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Abstract

The normal functions of genomes depend on the precise expression of messenger RNAs and 

noncoding RNAs (ncRNAs) such as transfer RNAs and microRNAs in eukaryotes. These ncRNAs 

and functional RNA structures (FRSs) act as regulators or response elements for cellular factors 

and participate in transcription, posttranscriptional processing, and translation. Knowledge 

discovery of these FRSs in huge DNA/RNA sequence databases is a very important step to reach 

our goal of going from genomic sequence data to biological knowledge for understanding RNA-

based regulation. Analyses of a large number of FRSs have indicated that the FRS can be well 

characterized by some quantitative measures such as significance and well-ordered scores of the 

local segment. Various data mining tools have been developed and successfully applied to FRS 

discovery in genomic sequence databases. Here, we summarize our efforts in the computational 

discovery of structured features of ncRNAs and FRSs within complex genomes by EDscan and 

SigED.

INTRODUCTION

It is known that almost all of the genome is transcribed; however, only a small proportion 

(~2%) of the human genome encodes protein. There is an abundance of noncoding RNAs 

(ncRNAs) encoded in human and other eukaryotic genomes. It has been demonstrated that 

ncRNAs and functional RNA structures (FRSs) play important and diverse roles in the cell 

by interacting with proteins and other nucleic acids. Well-documented instances include 

transcriptional mediation,1 RNA processing and modification,2 messenger RNA (mRNA) 

stability3 and localization, and translation of mRNA into protein.4 Among them, a number 

of distinct FRSs located in viral mRNAs also play crucial roles in their transcription, nuclear 

export, and translation, including the transactivation response element, Rev response 

element of HIV, and the internal ribosome entry sequence (IRES) found in the 5′ 
untranslated region (UTR) of picornaviruses.5

mRNA has long been recognized as the immediate source of information for translation 

from sequences containing a four base alphabet of nucleotides (nts) to the 20 amino acid 

alphabet of proteins. Although mRNA is transcribed as if single stranded, almost every 

mRNA has structure that includes various double-stranded helical base paired regions 

formed by fold-back in an antiparallel orientation between complementary segments (A:U, 
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G:C, and G:U) and the formation of unpaired loops. The loops include hairpin, internal, 

bulge, and multi-branch loops. The energy of an RNA structure is determined by summing 

the energy contributions from all of the stacked base pairs and loops it contains. The 

thermodynamic stability of an RNA fragment in the genome is often measured by the free 

energy of the formation of the folded segment.6,7

The sequences of FRSs and ncRNAs are evolutionary products that have survived because 

they execute a biological function efficiently. Knowledge discovery8 using a large numbers 

of FRSs indicates that they have well-ordered conformations and are uniquely folded. One 

of the major goals of our data mining of sequence data is to discover potential FRSs in 

genomic transcripts, to correlate them with known experimental properties, and to suggest 

candidates for further experimental studies. A number of data mining tools have been 

developed to search for ncRNAs and FRSs in genomes.9–11 Examples include genome-scale 

predictions of ncRNAs and FRSs, such as transfer RNAs (tRNAs), ribosomal RNAs 

(rRNAs), microRNAs (miRNAs), and riboswitches by comparative genomic analysis, that 

mainly rely on the conservation of an RNA primary sequence and/or an RNA structure. 

Advances in data mining FRSs in genomic sequences by comparative genomics and 

covariance analysis from other groups are fully discussed in the recent review paper.11 

However, there is no effective data mining approach to detect an FRS that lacks sequence or 

structure homology to one of the known FRSs. This latter point is the main focus of 

attention of this paper. Here, we mainly discuss our efforts in discovering the FRSs that lack 

homology information in genomic sequences, and the characterization of their distinct 

properties by the quantitative measures Ediff and Zscre of a local RNA segment and its 

statistical significance score SigZscre. In general, computational prediction of our potential 

FRSs in genomic sequences has been further verified by experimental testing of expression 

levels, functional assays by deletion or mutagenesis, and structural analysis.

FRSs ARE UNIQUELY FOLDED

Computational simulations and data mining for the evolutionary constraints that determine 

the distinct conformations of folded FRSs are often used to explore the structural feature of 

FRSs. It has been suggested that the FRSs possess well-ordered conformations that are both 

thermodynamically stable and uniquely folded.12 Using a quantitative measure, maximal 

similarity score (MSS) between two RNA structures based on a tree-edit distance algorithm,
8 the uniqueness of an RNA structure can be estimated by evaluating the difference between 

the average MSS computed from the structure of the natural RNA sequence and structures 

folded from its randomly shuffled sequences, and those MSS scores computed from the 

random structures versus random structures folded from the randomly shuffled sequences. 

