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Abstract: Metal–organic framework (MOF) nanozymes, as emerging members of the nanozymes,
have received more and more attention due to their composition and structural characteristics. In this
work, we report that mixed-valence state Ce-MOF (MVCM) has intrinsic haloperoxidase-mimicking
activity. MVCM was synthesized by partial oxidation method using Ce-MOF as a precursor. In
the presence of H2O2 and Br−, MVCM can catalyze oxidative bromination of chromogenic sub-
strate phenol red (PR) to produce the blue product bromophenol blue (Br4PR), showing good
haloperoxidase-like activity. Because of the special chromogenic substrate, we constructed a ratio-
metric colorimetric-sensing platform by detecting the absorbance of the MVCM-(PR, Br−) system
at wavelengths of 590 and 430, for quantifying H2O2, where the detection limit of the H2O2 is
3.25 µM. In addition, the haloperoxidase-mimicking mechanism of the MVCM is proposed. More-
over, through enzyme kinetics monitoring, the Km (H2O2 and NH4Br) of the MVCM is lower than
that of cerium oxide nanomaterials, indicating that the MVCM has a stronger binding affinity for
H2O2 and NH4Br than other materials. This work provides more application prospects for the
development of nanozymes in the field of biosensors in the future.

Keywords: nanozyme; Ce-MOF; haloperoxidase-like activity; ratiometric colorimetric; hydrogen peroxide

1. Introduction

Nanozymes, as a new type of natural enzyme mimics, have been intensively studied
for decades [1]. Compared with natural enzymes, nanozymes have the advantages of
diverse structures, good stability in extreme environmental conditions, good repeatability,
great recyclability, low cost, and so on [2]. Because of their unique properties, nanozymes
have received widespread attention in the field of biosensing in recent years. According to
previous reports, applications based on nanozyme sensing mainly contain electrochemical
sensing [3], chemiluminescence sensing [4], surface-enhanced Raman scattering (SERS)
sensing [5], fluorescence sensing [6], and colorimetric sensing [7]. Among these biosensor
methods, sensing methods based on fluorescence and colorimetry have received extensive
attention because of their convenience, cheapness, and high sensitivity [8]. Moreover,
ratiometric detection is considered to be an ideal method to eliminate most of the interfer-
ences [9]. Among the fluorescence sensing methods, the ratiometric fluorescence method
has been extensively used in biosensing on account of its advantages of high sensitivity, less
interference, and low background [10]. For example, Lin et al. [11] established a ratiometric
fluorescent probe based on graphene quantum dots (GQDs) and o-phenylenediamine
(OPD) to detect the activity of acetylcholinesterase through the catalytic oxidation of OPD
by MnO2 nanosheets and the fluorescence quenching of GQDs. Su’s team [12] devel-
oped a ratiometric fluorescence system to detect bleomycin based on nitrogen-doped
graphene quantum dots@gold nanoclusters assembly. Additionally, the experimental
phenomenon can be identified by the naked eye, so as to achieve the purpose of visual
detection, which is an attractive feature of the colorimetric sensing [13]. Yang et al. [14]
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reported a two-dimensional, Co3O4-stabilizing Rh nanocomposite (2D Co3O4@Rh NC),
which has synergistically enhanced the oxidase-like activity between 2D Co3O4 NS and Rh
NPs. The resulting 2D Co3O4@Rh NC-TMB system can react with urea or p-aminophenol
with distinguishable color changes, so a ratiometric colorimetric method was established to
detect urea and p-aminophenol. Although there are many reports on the use of ratiometric
fluorescence in biosensing, the application of ratiometric colorimetry is rare. Hence, it is
very worthwhile to design a ratiometric colorimetric method for biosensing.

