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Abstract

We analyze selection into screening in the context of recommendations that breast cancer 

screening start at age 40. Combining medical claims with a clinical oncology model, we document 

that compliers with the recommendation are less likely to have cancer than younger women who 

select into screening or women who never screen. We show this selection is quantitatively 

important: shifting the recommendation from age 40 to 45 results in three times as many deaths if 

compliers were randomly selected than under the estimated patterns of selection. The results 

highlight the importance of considering characteristics of compliers when making and designing 

recommendations.

Whether and when to recommend screening for potential diseases is a highly controversial 

and evolving policy area, with active academic research.1 Much of the debate—both in 

public policy and in academia—centers on the causal impact of screening for a typical 

individual covered by the recommendation. Estimating this causal impact is challenging for 

several well-known reasons. First, there are the usual challenges to causal inference. Second, 

many of the potential costs and benefits of screening are difficult to measure and to 

monetize.2 In this paper, we highlight another important—and, we believe, overlooked—

challenge in analyzing and designing screening recommendations: the typical individual 

* leinav@stanford.edu. 
1For example, Welch, Schwartz, and Woloshin (2011) argue that although many medical conditions—such as high blood pressure, 
elevated blood glucose levels, low bone density, and high cholesterol—benefit from treatment, there has been a trend over time 
towards widespread use of medical screening tests and increasingly low diagnostic thresholds that recommend treating patients for 
whom the benefits from treatments are quite small. By contrast, Maciosek et al. (2010) review these same screening efforts and 
conclude that they save a large number of lives at relatively low cost.
2The costs and benefits of screening include monetary costs, clinical outcomes, discomfort from unnecessary procedures, and 
psychological effects induced by the screening process, including pre-screening apprehension and anxiety due to false positives (e.g., 
Brett et al. 2005; Nelson et al. 2009; Welch and Passow 2014; Ong and Mandl 2015; Welch 2015).
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covered by a recommendation may be very different from the typical individual who 

responds to the recommendation. As a result, the estimated impact of screening for a 

randomly-selected individual may be quite different from the impact for an affected 

individual.

We explore this distinction in the context of the current controversy over whether to 

recommend annual mammograms for women starting at age 40. Results from randomized 

trials have consistently failed to show statistically significant mortality benefits of 

mammograms for women in their 40s. In 2009, these results prompted the US Preventive 

Services Task Force (USPTF) to change its recommendation for routine mammograms to 

begin at age 50 rather than at age 40. This change generated substantial public controversy 

(Kolata 2009; Saad 2009; Berry 2013).

This debate has focused on the costs and benefits of mammograms for typical (“average-

risk”) 40-year-old women, with little attention paid to what types of women respond to a 

screening recommendation and whether the costs and benefits for them may differ from the 

average woman. To investigate the type of women who respond, we draw on two primary 

data sources. The first is insurance claims data on mammogram choices and their results 

(negative, false positive, or true positive) for privately-insured women aged 35–50 from the 

Health Care Cost Institute (HCCI). The second is cancer registry data, from the National 

Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) database, on the 

size and stage of detected tumors for women aged 35–50 who were diagnosed with breast 

cancer. We supplement some of the descriptive analyses with additional information from 

the Behavioral Risk Factor Surveillance System Survey (BRFSS), which allows us to 

observe additional health behaviors and demographics of women who do and do not receive 

mammograms at various ages.

The visual evidence shows sharp and pronounced changes in behavior and outcomes at age 

40. There is a 25-percentage-point jump in the annual mammogram rate at age 40, from 10 

percent to 35 percent of women. We then compare characteristics of the women who 

respond to the recommendation for a mammogram (i.e. “compliers” in the terminology of 

Angrist, Imbens, and Rubin 1996) to characteristics of always-takers (i.e. women who 

choose mammograms even in the absence of the recommendation, which is before age 40). 

We find that compliers have a lower incidence of cancer than always-takers: there is a 

roughly 30 percent decline (from 0.84% to 0.56%) in the share of screened women 

diagnosed with cancer (i.e. true positives) at age 40. Given the high rate of false positives—

about 90 percent of initial positive mammograms turn out to be false positives—the sharp 

increase in the mammogram rate at age 40 translates into a substantial increase in the 

number of women experiencing false positives, from about 10 per thousand women to about 

40 per thousand women. This is consistent with false positives being a key concern that 

motivated moving the recommended age of beginning mammography from 40 to 50 (Nelson 

et al. 2009). Moreover, among those diagnosed with cancer, the registry data show a sharp 

decline in the average tumor’s stage and size starting at age 40, compared to earlier ages. For 

example, the share of detected tumors that are in a late stage (invasive tumors) as opposed to 

early stage (in-situ tumors) falls by about 6 percentage points (or 7 percent) at age 40.
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These descriptive results indicate that women who respond to the recommendation for a 

mammogram have lower risk of cancer than those who seek mammograms in the absence of 

the recommendation. For non-cancer characteristics, we can also compare compliers to 

never-takers (women who do not get mammograms even once the recommendation is in 

effect). We find that, relative to never-takers, compliers are more likely to undertake other 

types of recommended preventive care, such as cervical cancer screening tests and flu shots. 

This pattern is consistent with findings that when a health behavior is recommended, those 

who comply with the recommendation tend to exhibit other positive health behaviors (Oster 

2020). It also echoes the observation that women who comply with assignment to 

mammograms in an RCT setting are healthier than never-takers (Kowalski 2019).3

To assess the implications of these findings and to quantify costs and health outcomes under 

various counterfactual selection scenarios, we specify a model of mammogram demand that 

is a function of a woman’s age, her (undiagnosed) cancer type (no cancer, in-situ, or 

invasive), and whether or not a mammogram is recommended at her age. We estimate the 

model by method of moments, using two key inputs. First, we leverage our data on the 

observed patterns of mammogram decisions and mammogram outcomes (specifically, 

cancer type) for women by age. Second, we bring in a clinical oncology model of the 

underlying rate of onset of breast cancer by age, as well as the cancer’s clinical progression 

in the absence of detection and treatment.

The clinical model allows us to estimate the cancer characteristics of never-takers. In the 

absence of a clinical model, these cancer characteristics are inherently difficult (or 

impossible) to observe: cancer incidence is not observed in the non-screened population, and 

almost all detected cancer is treated immediately upon detection. The clinical model of 

breast cancer incidence and progression is drawn from a large-scale, coordinated project 

funded by the National Cancer Institute (NCI) involving seven different research groups 

(Clarke et al. 2006); since there is naturally some uncertainty about the underlying model, 

we confirm that our main findings are not sensitive to a range of alternative assumptions 

about the onset and distribution of cancer type by age.

The estimates from our model indicate that women who would select into mammograms in 

the absence of the recommendation (“always-takers”) have much higher rates of both in-situ 

and invasive cancer than the general population. We refer to this as “positive selection” into 

mammograms (positive with respect to cancer incidence). However, our estimates indicate 

that the women who select into mammograms due to the recommendation (“compliers”) are 

much less likely to have invasive cancer—and are no more likely to have in-situ cancer—

than women who do not select into mammograms (“never-takers”). The relative degree of 

selection pre- and post- the age-40 recommendation is identified directly from our data; the 

clinical model of underlying cancer incidence is needed to assess whether the observed 

selection either pre- or post-age 40 is positive with respect to the underlying population, 

whose cancer incidence is not directly observed.

3Because the context is naturally quite different, one might expect selection into compliance with RCT assignment to be different than 
selection into compliance with a recommendation. Indeed, never-takers comprise only 5% of the population in the context of Kowalski 
(2019), but are approximately 60% in ours.
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We apply our model and its estimates to illustrate how the nature of selection in response to 

the recommendation affects the impact of the recommendation. Specifically, we estimate 

that shifting the recommendation from age 40 to age 45 results in more than three times as 

many deaths—at similar cost savings—if we assume that compliers with the 

recommendation are randomly drawn from the population rather than drawn based on the 

estimated selection patterns. We view this as a particularly instructive counterfactual, since 

assuming that the women who respond are randomly drawn from the population is 

conceptually similar to using estimates of the impact of mammography from randomized 

experiments (with full compliance). Because in practice those who respond to the 

recommendation have a much lower rate of invasive cancer than the underlying population, 

the mortality cost of moving the recommendation to age 45 is lower than under random 

selection. Conversely, our model also illustrates that if it were feasible to target the 

recommendations to those with higher rates of cancer, the mortality cost of moving the 

recommendation from age 40 to 45 could be substantially larger than even the random 

selection assumption would imply. This is consistent with recent interest in reducing over-

diagnosis by developing targeted, precision screening for women at higher risk (Elmore 

2016; Esserman, Shieh, and Thompson 2009).

Our paper relates to several distinct literatures. Most narrowly, it speaks to the large body of 

work on mammograms, which we describe in the next section. But beyond the specific 

application of mammograms, it speaks to a broader health policy debate about whether and 

when to recommend medical screening tests (e.g., Welch, Schwartz, and Woloshin 2011). A 

central challenge that has limited empirical research on this topic is that—in the datasets 

typically available to researchers—the testing decision is observed but the outcome of the 

test is not. An attractive feature of our setting is that the outcome of the test (i.e. cancer 

incidence and type of cancer) is measurable both in claims data and in registry data. In this 

sense our analysis is similar in spirit to Abaluck et al. (2016), who are able to measure the 

outcome of imaging tests for pulmonary embolism in claims data, which they use to 

investigate whether and when that imaging test is being “overused”. Both our paper and 

Abaluck et al. (2016) share a common feature with the racial profiling literature on stop and 

frisks (Anwar and Fang 2006; Persico 2009): the object of interest is only observed 

conditional on an action. This raises an empirical challenge for analyzing how the action (in 

our case, screening) relates to the underlying object of interest (in our case, the underlying 

incidence of cancer and cancer types). In our setting, we overcome this empirical challenge 

by combining two insights. First, the recommendation at age 40 serves as an exogenous 

source of variation in the screening rate, allowing us to estimate the cancer type of the 

marginal person affected by the recommendation. Second, the clinical oncology model of 

cancer incidence and growth allows us to use the observed moments (namely, outcomes 

conditional on screening under different regimes) to model outcomes under counterfactual 

regimes.