For a test dataset that includes 100 tRNAs, 14 RNase P RNAs, and four other FRSs selected 

randomly from a database, data analyses8 indicated that the structural conformations of the 

114 natural ncRNAs and the other four FRSs were significantly different from those of their 

corresponding random structures. The thermodynamic stability and the well-ordered 

conformation of the FRSs were unlikely to occur by chance. Furthermore, it also indicated 

that the measure of thermodynamic stability alone is not enough for us to characterize all the 

structural properties of FRSs.
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QUANTITATIVE MEASURES OF FRS EVALUATION

On the basis of the knowledge discovery of what constitutes a well-ordered structural feature 

of FRSs, FRS can be characterized by both the thermodynamic stability and the distinct 

conformation of an FRS within a genomic sequence. Several groups13,14 have also suggested 

that FRSs can be characterized by mutational robustness, linguistic complexity, and Shannon 

entropy. Previously, we often characterized an FRS by using two quantitative measures,15,16 

the significance score (SigScr) and the stability score (StbScr) computed from a genomic 

sequence. The normalized z-score, SigScr, indicates the difference in the thermodynamic 

stability between the structure of a local, natural segment and the average derived from its 

randomly shuffled sequences. The greater the negative value of SigScr, the more significant 

the folded structure in the segment. Similarly, the normalized z-score, StbScr, signifies the 

difference in the thermodynamic stability between a specific segment at a given place and 

the average of all other overlapping fragments of the same size generated by sliding the 

window in steps of one nt along the genomic sequence. The more negative the values of 

StbScr, the more stable the folded structure in the fragment.

In a recently developed data mining tool,17 FRSs were evaluated by the measure Ediff. The 

measure Ediff of a local segment, S, is used to characterize the properties of both the 

thermodynamic stability and the distinctness of the conformation of structures folded in S of 

the genomic sequence. Ediff is defined as the difference in free energies between the folded 

optimal structure (OS) and its corresponding optimal restrained structure (ORS) in which all 

the previous base pairings in the OS are forbidden, that is, Ediff = Ef − E.As shown in Figure 

1, the Ediff value of miRNA let-7 precursor is 24.7 kcal/mol; however, the Ediff value of its 

corresponding randomly shuffled sequence is only 1.1 kcal/mol. Thus, Ediff signifies the 

uniqueness of the conformation folded in the segment.17–20 The greater the Ediff of the 

folded segment, the more well-ordered the folded structure (WFS) is expected to be. To 

facilitate comparison of Ediff computed from different segments with various sizes, a 

normalized score Zscre of Ediff for each overlapping segment is used in the data mining, that 

is Zscre = (Ediff − Ediff(w))/std(w), where sample mean Ediff(w) and sample standard 

deviation std(w) are computed from the sample composed of all overlapping segments made 

by sliding a window along the genomic sequence.

To estimate the statistical extremes of Zscre in a very long genomic sequence, we need a 

good statistical model to describe the Zscre distribution in the sample. What is the general 

behavior of Zscre in a random sample that is associated with the natural genomic sequence? 

Statistical analysis indicated that the Zscre data were asymmetric with a sample mean, m = 

0, sample standard deviation, std = 1.0.The distribution of Zscre is skewed in the positive 

direction with a long tail, and it does not follow a normal distribution.21 To estimate the 

statistical significance of Ediff and/or Zscre, a normalized z-score, SigZscre, is calculated by 

dividing the difference between the Ediff of the real and the average of the randomized 

sequences by the sample standard deviation of those Ediff measures computed from the 

randomized sequences. In the random sample, the distribution of the random variable 

SigZscre (RS) is expected to approximately follow a normal distribution.18 The statistical 

significance of Ediff can be easily estimated from the normal distribution. In many cases, 
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WFSs with high SigZscre do correlate with FRSs and other biologically interesting 

properties.

DATA MINING TOOLS FOR DETECTING FRSs IN GENOMES

FRSs were characterized by SigScr and StbScr; the main approach15 of our data mining is to 

explore an RNA sequence by choosing successive overlapping segments by sliding a fixed 

window with a step of one nt along the genomic sequence. The SigScr scores are calculated 

by comparing their lowest free energies computed from the actual segment sequences to 

those from a number of randomly shuffled sequences of the same size and base composition. 