Vanadium haloperoxidases are generally secreted by the algae Corallina officinalis and
Delisea pulchra [15]. Haloperoxidase is a special peroxidase, which can mediate H2O2 to
oxidize halide X− to OX− [16]. Since the chromogenic substrate is phenol red and the
brominated product is bromophenol blue, both of which have obvious color changes,
the haloperoxidase mimics are particularly suitable for ratiometric colorimetric sensing.
So far, V2O5 nanoparticles, CeO2−x nanorods, and CuO nanoparticles have been found
to have haloperoxidase-mimicking activity. For example, Tremel’s group [17] reported
that CeO2−x nanorods show haloperoxidase-mimicking activity and the catalytic reaction
experiments show mixed valence to play an important role. Compared with CeO2−x
nanorods, bulk ceria showed little haloperoxidase-mimicking activity, indicating that the
catalytic activity is correlated with the surface area of the nanoscale CeO2−x. However, the
existing haloperoxidase-mimicking activity is low, and its analytical application is relatively
small. As we all know, the activity of the nanozyme is relevant to its shape, size, surface
modification, valence, and composition, etc. [18]. Although some reported nanozymes
show similar catalytic activity to that of natural enzymes, their intrinsic catalytic activity
still has great room for improvement because of fewer exposed active sites, lack of multi-
level structure, and their own aggregation. Many nanozymes only involve surface atoms in
enzyme-like catalysis, while a large number of internal atoms are either inert or may cause
unwanted side reactions, such as many metal oxide nanoparticle-based nanozymes [19].

Different from metal oxide nanoparticle-based nanozymes, metal–organic frame-
works (MOFs), as a new type of porous solid material, has well-defined coordination
networks, mesoporous structure, high surface area, and adjustable porosity [20]. MOFs
also have the advantages of high density and uniformly dispersed active sites. Their
porous structure and multi-channels can promote the entry of small molecule substrates
and make full contact with the active sites, which are also conducive to the transporta-
tion and diffusion of products [21]. Consequently, MOFs are considered to be an ideal
material for nanozymes [22]. For example, Jiang’s group [23] reported that MIL-53(Fe)
exhibited peroxidase-mimicking activity. It can catalyze the oxidation of OPD, 1,2,3-
trihydroxybenzene (THB) and 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of
H2O2, and its activity is higher than other nanomaterial-based peroxidase mimics. Up to
now, several MOF-based nanozymes (MOFzymes) have been reported, but none of them
exhibited haloperoxidase-like activity. Hence, it is of great importance to expand the types
of MOF-based nanozymes.

Inspired by CeO2−x nanorod haloperoxidase-mimicking activity, we synthesized a
mixed-valence state Ce-based MOF (MVCM) and investigated its haloperoxidase-mimicking
activity. In this work, we demonstrate that MVCM possesses an intrinsic haloperoxidase-
mimicking activity by catalyzing the bromination of the organic signaling compounds. The
reaction principle is that in the presence of H2O2 and Br−, MVCM catalyzes the oxidative
bromination of PR, accompanied by a color change; that is, the color of the solution changes
from yellow to blue. Due to the bathochromic shift of the absorption peak caused by the
oxidative bromination of phenol red to bromophenol blue, a ratiometric colorimetric sensor
for detecting H2O2 was designed (Figure 1). The present work brings new insight into
colorimetric sensors and provides a novel, low-cost method for the visual detection of
H2O2, which makes MVCM have a broad application prospect in biomedical analysis and
other related fields.
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Figure 1. Schematic illustration of (A) the synthesis and (B) application of the MVCM nanozyme in ratiometric colorimetric
detection of H2O2.

2. Experiments

2.1. Reagents and Materials

Cerium nitrate hexahydrate (Ce(NO3)3•6H2O), anhydrous ethanol, and sodium hy-
droxide (NaOH) were acquired from Sinopharm Chemical Reagent Co., Ltd. (Shang-
hai, China). Phenol red (PR), ammonium bromide (NH4Br), potassium bromide (KBr),
sodium bromide (NaBr), 1,3,5-benzenetricarboxylic acid (H3BTC), acetic acid (AcOH),
H2O2 (30 wt%), sodium acetate (NaOAc), ferric chloride hexahydrate (FeCl3•6H2O), cop-
per sulfate (CuSO4), sodium nitrate (NaNO3), sodium chloride (NaCl), magnesium chlo-
ride (MgCl2), glucose(Glu), lactose (Lac), fructose (Fru), phenylalanine (Phe), mercuric
chloride(HgCl2), potassium chloride (KCl), sodium sulfate (Na2SO4), and ammonium
oxalate ((NH4)2C2O4) were purchased from Beijing HWRK Chem Co., Ltd. (Beijing, China).
Celestine blue (Mordant Blue 14, 80%) was obtained from Aladdin (Shanghai, China). All
chemicals were analytical reagent grade and used without further purification.