More broadly, our paper speaks to the value of complementing reduced-form estimates of 

causal effects with economic models of behavior, and particularly of selection. Reduced-

form methods—both quasi-experimental and randomized experiments—aim to estimate 

causal effects by shutting down any endogenous choices. In practice, however, most policies 

involve an element of choice, so that the ultimate impact of the policy depends not only on 
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the distribution of causal treatment effects but also on which women select into treatment. In 

this sense, our paper relates broadly to the literature on Roy selection, or selection on gains. 

In the health care context specifically, Einav et al. (2013) emphasize that the impact on 

health care spending of offering a high-deductible health insurance plan may be very 

different than what would be estimated from random assignment of high-deductible plans 

across individuals, because the types of people who choose high-deductible plans can have 

very different health care utilization responses to cost sharing than a typical individual. Our 

analysis speaks to a similar issue, in the context of evaluating recommendations for disease 

screening.

The rest of the paper proceeds as follows. Section I summarizes the relevant institutional 

details of our empirical context (breast cancer and mammography), and describes the 

existing evidence regarding the effect of mammograms and of various policy interventions 

that are designed to increase mammography rates. Section II describes our data and presents 

descriptive results. Section III presents our model of mammogram choice and describes how 

we estimate it using the observed descriptive patterns together with a clinical oncology 

model. Section IV presents the model estimates and discusses their implications for the 

impact of changing the recommended age of beginning mammography under both observed 

and counterfactual selection patterns. The last section concludes by using our findings to 

speculate about possible policy implications more broadly.

I. Empirical context

A. Breast cancer

The earliest stages of breast cancer typically produce no symptoms and are not detectable in 

the absence of screening technologies.4 As breast cancer progresses, it can spread within the 

breast, to adjacent tissues, to adjacent lymph nodes, and to distant organs (known as 

metastases). In clinical settings, tumors are classified according to the size of the tumor, the 

extent to which it has spread to lymph nodes, and whether it has metastasized. Public health 

research typically relies on a standardized classification—namely, the SEER classification 

system—which includes four stages: in-situ, local, regional, and distant; the last three stages 

are collectively referred to as “invasive” tumors.

Our analysis focuses on the distinction between in-situ and invasive tumors, a distinction 

that has been a key focus of the policy debate around mammography recommendations. In-

situ refers to abnormal cells that have not invaded nearby tissues, instead remaining confined 

to the ducts or glands in which they originated. Some but not all in-situ tumors will become 

invasive. Expected survival time varies greatly by stage at diagnosis: women who are 

diagnosed with localized breast cancer are 99% as likely as cancer-free women to survive to 

5 years after diagnosis, compared to 85% for regional breast cancer, and 27% for distant-

stage breast cancer.5 Within a stage, survival also varies with tumor size. For example, 

among women with regional disease, 5-year survival (again, relative to comparable cancer-

4Unless otherwise noted, the discussion in this section draws from the American Cancer Society (2017a).
5These tabulations are drawn from US SEER cancer registry data from 2007–2013, as in American Cancer Society (2017a).
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free women) is 95% for tumors smaller than 2 centimeters in diameter, 85% for tumors of 2–

5 centimeters, and 72% for tumors greater than 5 centimeters.6

B. Mammography

Asymptomatic breast cancer can be detected by a mammogram, which is a low-dose X-ray 

procedure that allows visualization of the internal structure of the breast. If an abnormality is 

detected on a routine screening mammogram, the woman is typically called back in for a 

diagnostic mammogram and—if needed—a confirmatory biopsy (Cutler 2008; Hubbard et 

al. 2011). Once a diagnosis has been confirmed, the woman may undergo surgery to remove 

the tumor, in addition to other treatments which aim to reduce the risk of recurrence, such as 

radiation therapy, chemotherapy, hormone therapy, and/or targeted therapy.

Mammography is based on the theory of early detection of invasive cancer, rather than 

detection and removal of precancerous lesions (Humphrey et al. 2002). The efficacy of 

mammography is the subject of considerable debate. Mechanically, mammography is most 

beneficial if machines can detect tumors in their earliest stages, and if tumors (on average) 

rapidly become more difficult to treat the longer they go undetected. The benefits from 

mammography will be lower if a tumor is slow to advance from stage to stage, if mortality 

when treatment begins at a later stage is similar to when tumors are treated earlier, or if 

mammogram machines are unlikely to correctly identify tumors. In practice, because most 

women diagnosed with breast cancer are treated immediately upon detection, there is little 

information about the natural history of breast cancer tumors, making it difficult to know 

how an individual tumor would have progressed had it not been treated (Zahl, Maehlen, and 

Welch 2008). This complicates attempts to quantify the benefits of mammography.

In principle, the major potential health benefit of mammography is reduced mortality. 

However, in practice, randomized trials of the impact of mammograms on mortality have 

documented mixed results (Habbema et al. 1986; Alexander et al. 1999; Miller et al. 2000, 

2002; Nyström et al. 2002; Bjurstam et al. 2003; Moss et al. 2006). There have been nine 

trials in total, with the first one dating back to the 1960s (Welch and Black 2010). Their 

estimates of relative risk reduction in breast-cancer mortality due to invitation to 

mammography range from 0% to 31% (Welch and Passow 2014), but many of these studies 

have lacked the statistical power to separately determine effects in different age groups 

(Humphrey et al. 2002). In particular, while most studies indicate that mammography 

reduces mortality among average-risk women over age 50, recent trials specifically designed 

to study mammography in younger women (aged 40–49) have estimated statistically 

insignificant reductions in breast-cancer mortality in this age group (Bjurstam et al. 2003; 

Moss et al. 2006).

The potential costs of mammography include financial, physical, and psychological costs. 

These costs arise from the initial screening, the frequent finding of false positives, and the 

treatment of cancers that would not have become clinically relevant in a woman’s lifetime 

(often referred to as “over-diagnosis”) (Jørgensen and Gøtzsche 2009). Some of these costs, 

such as the financial cost of a screening, are easy to quantify, while others are much more 

6These tabulations are drawn from US SEER cancer registry data from 2000–2014, as in American Cancer Society (2017a).
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difficult to estimate. Estimates of the rate of over-diagnosis of breast cancer (from both 

observational work and inferences from randomized control trials) range from less than 5% 

to more than 50% of diagnosed breast cancers (Zackrisson et al. 2006; Jørgensen and 

Gøtzsche 2009; Bleyer and Welch 2012; Oeffinger et al. 2015; Harding et al. 2015; Welch et 

al. 2016; Jørgensen et al. 2017).7

C. Age-specific mammogram recommendation and its impact

Several studies have combined the existing evidence to quantify the costs and benefits of 

mammograms (e.g., Welch and Passow 2014; Ong and Mandl 2015). For example, Welch 

and Passow (2014) estimate that for every 1,000 women aged 40–49 who undergo annual 

mammography for 10 years, 0.1–1.6 women will avoid dying from breast cancer, while 510–

690 will have at least one false-positive result and up to 11 women will be over-diagnosed 

and (unnecessarily) treated. As the estimates of the costs and benefits of mammography 

have evolved, so have the recommendations by medical associations regarding which groups 

of women should receive mammograms, and how often.

In the 1980s, following the first randomized trials of routine mammography, the National 

Institutes of Health (NIH), the National Cancer Institute (NCI), and eleven other health care 

organizations issued recommendations for routine screenings of women over age 40 (Kolata 

2009). These recommendations became the subject of controversy over time as more trials 

were published, and the US federal government subsequently reconsidered its position. In 

1997, an NIH panel concluded that there was insufficient evidence to recommend routine 

screening for women in their 40s, a finding that was controversial (one radiologist described 

the finding as a “death sentence” for women (Taubes 1997)). After public pressure, the 

Senate encouraged an advisory board to reject that conclusion (Kolata 2009). In 2009, 

following the publication of experimental data that failed to show statistically significant 

mortality benefits of mammograms for women in their 40s, the US Preventive Services Task 

Force (USPSTF) recommended that women begin screening at age 50. Again, this 

conclusion generated backlash from patient advocacy groups like the American Cancer 

Society, which at the time recommended annual screening for women aged 40 and above 

(American Cancer Society 2018).8 This negative reaction was exacerbated by fears that the 

Affordable Care Act (ACA, then being drafted) would allow insurers to refuse to cover 

mammograms for younger women. The USPSTF stood by its recommendation, but a poll 

found that 84% of women aged 35–49 did not plan to follow the new recommendations, and 

the ACA was modified to mandate that insurers reimburse mammograms for women aged 40 

and over (Saad 2009). Although in the last few years most patient advocacy organizations 

have begun to moderate their stances, the question of whether mammography should be 

recommended in the 40–49 age group remains controversial.

Importantly, both the academic literature and the policy debate over the costs and benefits of 

mammograms have primarily focused on the average impacts of mammograms at specific 

7Selection into screening potentially (partially) explains the phenomenon of over-diagnosis, since it results in more diagnoses of low-
risk tumors.
8The American Cancer Society currently recommends annual screening for women between ages 45–54 and screening every 2 years 
for women 55 years and older (American Cancer Society 2018).

