson et al., 2008) or hidden Markov models (McClintock &
Michelot, 2018) are more appropriate to infer animal movement, behaviour, and resource
selection from telemetry data (Hooten et al., 2017). These methods still benefit from
accurate methodological reporting and from researchers adopting Open Science principles,
as sampling design similarly impacts which methods can apply to a given dataset (Quick et
al., 2019).

To facilitate detailed reporting of tracking datasets, we have supplied an example report
based on an existing tracking dataset (Marshall et al., 2020; Fig. S2). This example aims to
provide a bare-bones foundation for transparent reporting of sample size, study duration,
number of datapoints, as well as important aspects used to describe the tracking regime:
namely plots that describe individual tracking durations (while highlighting deviation
from proposed tracking protocols), and distribution of time lags between tracks (as a
more complete way of describing a tracking regime and the tracking consistency). We have
supplied the code (as an .Rmd file, Fig. S3) and data (as a .csv, Fig. S4) used to generate the
report as supplementary material.

CONCLUSION
The past 20 years have seen a growing number of reptile home range studies and continued
reliance on traditional but outdated methods, Kernel Density Estimations (KDEs) and
Minimum Convex Polygons (MCPs), for home range and space-use estimations, despite
the availability of more appropriate methods. Scientific conventions can be slow to shift,
and often require substantial interdisciplinary research to move towards better alternatives
(Smaldino & O’Connor, 2020). We appeal to researchers focusing on reptiles to engage
with appropriate statistical methods and Open Science principles, thus maximising the
value of hard-won field data. The best way to facilitate broader engagement is to adopt
more transparent practices by sharing and fully reporting collected data. Increasing
reproducibility and availability of datasets allows researchers to explore beyond home
range estimation. Ultimately, we need to match potential research questions to sampling
design and the appropriate statistical analyses, achieving a better understanding of both
animal movement behavior and their long-term spatial requirements.
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