2.2. Apparatus

Powder X-ray diffraction (XRD) patterns were recorded with a D/max 2550 VB/PC
diffractometer (Rigaku, Japan) using Cu Kα radiation (λ = 0.15418 nm) over a 2θ range of
3–50◦. The scanning electron microscopy (SEM) was performed on a FEI Quanta 400 FEG
(America FEI). X-ray photoelectron spectroscopy (XPS) data were obtained with a Thermo
ESCALAB 250XI electron spectrometer (Thermo, America) using 150 W Al Kα radiation.
The Fourier transformed infrared spectroscopy (FTIR) was recorded on a Nicolet iS50
FT-IR spectrophotometer. Ultraviolet-visible (UV-vis) absorbance spectra were measured
with a Cary 60 spectrophotometer (Agilent, USA). Electron spin resonance (ESR) was
performed on an A300-10/12 Germany Bruker. Matrix-assisted laser desorption/ionization–
time-of-flight mass spectrometry (MALDI-TOF MS) analyses were recorded on a Bruker
Daltonics (Germany).

2.3. Synthesis of MVCM

The MVCM was prepared using the reported partial oxidation method with some
modifications [24]. First, a Ce-MOF was prepared by a simple low temperature solvother-
mal method. Briefly, 8.68 g Ce(NO3)3•6H2O was mixed with 4.2 g H3BTC in water/ethanol
solution (v/v = 1:1) and then stirred for 1 h at 60 ◦C. After centrifuging and washing several
times with water and ethanol, the obtained Ce-MOF was dried overnight at 60 ◦C. Then,
the MVCM was prepared by adding 172 µL of a mixture containing NaOH (9.5 mL, 2.5 M)
and H2O2 (0.5 mL, 30 wt%) into the Ce-MOF suspension (40 mg, 8.0 mL). After shaking
for 2 min, the yellow solid was centrifuged and washed until the supernatant pH became
neutral. After drying overnight at 60 ◦C, the MVCM was obtained.

2.4. Catalytic Activity

Typically, 20 µg/mL of MVCM were added into 2 mL acetic acid buffer (1 mM, pH 4.5)
containing 11.25 µM phenol red, 30 mM ammonium bromide, and 200 µM H2O2. After
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incubation for 30 min, the absorption spectra of the mixture were determined. For compar-
ison, the absorption spectra of five different systems were measured. In the optimization
experiments, the reaction conditions (pH, temperature, incubation time, the concentrations
of MVCM, PR and NH4Br) and the bromine source were studied.

2.5. Analysis of Active Species

ESR measurement was performed by using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO)
as the reactive oxygen species trapping agent. The formation of bromine species was
detected by celestine blue (CB). The reaction mixture consisted of MVCM, NH4Br, CB, and
H2O2, and the CB was bleached in 400 min.

2.6. Kinetic Constant Assay

By measuring the apparent steady-state kinetic parameters of the reaction, the haloper-
oxidase activity of MVCM was further analyzed. The steady-state kinetic values were
monitored in time course mode at 590 nm [17]. The maximum initial velocity (vmax)
and Michaelis–Menten constant (Km) were obtained using the Lineweaver–Burk double
reciprocal, according to the following equation [25]:

1
v
=

Km

vmax[S]
+

1
vmax

(1)

Among them, v represents the enzymatic reaction speed, vmax is the maximum enzy-
matic reaction speed, [S] is the substrate concentration, and Km is the Michaelis constant. In
order to assess the kinetic parameters related to the Br4PR concentration, the Lambert–Beer
law was used to convert the dA590nm/dt value to the equivalent d [Br4PR]/dt value, and
the extinction coefficient of Br4PR(εBr4PR) was confirmed to be 72,200 M−1 cm−1.