Einav et al. Page 7

Am Econ Rev. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ages. For example, Welch and Passow (2014) extrapolate results from mammography RCTs 

to the entire population without considering selection effects. In contrast, our focus is on the 

characteristics of women whose decision to get a mammogram is influenced by the 

mammogram recommendation, and how their underlying cancer incidence and 

characteristics may differ from that of a randomly-selected woman in the population.

Several papers have examined the mammogram response to recommendations (Kadiyala and 

Strumpf 2011, 2016; Jacobson and Kadiyala 2017). Most closely related to our work on the 

selected response to mammogram recommendations is Kadiyala and Strumpf (2016), who 

document a sharp increase in self-reported mammograms at age 40 and estimate that most of 

the “newly detected” cancers are early-stage cancers. Also closely related is the work of 

Kim and Lee (2017) and Bitler and Carpenter (2016), who document that women who elect 

to receive mammograms in response to price reductions are in better health than those who 

get the mammogram even without the price reduction or those who don’t get the 

mammogram even with the price reduction. Finally, Kowalski (2019) shows that the 

compliers in a Canadian mammography RCT are healthier on both cancer dimensions (i.e., 

rates of breast cancer) and non-cancer dimensions (e.g. body mass and smoking) than the 

never-takers.

II. Data and descriptive patterns

A. Data and variable construction

Our analysis of mammogram choices and outcomes focuses on women aged 35–50 and 

draws on two primary data sources. The first is claim-level data provided by the Health Care 

Cost Institute (HCCI), consisting of all claims paid by three large commercial insurers 

(Aetna, Humana, and UnitedHealthcare) from January 2008 through December 2012. 

Together, these three insurers represented about one-quarter of individuals under age 65 with 

commercial insurance (HCCI 2012). The data capture the billing-related information 

contained in the claims that these insurers pay out to medical providers; this includes the 

exact date and purpose of each claim, as well as the amount paid by the insurer and the 

amount owed out of pocket. The data also include a (masked) person identifier as well as the 

individual’s birth year and gender.

The claim-level information in the HCCI data allow us to construct variables measuring 

whether an individual had a screening mammogram,9 whether the result was positive or 

negative, and whether a positive result was a true positive or false positive. Our coding of 

screening mammograms (hereafter “mammograms”)—as well as their outcomes—broadly 

follows the approach of Segel, Balkrishnan, and Hirth (2017), which we cross-validated 

using Medicare claims data linked to cancer registry data (see Appendix A for more details).

The complete HCCI data contain about 28.7 million privately-insured women aged 25–64, 

and over 70 million woman-years. We limit the data to woman-years aged 35–50 who are 

covered continuously for at least three years between January 2008 and December 2012; we 

9A “screening mammogram” is a routine test that is conceptually different –and coded differently in the data – from a “diagnostic 
mammogram,” which would typically follow the emergence of a possible breast cancer symptom (such as a positive screening 
mammogram).

Einav et al. Page 8

Am Econ Rev. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



keep all the years of coverage except the first and last (since for every woman-year we need 

to observe the previous year to define screening mammograms and the subsequent year to 

measure outcomes). This results in about 7.4 million woman-years, and 3.7 million distinct 

women over the years from January 2009 to December of 2011.

The primary drawback of the HCCI data is that we are not able to observe information on a 

breast cancer diagnosis beyond its detection. To overcome this limitation of the HCCI data, 

we also analyze the National Cancer Institute’s (NCI) Surveillance, Epidemiology, and End 

Results (SEER) database. This is an administrative, patient-level cancer registry of all cancer 

diagnoses in 13 US states, covering about one quarter of the US population (SEER 2019). 

We analyze all the breast cancer diagnoses in the data between 2000 and 2014 for women 

aged 35–50 at the time of diagnosis; this covers about 212,000 diagnoses. All cancer 

diagnoses are required to be reported, with data collected directly from the cancer patients’ 

medical records at the time of diagnosis (rather than self reports).10 For each diagnosed 

cancer, the SEER data contain information about the size and stage of each tumor at 

diagnosis. They also contain basic demographics for the patient including age at time of 

diagnosis, race, and insurance coverage, as well as subsequent mortality information through 

December 2013.

In our HCCI sample, the average woman’s age is 43 and 27% of woman-years are under 40. 

In the SEER data, because cancer risk increases with age, the average age at diagnosis is a 

bit higher (44.6) and only 13% of the SEER diagnoses occur in women under 40. In SEER, 

where we can observe race, slightly over three-quarters of the sample is white. And unlike 

the HCCI data where, by construction, everyone is privately insured, in the SEER data only 

84% are privately insured, while 13% are on Medicaid.

Table 1 documents mammogram rates and test results in the HCCI data. About 30% of 

woman-years are associated with a mammogram. The vast majority (89.6%) of 

mammograms are negative, and another 9.7% are false positives. Only 0.7% are true 

positives. Among all woman-years with a mammogram, total (insurer plus out-of-pocket) 

health care spending in the 12 months starting from (and including) the mammogram 

averages $5,000; while it is slightly higher (by about $1,000) for those with a false positive, 

it is dramatically higher for those with true positives, averaging almost $50,000. Out-of-

pocket spending in the 12 months post-mammogram is about $2,800 for women with a 

positive mammogram, compared to $715 for women with a negative mammogram and $950 

for women with a false positive.

The SEER data provide more information on tumor stage and tumor size for the 212,000 

true positives (i.e. diagnoses) we observe. Just over 15% are in-situ; the rest are invasive. Of 

the invasive, about 57% are localized, 38% are regional, and the remaining 5% are distant.

10See https://seer.cancer.gov/manuals/2018/SPCSM_2018_maindoc.pdf for more information. SEER registries are required to collect 
data on persons who are diagnosed with cancer and who, at the time of diagnosis, are residents of the geographic area covered by the 
SEER registry.
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B. Mammograms and outcomes, by age

Figure 1 shows the age profile of annual mammogram rates in the HCCI data. Because we 

observe birth year, the mammogram rate at age, say, 40 is the share of women who got a 

mammogram in the year they turned 40. Between ages 39 and 41, the mammogram rate 

jumps by over 25 percentage points, from 8.9% to 35.2%. This pronounced jump in 

mammogram rates at age 40 has been previously documented in self-reported data (Kadiyala 

and Strumpf 2011, 2016).11 One might be concerned that the existence of a recommendation 

for mammograms at age 40 could bias upward self-reports at that age. However, our 

analysis, which uses claims data, confirms a real change in mammogram behavior at 40. 

Indeed, as we show in Appendix Figure A.1, the increase in mammogram rates that we 

estimate at age 40 in the HCCI data is very similar to what we estimate using self-reported 

data (from the Behavioral Risk Factor Surveillance System Survey, or BRFSS), although—

consistent with prior work (Blustein 1995; Cronin et al. 2009)—we estimate lower 

mammogram rates at every age in claims data compared to self-reported data.

We examine the outcomes of these mammograms—negative, false positive, and true positive

—by age in the HCCI data. As shown in Appendix Figure A.2, the vast majority (85 to 90 

percent) of mammograms are negative, and almost all of the remainder are false positives; 

spending is much higher for true positives than false positives and negatives.

Figure 2a shows the share of mammograms that are true positive and false positive by age. 

Between ages 39 and 41, the share of true positives falls by one-third (from 0.84% to 

0.56%). This indicates that the marginal women who choose to have a mammogram because 

of the screening recommendation at age 40 (i.e. “compliers”) have lower underlying rates of 

cancer (i.e. true positive diagnoses) than those who choose to get screened at younger ages 

before the recommendation kicks in (“always-takers”).

The share of mammograms that are false positive is generally declining smoothly in age 

because the probability of a false positive is higher for women with denser breast tissue, and 

density generally decreases with age (Susan G. Komen Foundation 2018). The exception is a 

small “spike” in false positives around age 40; this likely is attributable to the fact that the 

probability of a false positive mammogram is highest for a woman’s first mammogram 

(American Cancer Society 2017b). Note, however, that while the share of mammograms that 

are false positive is trending fairly smoothly in age, the share of women experiencing a false 

positive rises considerably at age 40, since there is a 25-percentage-point increase in the 

share of women who have a mammogram. This is shown in Figure 2b: the share of women 

experiencing a false positive mammogram quadruples at age 40, from about 10 to 40 per 

thousand women.

Figure 3a documents the age profile of tumor type among all diagnoses in the SEER data. 

Between ages 39 and 41, the share of detected tumors that are in-situ (as opposed to 

invasive) rises by 6 percentage points, from 11.6 percent to 17.9 percent; this is consistent 

11Our data span the time period when the 2009 US Preventive Services Task Force changed its recommendation for routine 
mammograms to begin at age 50 rather than at age 40. Past analyses, such as Block et al. (2013), have documented that this appears to 
have had little affect on women’s mammography behavior, which is not surprising given the substantial public controversy over this 
recommendation change.
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with prior findings from Kadiyala and Strumpf (2016). The average size of a detected tumor 

falls by over 10 percent, from 27.3mm at age 39 to 24.4mm at age 41, although the pattern is 

less dramatic since detected tumor size is also falling (albeit less rapidly) at earlier ages.

Finally, Figure 3b documents 5-year mortality post-diagnosis in the SEER data by age of 

diagnosis, separately for tumors initially diagnosed as in-situ and invasive tumors. Mortality 

is almost three times higher for invasive tumors compared to in-situ tumors. For example, at 

age 40, the five-year mortality rate is 16.2% for invasive tumors compared to 4.5% for in-

situ tumors. However, the mortality rate is roughly flat by age within tumor type.