At the same time, a comparison is also made between the local thermodynamic stability and 

the average of all overlapping segments. As a result, the StbScr is also computed. The 

FORTRAN programs SIGSTB16 and SEGFOLD15 are the operational codes for these 

computations. In general, unusually stable or unstable folding regions (UFRs) can be found 

by more extensive searches using various segment sizes to define the extent of the unusual 

regions in an mRNA.15,16 For a large data sample, a linearly transformed noncentral 

Students’ t distribution (LTNSTD) is used to delineate the distributions of SigScr and StbScr 

computed in the entire genome. Statistical tests22 have indicated that LTNSTD is a good 

statistical model to describe the behavior of the two scores in the large sample. The 

significant UFRs that are either much more stable or unstable than expected by chance are 

discovered on the basis of the derived LTNSTD. In many cases,16,23–26 UFRs do correlate 

with FRSs and other biologically interesting properties.

Using the same scan approach and a specific quantitative measure Ediff, data mining tool 

EDscan17 is used to compute Ediff and Zscre and SigED18 is used to compute SigZscre by 

sliding a window along the genomic sequence. In the computation of Ediff, Ediff = Ef − E, we 

first have to determine the secondary structure of the OS folded in S, in addition to 

computing the value of E in S. By prohibiting all base pairings in the folded OS, we then 

compute the lowest free energy of the local segment S again. Thus, we need to fold S twice 

under the two specific conditions to compute Ediff. For a given RNA sequence, a dynamic 

programming algorithm is used to predict an OS with the given energy rules7 in all of our 

approaches.

In general, the local maxima of Zscre are extracted to determine the optimized WFSs from a 

more extensive search17 using various segment sizes in the RNA sequence. The statistical 

significance of the computed WFSs is further tested by using Monte Carlo simulations 

(SigED). In SigED,18 the Ediff computed from actual segment sequences is compared with 

those from a number of randomly shuffled sequences, and as a result, SigZscre is calculated. 

In the random sample, the distribution of the random variable SigZscre (RS) is expected to 

approximately follow a normal distribution.18 The statistical significance of Ediff of WFS 

can be easily estimated from the normal distribution. In many cases,17,20,21,27 WFSs do 

correlate with FRSs and other biologically interesting properties.

Once the UFR and WFS are found in a genomic sequence, then similar structural features 

are looked for in their homologous RNAs by using EFFOLD, COMFOLD, and RNAGA. 

Homologous FRSs can be further searched for using sequence databases by HomoStRscan 
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based on both the primary sequence and the higher-ordered structures. This is different from 

approaches used by other groups,11 which require comparative genomics to determine 

significant RNA motifs. More details about all these programs can be found online at http://

protein3d.ncifcrf.gov/shuyun/rna2d.html.

DATA MINING OF FRSs IN THE 5′ AND 3′ UTRs OF mRNAs

In most eukaryotic, mRNAs translation into protein begins at the first initiation codon, AUG, 

found in the 5′ end. A notable exception was first found in poliovirus RNA, which has 

multiple unused AUG triplets in its long ~760 nt 5′ UTR. Computational analyses and 

experimental studies revealed that a special UFR called an IRES allowed the translational 

machinery of the infected cell to skip over the upstream AUGs (uAUG). Following this 

discovery, we used our computational tools to find similar structures in not only all the other 

viruses with analogous biology to poliovirus but also in other viral and cellular mRNAs that 

often have long, GC-rich, and structured 5′ UTRs with multiple uAUGs as well. The 

common structural core23 of these divergent viral IRESs shares a similar four-way junction 

motif to group I introns. However, the common structural core computed for these cellular 

IRESs24 shows a distinct, three-way junction (Y-shaped stem-loop) motif that is followed by 

a sequence that is complementary to the 3′ end of the human 18S rRNA. This 

complementary sequence is just a few nt upstream from the initiation codon (AUG). There 

are a growing number of interesting cases in which it has been shown that the conserved Y-

shaped stem-loop motifs25,26,28 play an important role in regulation of expression at a 

posttranscriptional level. Some possible roles for IRES regulation are alternative expressions 

in different cellular environments in developmental differentiation and in response to 

different stresses.