[Br4PR] =
A590nm

d·εBr4PR
(2)

v =
d[Br4PR]

dt
(3)

2.7. H2O2 Detection Using MVCM

A distinguishable ratiometric colorimetric method was established to detect hydrogen
peroxide. Firstly, 50 µM PR (450 µL), 100 mM NH4Br (600 µL), 1 mg/mL MVCM (40 µL),
and H2O2 standard solutions with different concentrations were kept at 37 ◦C for 50 min,
the absorbance at 590 nm and 430 nm was measured by a UV-vis spectrophotometer, and
the color changes were compared. In the presence of H2O2 and Br−, MVCM catalyzes
the oxidative bromination reaction of PR, turning the solution from yellow to blue. The
absorption peak at 430 nm belongs to phenol red, and the absorption peak at 590 nm
belongs to bromophenol blue. Through the MALDI-TOF MS analysis of the samples before
and after the reaction, it was proved that the product is bromophenol blue. The relationship
between A590nm/A430nm and the different concentrations of H2O2 was explored. Therefore,
a distinguishable ratiometric colorimetric sensing method was developed, which can be
used for H2O2 detection.

2.8. The Analysis of Real Samples

The applicability of the MVCM-PR H2O2 detection system was studied using the
standard addition method. Commercial disinfectants (AL), tap water, milk, and contact
lens solutions were chosen as the actual samples. Before testing, the milk was centrifuged at
12,000 rpm to remove the organic content. Then the milk supernatant as well as contact lens
solution was diluted 10-fold [26]. Under optimized experimental conditions, the mixture
was incubated at 37 ◦C for 50 min. The absorption peaks of the supernatant at 590 nm and
430 nm were measured.
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3. Results and Discussion

3.1. Characterization of MVCM

The crystal structure of the synthesized materials was analyzed by powder XRD
(Figure 2A). In Figure 2A, by comparing the synthesized MVCM spectrum with the original
Ce-MOF spectrum, it was found that both can be consistent with the standard diffrac-
tion peak positions reported in the previous literature [27]. The results showed that
the crystal structure of MVCM remained after partial oxidation treatment. In addition,
MVCM presented the functional groups similar to that of Ce-MOF according to the FT-IR
spectrum (Figure 2B). The characteristic peaks appear in the regions 1617–1553 cm−1,
1439–1375 cm−1, and 528 cm−1, belonging to the stretching vibrations νassy (-COO-) and
νsym (-COO-) of the carboxylate ions, and the Ce-O stretching vibration, respectively [28].
The obvious signal at around 3400 cm−1 is assigned to the -OH bond. The morphology
of MVCM and Ce-MOF was characterized by SEM. In Figure 2C, the synthesized MVCM
retains the shape of the nanorod, similar to the prepared original Ce-MOF (Figure S1).
X-ray photoelectron spectroscopy (XPS) was used to analyze the elemental composition
of the synthesized MVCM. In Figure 2D, the survey spectra of the activated MVCM are
shown, illustrating the presence of Ce, C, and O. In Figure S2, the high-resolution C 1s
spectrum has two peaks at 284.79 eV and 288.58 eV, which are related to the C=C and
C=O bonds, respectively, and the value of -COOH is almost the same [29]. Figure 1E
exhibits the high-resolution XPS spectra of the Ce 3D of MVCM, indicating the presence of
the Ce3+/Ce4+ mixed-valence states in MVCM. In the figure, the v0, v′, u0, and u′ peaks
belong to Ce3+, while v, v”, v′′′, u, u”, and u′′′ are attributed to the Ce4+ ions. The peaks
at 882.17, 888.79, 897.46, 900.75, 907.09, and 916.72 eV are related to Ce4+, and the peaks
at 880.26, 885.50, 898.61, and 903.85 eV are related to Ce3+ [29]. By calculating their peak
area ratio, the ratio of Ce3+/Ce4+ in MVCM is 2.0:1.53. Consequently, a Ce-MOF with
mixed-valence states was successfully prepared. From Figure 1F, there are three BE peaks
in the O1s spectra, with binding energies of 529.56, 531.44, and 533.11 eV, respectively,
namely, 529.56 eV (lattice oxygen), 531.44 eV (defective or adsorptive oxygen species), and
533.11 eV (hydroxyl water and/or carbonates) [28–31].