C. Who responds to the recommendation?

The preceding descriptive results from both the HCCI and SEER data suggest that the 

women brought into screening by the recommendation at age 40 have a lower cancer disease 

burden than those who sought screening prior to the age-40 recommendation. This manifests 

in lower rates of cancer, detection of cancer at earlier stages, and smaller tumors conditional 

on cancer detection among compliers compared to always-takers.

Naturally, we are also interested in comparing compliers to never-takers: those who do not 

get screened even after the age-40 recommendation is in effect. Since the cancer status of 

women who do not get screened is inherently difficult (or impossible) to observe, we will 

draw on a clinical model of breast cancer incidence and progression to estimate the cancer 

profile of never-takers. Before turning to this exercise in the next section, we can use the 

available data to compare compliers and never-takers on various non-cancer characteristics.

Specifically, we use the discrete onset of the recommendation at age 40 in a regression 

discontinuity framework to implement the Abadie (2002, 2003) approach to characterizing 

compliers and never-takers. Figure 4 shows the results. The left-hand panel compares 

various characteristics of compliers and never-takers; for completeness, the right-hand panel 

compares compliers to always-takers. The top panel examines preventive health behaviors 

and prior health care use in the HCCI data. The bottom two panels examine insured women 

in the BRFSS data; these data allows us to observe additional health behaviors and 

demographic characteristics. Appendix B contains more detail on the estimation approach 

and also shows the average characteristics of the population and the subset who receive a 

mammogram, by age.

Overall, Figure 4 suggests that women who receive a mammogram as a result of the 

recommendation are more likely to comply with other recommended preventive care than 

women who do not get a mammogram even in the presence of the recommendation. In 

particular, both data sets indicate that compliers are more likely to get flu shots and 

Papanicolaou tests (also known as Pap tests, which are used to screen for cervical cancer) 

than never-takers. The HCCI data also indicate that compliers have lower health care 

spending and have fewer emergency room visits than never-takers. These results are 

consistent with Oster (2020)’s finding that when a health behavior is recommended, those 

who take it up also tend to exhibit other positive health behaviors. The results are also 

broadly consistent with related patterns reported by Kowalski (2019) in the context of 

selection into participation in clinical trials. Interestingly, however, we find no evidence of 

Einav et al. Page 11

Am Econ Rev. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pronounced differences between compliers and never-takers on non-healthcare dimensions; 

they look similar on other health behaviors (such as seat belt use and alcohol consumption) 

as well as on basic demographics.

III. Model and estimation

The empirical patterns documented in the preceding section indicate that the women who 

respond to the mammogram recommendation have a lower incidence of cancer than those 

who seek mammograms in the absence of a recommendation. To evaluate the implications of 

this selection for alternative, counterfactual timings of the screening recommendation (such 

as at age 45 instead of age 40), we write down a stylized model of mammogram decision 

making. We then estimate this model using the observed patterns shown in Section II 

combined with a clinical oncology model of the underlying cancer incidence in the 

population and tumor evolution in the absence of detection. The clinical oncology model 

provides the (hitherto absent) crucial information on the cancer disease burden of women 

who respond to the mammogram recommendation compared to women who do not. 

Naturally, we explore sensitivity to alternative clinical assumptions.

A. A descriptive model of mammogram choice

Consider a woman i in a given year she is observed in the data.12 We model the annual 

decision of whether or not to have a mammogram; annual decision frequency seems natural 

given that mammogram screening tends not to be done more frequently than once a year. 

Absent any recommendation to do so, we assume that the “organic” decision to have a 

mammogram follows a simple probit, so that

Pr mio = 1 = Pr αo + γoai + δin − situ
o I ciin − situ + δinvasive

o I ciinvasive + εio > 0 , (1)

where mio is an indicator for whether woman i had a mammogram in that observed year, ai is 

woman i’s age that year, ci = ciin − situ, ciinvasive) describes woman i’s undiagnosed cancer 

status that year, and εio is a (standard) Normally distributed error term. Following our 

discussion in Section II, our baseline specification summarizes cancer status ci with two 

indicator variables, one that indicates an in-situ tumor and another that indicates an invasive 

tumor; the omitted category is no cancer.

If it is recommended that woman i obtain a mammogram, we model her response to the 

recommendation as a second, subsequent decision that is taken within the same year. That is, 

if a woman has already decided to have a mammogram “organically” based on equation (1), 

a recommendation has no additional impact. But for women who decided not to have a 

mammogram organically (that is, mio = 0), a second decision point arises due to the 

recommendation, and we model this second decision point in a similar fashion, except that 

the parameters are allowed to be different:

12We observe women for one, two, or three years. As discussed below, this is a static model, which does not use the panel dimension, 
so we essentially treat the entire data as a cross-section of woman-years, each denoted by i.
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Pr mir = 1|mio = 0 = Pr αr + γrai + δin − situ
r I ciin − situ + δinvasive

r I ciinvasive

+ εir > 0 ,
(2)

where εir is a (standard) Normally distributed error term, drawn independently from εio.13 

This model assumes that the impact of the recommendation is (weakly) monotone for all 

women. For each woman, it only increases the probability that she has a mammogram, a 

feature that seems (to us) natural.14

Since we do not directly observe whether a mammogram was taken for organic reasons or in 

response to a recommendation, the probability that woman i obtains a mammogram in the 

year she is observed is given by

Pr mi = 1 =
Pr mio = 1 if not recommended

Pr mio = 1 + Pr mir = 1|mio = 0 Pr mio = 0 if recommended

We use the model’s results to quantify the degree of selection into mammograms in the 

presence and absence of a recommendation, and to examine how the nature of this selection 

affects the impact of recommendations. To do so, we use the model estimates to predict 

mammogram rates and mammogram outcomes under the current recommendation to begin 

mammograms at age 40 as well as under a counterfactual recommendation to begin at age 

45. Consistent with our focus on selection, we also examine how alternative, counterfactual 

selection into mammograms in response to the recommendation would change the impact of 

changing the recommended age of beginning mammography from 40 to 45.

Discussion.—Importantly, this is a descriptive, or statistical model of mammogram 

choice, rather than a behavioral one. This is most apparent from the fact that we use the 

cancer status ci as an explanatory variable, when naturally this cancer status is unknown by 

undiagnosed women. Cancer status ci is also unobserved by the econometrician; we describe 

below the clinical model of tumor evolution which we use to “fill in” these missing data, 

thus essentially integrating over the population distribution of this cancer status component.

We take this modeling approach for several reasons. First, many of the outcomes in this 

setting are difficult to assess or monetize, e.g. the stress and anxiety associated with false-

positive test results or the non-monetary costs associated with the breast cancer treatment 

(even if successful). This makes it difficult to translate the rich set of outcomes into a single 

metric of utility. Second, our key focus is on the impact of the recommendation policy. With 

a perfectly informed population of women, recommendations should have no impact, yet the 

data in Section II show a clear increase in the mammogram rate in response to the age 40 

recommendation. We could try to attribute this recommendation-induced increase in 

13While this independence assumption may appear restrictive, note that equation (2) only applies to those women who elected not to 

obtain an “organic” mammogram. It is therefore effectively restricted to women with “low enough” εio’s, so that much of the potential 

correlation is already conditioned out.
14That is, as in the analysis of Section II.C, we assume that there are no defiers. As will become clear later, other than appearing a 
natural assumption to us, it also simplifies the intuition of how counterfactual recommendation policies play out.
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mammogram rate to improved information, but this would require us to make assumptions 

about what type of information is being revealed and how, or why women did not have such 

information to begin with. We prefer instead to remain agnostic about the behavioral channel 

by which the recommendation affects screening rates. Finally, a descriptive model of 

decision making does not require us to try to reconcile observed patterns of decisions with 

optimal behavior, or model deviations from optimality. The drawback is, of course, that we 

will not be able to engage with other policy changes or with the impact of changes in the 

recommendation policy on individual welfare directly, but rather will only evaluate changes 

in recommendation policies through their effect on observed outcomes.

Another key feature of our setup is that we model the mammogram decision to be a static—

and perhaps naive—one. The decision is static in the sense that we assume that women do 

not take into account, for example, the time elapsed since their most recent mammogram (if 

any).15 The decision is naive in the sense that we assume that women, when deciding to get 

a mammogram or not, do not explicitly take into account their propensity to get a 

mammogram in future years. This assumption seems not unrealistic, and simplifies the 

model. This assumption is particularly important in the context of our counterfactual 

exercise, which holds the estimated model as given while we change the age at which it is 

recommended to begin mammography. Specifically, in considering the changes that occur 

when the mammogram recommendation begins at age 45 instead of 40, our static model 

assumes that this would have no impact on women aged 39 or younger. In a dynamic model 

with forward-looking agents, however, it could increase the propensity of women under age 

40 to get a mammogram. Our current model could in principle capture such dynamics 

implicitly by allowing serial correlation in εio and in εir. However, because we have a 

relatively short panel, and because we only use age to match the two main data sets, it would 

be hard to identify such a serial correlation structure. Consistent with this being a fairly 

inconsequential assumption, Figure 2 shows very low rates of pre-recommendation 

mammograms, and no evidence that mammogram rates decline in the year or two that are 

right before age 40 (when forward-looking women might anticipate their future 

mammogram).

B. Implementation

A clinical model of tumor appearance and evolution.—To complete the empirical 

specification, we specify a clinical oncology model of tumor appearance and tumor 

evolution. The oncology model has two important roles in our analysis, one for estimation 

and another for our counterfactual exercises. For estimation, the key role of the oncology 

model is that it allows us to “impute” cancer status for the “never-takers,” i.e., the women 

who do not get screened even when it is recommended. This clinical model delivers two key 

elements. First, it produces the underlying incidence of cancer (and cancer type) by age. 