In general, human mRNAs have long 3′ UTRs with an average length of ~740 nt. It is 

conceivable that the 3′ UTR is not traversed by ribosomes. Therefore, the 3′ UTR seems to 

be a place for the assembly of complexes that can contribute to a wide range of control by 

posttranscriptional regulation. In studying the rapLR1 mRNA of an antioncogenic protein, 

we detected two remarkable FRSs in its long 2377 nt 3′ UTR. The conserved structural 

feature of the two FRSs is a long stalk-like stem-loop.29 When this long mRNA was tested 

in vitro, it was not translated efficiently, but if the long 3′ UTR was eliminated, translation 

was greatly increased. This suggested that the long double-stranded RNA (dsRNA) played a 

negative regulatory role by which the mRNA is degraded in a manner that is similar to that 

found in the RNA interference pathway. Our database search indicated that the occurrence 

rate for such large dsRNA in 3′ UTRs is ~0.19% in human mRNA; however, about 2887 

miRNA-like stem-loops are found in human 3′ UTRs.19 These miRNA-like stem-loops may 

play a role in the translational repression of gene expression. Interestingly, more FRSs have 

been recently determined in 3′ UTRs.20,27 For example, two significant UFRs were found in 

the 3′ UTR of turnip crinkle virus (TCV) that join together to fold into a three-dimensional 

structure resembling a tRNA-like shape.27 Experimental data further indicate that the FRS 

includes a ribosome-binding structural element and plays a key role in the switch between 

viral translation and replication of TCV.27
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FINDING CONSERVED STRUCTURAL FEATURES OF miRNAs IN GENOMES

In searching for significant WFSs in the intergenic sequences of human and other genomes, 

we found a large number of distinct stem-loops of miRNAs18,21,30 by EDscan and SigED. 

The statistical analysis30 of the computed Ediff for these miRNAs and their corresponding 

randomly shuffled sequences indicated that the miRNA stem-loops are distinct, well 

ordered, and can be well characterized by the score Ediff (see Table 1). To perform data 

mining for well-ordered stem-loops in genomic sequences, a specific version of EDscan, 

called StemED,30 can be used to improve the prediction. In StemED, only stem-loops folded 

in the local segment are considered in computing Ediff so that the accuracy of the predictions 

are less sensitive to the window size used (Figure 2). Also, the computational complexity is 

decreased to O (L × n2) from O (L × n3) where L is the length of the genomic sequence and 

n is the size of the sliding window. The extensive computational search requirements for 

ncRNAs in genomes indicate that EDscan and SigED are generally very useful for finding 

FRSs that are expected to be both significantly more ordered and thermodynamically more 

stable than expected by chance.

CONCLUSION

Computational methods can discover RNA structures that are associated with important 

biological properties. The need for this kind of data mining is growing in proportion to the 

size of sequence databases. Rapid advances in computational biology are providing new 

approaches for understanding complex biological systems. Advances in molecular biology 

and medicine require the combined efforts of bioinformaticians and molecular biologists. 

Such integrative approaches hold promise for elucidating gene function and RNA-based 

regulation of gene expression. With the continued improvement in integrating algorithms 

that combine statistical and computational tools for RNA folding, pattern search, sequence, 

and structure comparison, computational methods can be improved to discover FRSs that are 

associated with important biological properties.
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FIGURE 1 |. 
The optimal structure (OS) and corresponding optimal restrained structure (ORS) computed 

from Caenorhabditis elegans let-7 precursor sequence (a) and its randomly shuffled 

sequence (b). The computed lowest free energies of OS and ORS for the natural functional 

RNA are −38.5 (E) and −13.8 (Ef) kcal/mol, and from the randomly shuffled sequence are 

−15.0 (E) and 13.9 (Ef) kcal/mol, respectively. Ediff values are 24.7 kcal/mol for the let-7 
precursor and 1.1 kcal/mol for its randomly shuffled sequence. It is quite obvious that the 

greater Ediff of the folded let-7 wild-type sequence indicates a significantly more well-

ordered OS.17
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FIGURE 2 |. 
Zscre of local segments computed for the genomic sequence of Caenorhabditis elegans 
(accession no. AF274345). Zscre were computed by moving a set of windows with sizes of 

75-nt (shown in row 1), 100-nt (row 2), 125-nt (row 3), and 150-nt (row 4) in steps of 3 nt 

from 5′ to 3′ along the sequence by StemED. The plot was made by plotting the Zscre 

against the position of the middle nt of these overlapping segments. The reported stem-loop 

of let-7 can be easily distinguished in each plot by the maximal Zscre as denoted the by peak 

in the plot.30
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