3.2. The Intrinsic Haloperoxidase-Like Activity of MVCM

The haloperoxidase activity of MVCM was proved by a phenol red bromination assay.
Using PR as the chromogenic substrate, the haloperoxidase-mimicking activity of MVCM
was studied. MVCM catalyzed the bromination reaction of the organic signal compounds
(PR and Br−) in the presence of H2O2, turning the solution color into blue, as shown in the
Figure 3 inset. In order to explore the haloperoxidase-mimicking activity of MVCM, the
absorption spectra of the different reaction systems were recorded. In Figure 3, there is no
absorption peak at 590 nm for the PR + MVCM + H2O2, NH4Br + PR + H2O2, and NH4Br
+ PR + MVCM systems. However, there is a peak at 430 nm, which belongs to PR. In the
NH4Br + H2O2 + MVCM system, there is no absorption peak. The PR + NH4Br + MVCM +
H2O2 system has an obvious absorption peak at 590 nm, and the absorption peak decreases
at 430 nm, which is attributed to the MVCM-catalyzed oxidation bromination of PR by
H2O2 and NH4Br to produce bromophenol blue. Only in the fifth system the solution
turned blue, indicating that the bromination reaction of the phenol red was caused by
MVCM. Through MALDI-TOF analysis, it was proved that MVCM successfully catalyzed
the oxidative bromination of phenol red, and the product of the reaction was bromophenol
blue. As shown in Figure S3, m/z 355.161 is the protonated molecular peak of the PR
substrate (Figure S3A) and m/z 670.661 is the base peak of the bromophenol blue proton
adduct (Figure S3B).
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reaction solution had no obvious color change during the whole process of the catalytic
reaction. As shown in Figure S4A, Ce-MOF has no absorption peak at 590 nm; on the
contrary, MVCM has good haloperoxidase-mimicking activity. This may be due to the
mixed-valence states in MVCM. Meanwhile, by comparing the same characteristic quantity
of MVCM and CeO2−x, the absorption spectra at 430 nm and 590 nm were measured
under UV-vis. Under the same conditions, a preliminary comparison between MVCM and
CeO2−x shows that the catalytic performance of the former is better than the latter (Figure
S4B). This may be due to the high surface area and more exposed active sites of MOF [22].
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Celestine blue (CB) was used to detect the nature of the intermediate bromine species
involved in the PR bromination process. CB is only bleached by oxidizing the halogen
species, such as OCl− and OBr−, and it is not a substrate of any peroxidase activity and
does not react with hydrogen peroxide and superoxide anion [17]. The bleaching of CB
at 640 nm within 400 min (Figure S5) showed that the MVCM catalyzed the oxidation of
bromide to HOBr/OBr−. In Figure S6, only centrifuge tube No. 6 turns pink, while the rest
are blue, proving that the CB bleaching is due to the generation of bromine species during
the MVCM catalytic reaction rather than the adsorption of the material.

MVCM mimics haloperoxidase to catalyze Br− oxidation to generate HOBr in a mixed
solution of NH4Br and H2O2 (Figure S7). Simply described, the H2O2 molecule can replace
the location of the H2O and coordinate with the Ce3+ site [17]. This condition is unstable,
and the H2O2 molecules tend to dissociate, which will cause Ce3+ to be oxidized to Ce4+,
and formally produce a hydroxyl anion (OH−) and a hydroxyl radical (OH) as ligands.
The species Br− can be added to an O atom, where one hydroxide anion interacts with the
Br radical. However, another non-interacting hydroxide anion is easily protonated, again
creating a neutral surface position. Thus, the dissociation of the HOBr product leads to
the regeneration of the center of the initial Ce3+ site. The generated HOBr can facilitate
the bromination reaction of PR to produce Br4PR. The above results simply explain the
possible catalytic mechanism of MVCM with haloperoxidase-mimicking activity in the
mixed solution of NH4Br and H2O2.