This cannot be directly observed in data since cancer incidence is only observed conditional 

15While restrictive, there is no strong evidence of such dynamic patterns in the data. We only have a short panel of at most three years 
for each woman, so it is difficult to apply any formal statistical testing. However, conditional on having two mammograms during the 
three years of mammogram claims we observe (2009–2011), the frequency of getting a mammogram “every other year” (that is, 
getting mammograms in 2009 and 2011 but not in 2010) is not more likely than getting a mammogram in consecutive years (34%, 
relative to 39% for 2009 and 2010, and 27% for 2010 and 2011).
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on screening. Intuitively, since we observe the rate of cancer among those who get screened 

and the share of women who get screened, then, with the estimate of the overall rate of 

cancer from the clinical model, we can deduce the rate of cancer in the unscreened 

population. Second, the clinical model provides (counterfactual) predictions for the rate at 

which tumors would progress in the absence of detection and treatment (the so-called 

“natural history” of the tumor). Since breast cancer is usually treated once diagnosed, rather 

than being monitored without treatment, it is difficult (perhaps impossible) to directly 

estimate the natural history of tumors from existing data. This latter element is particularly 

important for our counterfactual exercises, in which the effect of different selection patterns 

depends on the share of cancer cases that get diagnosed, as well as how early tumors are 

found. In order to assess how clinically important early diagnosis is (e.g., in its effect on 

mortality), a model of tumor evolution is needed.

For the clinical model, we draw on an active literature creating clinical/biological models of 

cancer arrival and growth. Specifically, we draw on the work of the Cancer Intervention and 

Surveillance Modeling Network (CISNET) project funded by the National Cancer Institute 

to analyze the role of mammography in contributing to breast cancer mortality reductions 

over the last quarter of the 20th century. As part of this effort, seven different groups16 

developed models of breast cancer incidence and progression (Clarke et al. 2006). For 

convenience, we focus on one of these models, the Erasmus model (Tan et al. 2006). As we 

discuss below, we also confirm that our main results are not sensitive to alternative 

specifications designed to produce markedly different estimates for the key objects (the 

underlying incidence of cancer and cancer types).

We briefly summarize the Erasmus model here; Appendix C describes the model in much 

more detail. Starting with a cancer-free population of 20-year-old women, the Erasmus 

model assumes that breast tumors appear at a given age-specific rate (that is increasing in 

age). When they appear, tumors are endowed with a given invasive potential and initial rate 

of growth, and then evolve accordingly over time with respect to those two characteristics. 

Tumors can either be invasive, leading to death of the women if not detected early enough, 

or be in-situ. In-situ tumors are not themselves harmful but may either transform into a 

harmful invasive tumor or remain benign. In some sense, a key issue in the debate over 

mammograms is the extent to which tumors that are detected early (e.g. in-situ tumors) 

would have become harmful if not detected or would have remained benign; Marmot et al. 

(2013) discusses how, depending on the method of analysis, a wide variety of estimates can 

be obtained when trying to answer this question. The Erasmus model further classifies 

tumors by whether or not they are detectable by screening, which in the case of invasive 

tumors depends on their size and in the case of in-situ tumors depends on their sub-type. 

Finally, the model assumes that beyond a certain size, invasive tumors are fatal.

The original Erasmus model was calibrated using a combination of Swedish trial data and 

US (SEER) population data. To better match the cancer incidence rates in the SEER data 

16The composition of the CISNET consortium has changed over time, but the seven groups who produced models for the original 
publication in 2006 were affiliated with the Dana-Farber Cancer Center, Erasmus University Rotterdam, Georgetown University 
Medical Center, University of Texas M.D. Anderson Cancer Center, Stanford University, University of Rochester, and University of 
Wisconsin-Madison.
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(birth cohorts 1950–1975), we introduce a proportional shifter of overall cancer incidence 

and calibrate this parameter on the SEER data. Appendix Figure A.6 shows the calibrated 

model’s predictions—under the assumption of no screening—of the share of women with 

cancer at each age, and the share of existing cancers that are in-situ (rather than invasive) by 

age.

Estimation and identification.—We estimate the model using method of moments. The 

observed moments we try to match are the mammogram screening rate at each age (Figure 

1), the true positive rate at each age (Figure 2a), and the share of tumors at each age that are 

in-situ conditional on true positive (as in Figure 3a).17 Because identification is primarily 

driven by the discontinuous change in screening rates at age 40, we weight more heavily 

moments that are closer to age 40 than moments that are associated with younger and older 

ages.18

To generate the corresponding model-generated moments, we simulate a panel of women 

starting at age 20, and use the clinical model described above to generate cancer incidence 

and tumor growth for each woman. We then apply our mammogram decision model, by age 

and recommendation status, to each simulated woman who is alive and has yet to be 

diagnosed with cancer. The simulated cohort allows us to see the fraction of women with a 

detectable (by mammogram) tumor at each age, and thus generate the mammogram rate, and 

the true positive rate (by cancer type) conditional on screening. As mentioned above, for 

cancer type, we distinguish only between in-situ and invasive tumors.

With this simulated population of women, an assumed value of parameters associated with 

the mammogram decisions with and without recommendation (equations (1) and (2)) and 

the observed policy recommendation (40 and above), the model generates an age-specific 

share of women who are screened, and the tumor characteristics (in-situ and invasive rates), 

conditional on getting screened. We then search for the parameters that minimize the 

(weighted) distance between these generated moments and the observed moments described 

above.

Although the model is static, it does have a dynamic element because we calculate the 

model-generated moments only for women who were not diagnosed with cancer in previous 

years, and for those who did not die (from breast cancer or other causes) prior to the given 

age. Specifically, because the mammogram decision applies to women who have yet to be 

diagnosed with cancer, fitting the model requires calculating the rate of cancer among the 

population who is eligible to be screened, which includes those who have currently 

undiagnosed cancer or no cancer, but does not include those who are dead or already 

diagnosed. Appendix D provides more detail on this and other aspects of the estimation.

17Figure 3a shows the share of all diagnosed cancers (in the SEER data) that are in-situ, but the model produces a different metric: the 
share of screening mammogram-diagnosed cancers that are in-situ. Cancers that are clinically diagnosed are highly unlikely to be in-
situ, so the SEER value likely underestimates the true value of share in-situ for screening mammogram-diagnosed cancers. Appendix 
D describes how we adjust the SEER moments to account for this.
18Specifically, the weight on moments associated with ages 39 and 41 is 10/11 of the weight on the age 40 moment, the weight on 
moments associated with ages 38 and 42 is 9/11 of the weight on the age 40 moment, and so on.
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For our counterfactual exercises, the estimates from the mammogram choice model—and 

the assumption that choices would be smooth in age through age 40 in the absence of the 

recommendation—allow us to predict mammogram decisions and outcomes under 

counterfactual scenarios. Crucially, the model estimates allow us to forecast the cancer 

characteristics of women who (counterfactually) do not get screened and whose cancer may 

therefore progress in the absence of diagnosis. The key parameters are δo and δr, which 

capture the nature of selection into mammogram screening. Positive selection (i.e. positive 

δ) implies that women with cancer (or with invasive vs. in-situ cancer) are more likely to get 

a mammogram than are woman without cancer. A negative δ implies the opposite. Both 

types of selection are plausible. Positive selection could arise, for example, if women with a 

greater risk of breast cancer (e.g. due to family history) are more likely to get a 

mammogram; negative selection could arise, for example, if women with certain underlying 

characteristics (e.g. risk aversion) are both more likely to get a mammogram and also more 

likely to avoid risk factors linked to breast cancer. Importantly, by allowing δo and δr to be 

different, the model allows for the nature of selection to be different for organic and 

recommendation-driven mammograms. Identification of these selection effects is driven by 

comparing the share of cancer in the population (which is data provided by the clinical 

oncology model) to the true positive mammogram rates. The extent to which this 

relationship changes discretely at age 40, when the recommendation kicks in, allows us to 

separately identify δo and δr.

IV. The impact of alternative screening policies

A. Model fit and parameter estimates

Figure 5 presents the model fit to the key moments, which we view as quite reasonable. The 

parameter estimates are shown in Table 2. It may be easiest to see the implications of these 

parameters in the context of our counterfactual results, but one can already infer the general 

pattern by focusing on the four δ parameters, which indicate the extent of selection into 

mammogram. The two δo parameters are positive and relatively large, indicating strong 

positive selection into the “organic” decision to have a mammogram. For example, for the 

average woman-year in the sample (that is, using the distribution of ages in the sample), the 

estimated coefficients imply that the “organic” mammogram rates for women with either an 

in-situ or invasive tumor are much higher (0.30 and 0.57, respectively) relative to the 

“organic” mammogram rates for cancer-free women (0.20).

In contrast, the two δr parameters tell a different story. The estimates suggest that there is no 

differential selection into the “recommended” decision for women with in-situ tumors 

(relative to cancer-free women), and that essentially no woman with an invasive tumor 

selects into mammogram due to the recommendation. This result is driven by precisely the 

patterns in the data that identify these parameters, and which were presented in Figure 3a. 

Namely, conditional on diagnosis, the share of in-situ tumors rises sharply at age 40, so that 

virtually all the increase in detected cancers reflects in-situ tumors. As we show below, this 

pattern has a critical effect on our results, because women without cancer or with in-situ 

tumors—who constitute the primary incremental positive mammogram results may not face 

drastic health implications if those tumors would instead be discovered several years later.
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We note that the large confidence intervals on δinvasive
o  and δinvasive

r  reflect the fact that the 

estimates imply that virtually all women with invasive tumors who get screened do so 

organically, with essentially no women with invasive tumors getting screened in response to 

the recommendation; as a result, the likelihood function is fairly at for high values of 

δinvasive
o  and low values of δinvasive

r . But for exactly the same reason, these imprecise 

estimates of the parameter have little impact on the counterfactual results, as reflected by the 

much tighter standard errors associated with the counterfactuals of interest reported in the 

next section.

B. Implications

We apply the estimated parameters from Table 2 to analyze outcomes under various 

counterfactual recommendations. For concreteness, we focus on outcomes under the current 

recommendation to begin mammograms at age 40 as well as under a counterfactual 

recommendation to begin at age 45. Our model is well suited for such a counterfactual 

exercise: we simply assume that mammogram decisions are based on the “organic” decision 

until age 45, and only at age 45 is there a second, recommendation-induced decision. Given 

the static nature of the model, mammogram rates will remain the same until age 40, and 

would be the same (conditional on cancer status) from age 45 and on, but will decrease for 

women aged 40–44 without a recommendation. We choose a counterfactual 

recommendation that begins at age 45 because this is not too far out of sample, and also in 

the range of realistic policy alternatives; Canada, for instance, recommends routine 

screening beginning at age 50 (Kadiyala and Strumpf 2011). Of course, such counterfactuals 

do require us to rely on our assumption of a linear age profile in order to predict outcomes 

for always-takers beyond age 40 in a counterfactual world in which the recommendation 

does not occur until age 45; while this strikes us as not unreasonable, given that the linear 

specification in age seems to fit the data well, it is of course an important (and untestable) 

assumption.

For both the age 40 and age 45 recommendations, we also examine how alternative, 

counterfactual selection into mammograms in response to the recommendation would 

change the recommendation’s impact. The main outcomes we generate under the various 

counterfactuals are age-specific mammogram rates, mammogram outcomes (specifically, 

negative, false positive, and true positive, as well as tumor type), total health care spending, 

and mortality. We do not attempt to quantify other potential consequences of a change in 

recommendation (such as the opportunity to use less invasive treatments for early-stage 

diagnoses, or increased anxiety from false positive results, which are more uncertain (Welch 

and Passow 2014)).

Throughout the counterfactual exercises, mammogram rates are generated directly from the 

parameter estimates in Table 2, and mammogram outcomes are generated based on the 

parameter estimates in Table 2 and the underlying incidence and natural history of breast 

cancer tumors from the Erasmus model. We also use the Erasmus model’s parameters in 

order to map detection of tumors to subsequent mortality, allowing us to translate the 

estimated changes in detection into implied changes in mortality. Finally, we use the 

auxiliary data from Figure A.2b on how health care spending varies with age and 
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mammogram outcomes to translate the estimated change in mammogram rates and 

mammogram outcomes into implied spending changes. Appendix E provides more details 

behind these counterfactual calculations.

Shifting the age of recommendation from 40 to 45.—Table 3 shows the implications 

of shifting the recommendation from age 40 to age 45, given the estimated response to 

recommendations from Table 2. We focus on the implications for women ages 35–50.

Panel A summarizes the implications for screening and spending; Figure 6 shows how the 

age profile of screening and screening outcomes change with this counterfactual. Changing 

the recommended age from 40 to 45 reduces the average number of mammograms a woman 

receives between ages 35 and 50 from 4.7 to 3.8, an almost 20 percent decline. By design, 

all of the “lost” mammograms occur between ages 40 and 44. Naturally, the vast majority of 

these “lost” mammograms would have been negative (89.5%) or false positive (10.4%). 

Moving the recommendation to age 45 decreases the average number of false positives a 

woman experiences over ages 30–45 by 0.09. The fraction of true positive mammograms 

that are “lost” due to the later recommendation, while small in absolute number (0.0004 per 

woman), is not negligible, and it constitutes an approximately 6% reduction in the cancer 

detection rate. Of the “lost” true positives, however, all are in-situ since our estimates imply 

that the recommendation effectively induces no additional women with invasive cancer to 

get screened. Thus, any changes in mortality are due to in-situ tumors that go unscreened 

and later become invasive.

The last row of Panel A shows that changing the recommendation age to 45 reduces total 

health care spending over ages 35–50 per woman by about $320, or about half a percent. 

This reduction in spending arises from a combination of a level and composition effect. The 

dominant factor is naturally the decline in the overall number of mammograms. We estimate 

that women who have a mammogram in a given year are expected to spend approximately 

$570 more (on average, averaging over ages 40–44) over the subsequent 12 months relative 

to women with no mammograms, and that moving the recommendation age to 45 results in 

0.9 fewer mammograms per woman. This would mechanically result in approximately $510 

lower spending. The estimated spending reduction is lower ($320) because of selection. The 

“lost” mammograms are disproportionately negative or false positive, and the true positive 

mammogram results are associated with, by far, the highest expected subsequent spending 

(see Figure A.2b). True-positive mammograms account for a larger share of mammograms 

in the counterfactual scenario (0.53%, relative to 0.44% under the age-40 recommendation).

Panel B documents the implications of this counterfactual for health outcomes. The lower 

detection rate of cancers is associated with 5 more women per 100,000 who are dead by the 

age of 50; all of this increase in deaths comes from increased breast cancer mortality. The 

results thus suggest that, relative to an age-45 recommendation, an age-40 recommendation 

increases spending by about $32 million per 100,000 women (during the ages of 35–50), and 

prevents about 5 additional deaths by age 50 per 100,000 women; the cost per life saved is 

thus about $6 million.
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Naturally, these mortality implications are driven by the assumptions in the clinical oncology 

model, about which there is a range of views (Clarke et al. 2006; Welch and Passow 2014). 

In addition, our analysis considers only the costs in terms of health care spending, and does 

not consider the disutility of stress and anxiety created by false positives or additional 

medical care. For both reasons, our goal here is not to emphasize a specific estimate of the 

cost per life saved per se, but rather to examine whether and how this type of counterfactual 

policy exercise can be affected by the nature of selection into mammograms in response to 

the recommendation, a question we turn to in the next section.

Consequences of selection patterns in response to mammogram.—Table 4 

illustrates the importance of selection in response to the recommendation. To do so, Panel A 

replicates the results from Table 3, while Panels B and C contrast them with what the results 

would be under alternative selection responses to the recommendation. Under both 

alternative selection models, we maintain our estimated selection associated with the 

“organic” mammogram decision, but vary the nature of selection into mammograms in 

response to the recommendation. One case (Panel B) assumes no selection, which is 

conceptually consistent with the idea of using estimated mammogram treatment effects from 

randomized experiments to inform the recommendation policy (as in, for example, Welch 

and Passow 2014); in practice we do this by assuming that δr = 0.19 The other case (Panel 

C) assumes that selection in response to the recommendation is positive, and is the same as 

in the organic decision; we implement this counterfactual by assuming that δr is equal to our 

estimated δo.

In both counterfactual selection cases we consider, we adjust the model to maintain the same 

age-specific mammogram rates under a given recommendation regardless of the assumed 

selection, so that only the nature of selection changes; Appendix E provides more detail. By 

design, therefore, the mammogram rates (first row of each panel) remain almost the same 

across all three selection models,20 and therefore the spending effect associated with each of 

these cases also remains almost identical (second row of each panel). In contrast, the 

importance of selection is shown in the third row of each panel: different patterns of 

selection affect the reduction in deaths from moving the recommendation to age 40 

compared to age 45. For example, while our estimates that are based on observed selection 

imply that moving the recommendation from 45 to 40 saves 5 additional lives (by age 50) 

per 100,000 women, which corresponds to a cost of about $6.3 million per life saved, 

random selection would imply over three times as many lives saved (18 per 100,000), 

corresponding to a cost of about $1.9 million per life saved. At a more extreme case of 

selection, assuming that the strong positive selection associated with “organic” selection 

would also apply to the selection in response to the recommendation, would imply almost 

19Note that here we have in mind a conceptual randomized experiment with full compliance. Of course, in practice, full compliance is 
rare, and the complier population to the experiment is itself not random, although it may be differentially selected from the complier 
population to the recommendation. In a recent paper, Kowalski (2019) argues that in practice the women most likely to receive 
mammograms when encouraged to do so in a randomized clinical trial are healthier, and hence benefit less from mammograms.
20Although not seen in the table due to rounding, the mammogram rates are not exactly the same across the panels because the nature 
of selection leads to differential mortality (discussed below), which in turn (slightly) affects the set of women “eligible” for a 
screening mammogram.
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nine times as many lives saved (45 per 100,000 women), corresponding to a cost per life 

saved of about $0.86 million.

The qualitative results are intuitive. As selection associated with the recommendation is 

more negative (i.e. women who respond are less likely to have cancer), the recommendation 

for earlier mammograms is less effective in finding tumors that would have not been found 

otherwise or tumors that would otherwise be found only later. However, if the selection 

associated with the recommendation were very positive (i.e. women who respond are more 

likely to have cancer), an earlier recommendation would be more effective. Thus, out of the 

three selection scenarios considered, earlier recommendation is most beneficial if the 

selection response to the recommendation is the same as under organic selection, which was 

highly positive (Panel C). While it is not immediately clear how in practice to achieve such 

strong positive selection in response to the recommendation, this result suggests that better 

targeting of the recommended mammogram to women with higher a-priori risk of cancer 

could—if feasible—have dramatic effects on the mortality benefits from the 

recommendation.21 The comparison between our estimated selection (panel A) and the “no 

selection” case (panel B) is an intermediate case. Because we estimate negative selection for 

invasive tumors, an earlier recommendation is more effective (i.e. more women with cancer 

would be screened) under random selection, and the cost per life saved is therefore lower.

Sensitivity.—The data allow us to estimate characteristics of always-takers and compliers, 

and to see that compliers have a lower incidence of cancer than always-takers (see Figures 

2a and 3a). However, our counterfactuals require us to also estimate the cancer status of 

never-takers, as well as how cancer would evolve if (counterfactually) screening occurred at 

a later age. For both of these endeavors, we relied heavily on the underlying natural history 

(“clinical”) model of breast cancer. We therefore examine the sensitivity of our conclusions 

to changing key features of this model, such as the underlying incidence rate of cancer, the 

share of in-situ tumors that will become invasive if not treated, and the share of tumors that 

are non-malignant, i.e. have no potential to be invasive and therefore would never result in a 

breast cancer mortality.

This sensitivity analysis serves to highlight a point we have tried to emphasize throughout: 

the reader should not place much (or any) weight on our particular, quantitative estimates of 

the cost per life saved of recommending that mammography begin at 40 instead of at 45; 

these are quite sensitive to the assumptions underlying the clinical model. By contrast, the 

qualitative result we focus on—how the nature of the selection response to the 

recommendation affects any estimate of the impact of an earlier recommendation—is quite 

robust to alternative assumptions in the underlying clinical model. Appendix F discusses the 

specifics of how we implement the sensitivity analysis and presents the results in detail.

21The potential benefits of personalizing breast cancer screening recommendations have highlighted in the medical literature (e.g. 
Schousboe et al. 2011), and current breast cancer screening recommendations often differ across average-risk and high-risk women 
(where the latter is, e.g., women with a family history of breast cancer). But to the best of our knowledge our point about selection 
responses to recommendations has not been made previously. Our consistent selection model is one way of illustrating the potential 
gains from recommendation designs that affect take-up of mammograms based on unobservables.
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V. Summary and possible policy implications

The debate over whether and when to recommend screening for a particular disease involves 

a host of empirical and conceptual challenges with which the existing literature has 

grappled, including how to estimate the “health” return to early screening, how to measure 

non-health benefits or costs, and how to monetize all of these factors (Humphrey et al. 2002; 

Nelson et al. 2009; Marmot et al. 2013; Welch and Passow 2014; Ong and Mandl 2015). We 

make no pretense of “resolving” these issues. Instead, we suggest an additional important 

and largely overlooked factor that can—and should—be considered: the nature of selection 

in response to the recommendation.

We illustrate this point in the specific context of the (controversial) recommendation that 

women should begin regular mammogram screenings at age 40. We document that this 

recommendation is associated with a sharp (25 percentage point) increase in mammogram 

rates, and that those who respond to the recommendation have substantially lower rates of 

cancer incidence than those who choose to get mammograms in the absence of the 

recommendation (i.e. before age 40). Conditional on having cancer, women who respond to 

the recommendation also have lower rates of the more lethal invasive cancer, relative to the 

less lethal in-situ cancer. These data speak directly to the relative cancer risks of women who 

select mammograms in the absence and presence of a recommendation. To further assess 

how the cancer risk of those who select mammograms when recommended compares to 

those who do not select mammograms even when recommended, we draw on a clinical 

oncology model to estimate the underlying cancer incidence in the non-screened population 

(since this is not directly observed). These results suggest that those who choose 

mammograms in the absence of a recommendation have substantially higher rates of both 

invasive and in-situ cancer than women who do not get screened; women who choose 

mammograms in response to the recommendation have similar rates of in-situ cancer to 

unscreened women but much lower rates of invasive cancer than unscreened women.

To illustrate the potential consequences of these selection responses to recommendations, we 

write down a stylized model of the mammogram decision, which depends on age, cancer 

status, and recommendation. We estimate this model using the observed empirical patterns 

combined with the clinical oncology model, the latter of which provides both the underlying 

incidence of cancer and the (counterfactual) tumor evolution in the absence of detection. We 

then apply the model to assess the implications for spending and mortality of changing the 

recommended age for beginning mammograms from 40 to 45. The specific numbers that we 

estimate will naturally be sensitive to the modeling assumptions; moreover, our estimates do 

not attempt to measure all of the the potential impacts of mammograms, such as stress.

Our focus instead is on the consequences of the selection response to the recommendation, 

which our estimates suggest are non-trivial. Specifically, we consider the impact of moving 

the recommended age of beginning mammography from 45 to 40, and how this varies under 

alternative selection responses to the recommendation. We hold the change in mammogram 

rates (and consequently the cost increase) from changing the recommended age constant, 

and show that the mortality implications from earlier recommended mammograms vary 

markedly with selection patterns. For example, under the observed selection pattern, the 
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number of lives saved by moving the recommendation from age 45 to 40 is less than a third 

of what it would be if those who responded to the recommendation were instead drawn at 

random from the population. This difference arises because we estimate that those who 

respond to the recommendation have much lower rates of invasive cancer. Conversely, our 

results also suggest that if it were feasible to target the recommendations to those with 

higher rates of cancer, shifting the recommendation from age 45 to 40 would save 

substantially more lives than either the observed selection patterns or random selection.

These findings suggest that the ongoing debates over whether and when to recommend 

screening for a disease should consider not only average costs and benefits from screening, 

but also the nature of selection associated with those who respond to the recommendation. 

They also suggest that future work exploring the impact of existing policy instruments or the 

design of potential new ones should consider not just aggregate impacts on mammography 

rates, but also the cancer incidence for compliers.

While our empirical focus has been on recommendations, these are of course only one part 

of a broader set of policy efforts that have been deployed or discussed for increasing disease 

screening. In the case of mammograms, another widely-used instrument has been lowering 

the financial costs of screenings. For example, in 1991 the federal government launched the 

National Breast and Cervical Cancer Early Detection Program to provide free screenings to 

women below 250 percent of the federal poverty line (Lee et al. 2014). In the same year, 

Medicare expanded its coverage to include bi-annual screening mammograms; subsequently, 

in 1998, Medicare expanded coverage further to include annual screening mammograms and 

to waive the deductible (O’Sullivan et al. 1997; Kelaher and Stellman 2000; Habermann et 

al. 2007). On the private insurance side, a number of states have mandated that insurance 

plans must cover mammography (Bitler and Carpenter 2016). Beyond these financial levers, 

there are also policy efforts to reduce non-financial barriers to mammograms. These include, 

for example, increasing ease of access to mammograms through programs such as mobile 

mammography clinics (Vang, Margolies, and Jandorf 2018), and outreach efforts designed to 

educate women about the benefits of mammograms and informing them of the services 

available to them (Levano et al. 2014).

Related to these efforts, an existing literature has studied the impact of various policy 

instruments on mammography rates. It has found, for example, that lowering out-of-pocket 

financial costs increases mammogram rates (Kelaher and Stellman 2000; Habermann et al. 

2007; Finkelstein et al. 2012; Fedewa et al. 2015; Mehta et al. 2015; Bitler and Carpenter 

2016; Cooper et al. 2017; Kim and Lee 2017), while increasing the distance a woman must 

travel to get a mammogram decreases mammogram rates (Lu and Slusky 2016). Only a few 

of these studies have examined differential responses to the policy by underlying health 

characteristics. This existing work suggests that, like our findings on the response to 

guidelines, those who get mammograms in response to a lower price and those who comply 

with assignment to mammogram treatment in a clinical trial tend to be healthier than never-

takers and always-takers (Bitler and Carpenter 2016; Kim and Lee 2017; Kowalski 2019). 

While one of course must be careful in generalizing too much from a few studies, our read 

of this existing literature is that these alternative interventions are not obviously better 
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targeted than recommendations in terms of the compliers, at least in the context of 

mammograms.

The combined evidence therefore highlights the importance of trying to better target the 

existing instruments. This is challenging since underlying cancer incidence, tumor stage, and 

tumor size are not observable without screening. However, our descriptive analyses in 

Section II—comparing compliers to never-takers on a host of observable characteristics—

suggest that never-takers are also less likely than compliers to engage in other recommended 

health behaviors, such as flu shots and Pap tests. This finding is consistent with the idea that 

those who comply with recommendations tend to exhibit other positive health behaviors 

(Oster 2020). It also suggests that coordinated efforts, which attempt to draw in women who 

otherwise would not engage in any preventive health behaviors, could be high-value. If we 

are willing to extrapolate our qualitative results from breast cancer to these related contexts, 

our findings suggest that trying to get such women to undertake a slew of recommended 

health behaviors might be well-targeted at reaching women at higher risk of not only breast 

cancer, but perhaps also cervical cancer and the flu.

Recent analyses by clinical researchers also suggest other observables that might be useful 

in targeting mammograms to higher-risk groups, instead of (or in conjunction with) age-

based screening recommendations. For example, Evans et al. (2019) describe the results of a 

randomized trial that begins regular mammograms at age 34 for women with a mother or 

sister who has been diagnosed with breast cancer, and an ongoing trial is investigating the 

impact of risk-based screening relative to standard annual screening (Esserman et al. 2017). 

Motivated by such work, researchers have proposed that the recommended age of beginning 

mammography should be based on individual risk factors such as age of first birth, number 

of children, and breast density (Evans, Howell, and Howell 2020; Mukama et al. 2020). Our 

findings underscore the potential value of such targeting, given that compliance with the 

existing recommendation is only about one-third, and compliers appear to be 

disproportionately low-risk for cancer. They also suggest the importance of analyzing the 

impact of targeted instruments, not only for recommendations but also for price subsidies 

and other policy instruments.

More broadly, our findings suggest that considering and improving selection into screening 

is a first-order factor in an effective design and analysis of interventions to increase 

screenings. However, the extent to which we can generalize our findings in this paper, in the 

context of mammograms, to other types of screening and preventive medicine remains an 

open question. The controversy surrounding the recommendation that mammography start at 

age 40 may generate stronger selection than in other, less controversial settings (e.g., flu 

shots). Whether this is true or not is an important question that we leave for future work.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Mammogram rates by age
Figure shows share of women who had a mammogram by age, from insurance claims data 

on a set of privately insured woman-years from 2008–2012, for mammograms between 

2009–2011. Because we observe birth year, age is measured as of the start of the calendar 

year. Thus the mammogram rate at age 40 is the share of women who got a mammogram in 

the year they turned 40. Error bars (small, and therefore not visible in the figure) reflect 95% 

confidence intervals. N = 7,373,302 woman-years.
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Figure 2: Mammogram outcomes by age
Sample is limited to the set of privately insured woman-years from the private insurance 

claims data who had a mammogram. N = 7,373,302 woman-years. For each age (measured 

by the age at the beginning of the calendar year), panel (a) shows the share of mammograms 

that are true positive (left hand axis) and false positive (right hand axis); the omitted 

category is mammograms that are negative. Panel (b) presents the share of women with a 

false positive by age; this reflects both mammogram rates by age from Figure 1, and the 

share of mammograms with a false positive by age from panel (a). Error bars reflect 95% 

confidence intervals.
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Figure 3: Tumor characteristics and mortality by age
Panel (a) shows diagnosed breast cancer tumors by age in the SEER data from 2000–2015; 

N =197,956 breast cancer diagnoses. Primary y-axis shows share of breast cancer tumors 

that are in-situ; secondary y-axis shows average size of diagnosed tumors. Panel (b) shows 

5-year mortality for diagnosed breast cancer tumors separately by age of diagnoses and by 

tumor stage (in-situ and invasive) in the SEER data from 2000–2010 to account for five-year 

mortality outcomes by 2015; N = 147,243 diagnoses with non-missing 5-year mortality. 

Error bars reflect 95% confidence intervals.
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Figure 4: Characteristics of who selects into mammograms
Figure reports the ratio of health care use, behavior, and demographics for compliers relative 

to always-takers (left panel) and compliers relative to never-takers (right panel). The mean 

characteristics for these groups were calculated using regression coefficients from the 

estimation of equation (A.1) as described in Appendix B. Error bars represent 95% 

confidence intervals. Standard errors are constructed using a bootstrap with 100 repetitions 

clustered at the age level. The error bars for “Use Oral Contraceptive Pill” and “# Drinks in 

Prior Month” in the right panel are truncated at zero and two for scaling; the actual bootstrap 

confidence intervals are larger. The sample in the first section is a set of privately insured 

woman-years from HCCI from 2008–2012, for mammograms between 2009–2011. The 

sample in the second and third sections is from BRFSS for even years 2000–2012, restricted 

to women with any health insurance (the data do not distinguish between public or private 

insurance status). Details for each outcome are listed in Appendix Figures A.3, A.4, and A.5.

Einav et al. Page 33

Am Econ Rev. Author manuscript; available in PMC 2021 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5: Model fit
Figure shows model fit by comparing the observed patterns of mammogram rates, outcomes, 

and types of diagnoses by age to the fitted values from the model based on the parameter 

estimates from Table 2. The observed data on mammograms (Panel (a)) was previously 

shown in Figure 1; the observed data on share of mammograms that are true positives was 

previously shown in Figure 2a; the observed data on the share of diagnoses that are in-situ is 

a modified version of the data shown in Figure 3a. While Figure 3a presented the share of all 
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diagnosed cancers that are in-situ, we match the share of mammogram-diagnosed cancers 

that are in-situ, as shown in Panel (c). Appendix D provides more detail.
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Figure 6: Impact of changing the mammogram recommendation age from 40 to 45, by age
Figure reports the model predictions - by age - for mammogram rates, mammogram 

outcomes, and the share of diagnoses that are in-situ, based on the parameter estimates from 

Table 2. As in Table 3, we report the model predictions both under the status quo 

recommendation that mammograms begin at age 40 and the counterfactual recommendation 

that mammograms begin at age 45.
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Table 1:

Summary statistics

No.of Observations Health Care Spending ($US)

N (000s) Share Total Out-of-pocket

No mammogram 5,166.2 0.701 4,300 625

Mammogram 2,206.9 0.299 4,985 751

Conditional on mammogram:

 Negative 1,977.8 0.896 4,552 715

 False positive 214.6 0.097 6,106 952

 True Positive 14.4 0.007 47,639 2,821

Table shows summary statistics from insurance claims data on a set of 35–50 year old privately insured women from 2008–2012, for mammograms 
between 2009–2011. Each observation is a woman-year. 12-month spending measures health care spending in the 12 months after the mammogram 
(including the mammogram itself) for those with a mammogram. For those without a mammogram, we draw a reference date from the distribution 
of actual mammograms in that year. All reference dates are set to be the first of the given month. Spending is measured in the 12 months after this 
reference date.
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Table 2:

Parameter estimates

Parameter Estimate 95% Confidence Interval

αo −5.21 [−5.63, −4.48]

γo 0.10 [0.08, 0.11]

δo
in-situ 0.36 [0.29, 0.97]

δo
invasive 1.13 [0.98,56.73]

αr 0.29 [−0.63, 1.18]

γr −0.03 [−0.05, 0.00]

δr
in-situ −0.01 [−0.20, 0.77]

δr
invasive −4.67 [−143, −0.01]

Table shows the parameter estimates from the mammogram decision model. Confidence intervals are calculated using 100 repetitions of the 
bootstrap.
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Table 3:

Impact of changing the mammogram recommendation age from 40 to 45

Rec at Age 40 Rec at Age 45 Change

A. Screening and spending (per woman)

 Mammograms 4.70 (0.06) 3.80 (0.14) −0.90 (0.08)

  Negative 4.22 (0.05) 3.42 (0.12) −0.81 (0.07)

  False positives 0.46 (0.01) 0.36 (0.02) −0.09 (0.01)

  True positives 0.0208 (0.0024) 0.0204 (0.0024) −0.0004 (0.0001)

   In-situ diagnoses 0.0063 (0.0005) 0.0060 (0.0005) −0.0004 (0.0001)

   Invasive diagnoses 0.0145 (0.0019) 0.0145 (0.0019) 0.0000 (0.0001)

 Total health care spending ($) 71,326 (128) 71,007 (155) −319 (29)

B. Mortality (per 1,000 women by age 50)

 Dead 15.98 (0.53) 16.03 (0.53) 0.05 (0.03)

  Dead from breast cancer 8.23 (0.53) 8.28 (0.53) 0.05 (0.03)

  Dead from other reason 7.75 (0.00) 7.75 (0.00) 0.00 (0.00)

 Years alive, per woman 15.87 (0.00) 15.87 (0.00) −0.0002 (0.0001)

Table reports model predictions for various outcomes under the status quo recommendation that mammograms begin at age 40 (column 1) and the 
counterfactual recommendation that mammograms begin at age 45 (column 2). The predictions are generated using the parameter estimates from 
Table 2, and simulated women’s life histories under a non-screening regime based on the clinical oncology model. Panel A reports the average 
number of mammograms and different mammogram outcomes per woman over ages 35–50. Panel B shows the share of women dead (and from 
different causes) by age 50, as well as the number of years alive on average between 35 and 50. Standard errors are calculated using 100 repetitions 
of the bootstrap.
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Table 4:

Spending differences for different components of spending

Recommendation at
Difference

Age 40 Age 45

A. Estimated Selection

 Mammograms (per woman) 4.70 (0.06) 3.80 (0.14) −0.90 (0.08)

 Total health care spending ($ per woman) 71,326 (128) 71,007 (155) −319 (29)

 Dead by age 50 (per 1,000 women) 15.98 (0.53) 16.03 (0.53) 0.05 (0.03)

B. No Selection

 Mammograms (per woman) 4.70 (0.06) 3.80 (0.14) −0.90 (0.08)

 Total health care spending ($ per woman) 71,364 (111) 71,024 (147) −340 (37)

 Dead by age 50 (per 1,000 women) 15.84 (0.47) 16.02 (0.53) 0.18 (0.06)

C. Consistent Selection

 Mammograms (per woman) 4.70 (0.06) 3.80 (0.14) −0.90 (0.08)

 Total health care spending ($ per woman) 71,450 (87) 71,068 (134) −382 (48)

 Dead by age 50 (per 1,000 women) 15.54 (0.39) 15.99 (0.52) 0.45 (0.13)

Table reports model predictions under the status quo recommendation that mammograms begin at age 40 (column 1) and the counterfactual 
recommendation that mammograms begin at age 45 (column 2). Each panel reports results under different assumptions about the nature of selection 
both in the absence and presence of a recommendation. Panel A reports results based on the estimated selection patterns; these results repeat 

findings shown previously in Table 3. Panel B repeats the same exercises as in Panel A, but instead of using the estimated selection (i.e. the δo and 

δr parameters shown in Table 2), we instead assume “no selection” (i.e. we set δo = δr = 0). Panel C also repeats the exercises in Panel A but now 

assumes “consistent selection” (i.e. we set δr equal to our estimates of δo in Table 2). In both Panel B and C, we hold the overall mammogram rate 
fixed at Panel A’s predicted age-specific mammogram rates (which of course varies in column 1 and column 2), so that the counterfactuals across 
panels consider differences in selection, not in levels. To do this we adjust the intercept αr for each age and counterfactual to match the age-specific 

mammogram rates in Panel A, assuming the simulated life histories and cancer status remains constant. The small differences in mammograms in 
Panel A and Panel C are due to changes in the denominator of simulated life histories. Specifically, since fewer women die in Panel C, there are 
more years where they could potentially obtain a mammogram. Standard errors are calculated using 100 repetitions of the bootstrap.
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