3.4. Optimal Conditions for H2O2 Detection

The same as natural enzymes, the catalytic activity of MVCM relies on pH, tempera-
ture, MVCM concentration, etc. Hence, the optimum conditions of the MVCM catalysis
reaction were investigated to ensure the best catalytic activity of the MVCM, such as pH
value, incubation time, reaction temperature, and concentration of MVCM, PR, and NH4Br.
Since the activity of MVCM is closely connected with the pH value, the effect of pH values
(3.5, 4.5, 5.5, 6.5, 7.5, and 8.5) on MVCM activity is first studied. Using A590nm/A430nm
(A590nm and A430nm represent the absorbance of PR and Br4PR, respectively) as an index,
the best detection conditions for H2O2 were evaluated. As shown in Figure 5A, when the
pH is 4.5, the value of A590nm/A430nm reaches the maximum. This is because when the
pH is 4.5, the haloperoxidase-mimicking activity of the MVCM is the best. Consequently,
we chose 4.5 as the optimal pH value. From Figure 5B one can clearly see that as the
incubation time increases, the value of A590nm/A430nm gradually increases until it reaches
50 min. The results show that the best reaction time is 50 min. In addition, the incubation
temperature of 22–47 ◦C for this reaction was also studied. Figure 5C shows that with the
increase in reaction temperature, the value of A590nm/A430nm gradually increases, reaching
a plateau at 37 ◦C. Therefore, in the subsequent experiments, we chose 37 ◦C as the optimal
reaction temperature. Moreover, the material concentration is another important factor that
affects the activity of the mimic enzymes. As shown in Figure 5D, along with the increase
in MVCM concentration, the value of A590nm/A430nm reaches a peak at 20 µg/mL and
this concentration is selected as the optimal concentration for the reaction. Additionally,
the influence of the concentration of phenol red and ammonium bromide on the reaction
system was explored. Figure 5E,F describe the effects of the PR and NH4Br concentrations
on the intensity of the absorbance ratio. The value of A590nm/A430nm reached a peak at a
PR concentration of 11.25 µM and reached a plateau at a concentration of 30 mM NH4Br.
In general, after optimization, the optimal pH value, incubation time, reaction temperature,
and concentration of MVCM, PR, and NH4Br were 4.5, 50 min, 37 ◦C, 20 µg/mL, 11.25 µM,
and 30 mM, respectively.
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In addition, KBr and NaBr served as control samples to evaluate the influence of
bromine source. As shown in Figure S8, the absorbance of the solution with different
bromine sources is almost the same, indicating that the reaction was independent of
bromine sources. Moreover, the effect of different NaOH/H2O2 volume treatment Ce-MOF
on the catalytic activity of the material was explored. Figure S9 explores the effect of
four different volumes. Considering the catalytic activity and the maintaining crystalline
structure of MVCM, we selected a 172 uL NaOH/H2O2 volume to treat Ce-MOF.

3.5. Steady-State Kinetics Analysis

Using NH4Br and H2O2 as substrates, the steady-state kinetics was used to further
study the haloperoxidase-like catalytic mechanism of the MVCM. The kinetic data were
collected by changing the concentration of one substrate while keeping the concentration of
the other substrate constant. Figure S10A,C show the change in kinetics with the selected
substrate concentration when other parameters are constant. The steady-state reaction rates
were calculated and applied to the Lineweaver–Burk double reciprocal plot (Figure S10B,D),
according to the Michaelis–Menten equation (Equation (1)). The maximum initial velocity
(vmax) and Michaelis–Menten constant (Km) (Table 1) were obtained using Lineweaver–
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Burk plots. Km is generally considered to be an indicator of the affinity of the enzyme
to the substrate. The smaller the Km value, the stronger the affinity of the enzyme to the
substrate. Hence, the Km (H2O2 and NH4Br) of MVCM was lower than that of the cerium
oxide nanomaterials, indicating that MVCM had a stronger binding affinity for H2O2 and
NH4Br than the other materials (Table S1).

Table 1. Kinetic parameters for the MVCM haloperoxidase mimic.

Material Substrates Km (M) Vmax (M·s−1)

MVCM
H2O2 1.0 × 10−4 4 × 10−9

Br− 0.22 1.56 × 10−9

3.6. Ratiometric Colorimetric Sensing of H2O2

Based on the inherent haloperoxidase-mimicking activity of the MVCM, a distin-
guishable ratiometric colorimetric method for the determination of H2O2 was established.
It is easy to observe from Figure 6A that when the concentration of 0–500 µM H2O2 is
added, the characteristic UV-vis absorption peak of the MVCM-(PR, Br−) system at 430 nm
gradually decreases, while a new absorption peak appears at 590 nm and gradually in-
creases. It can be directly observed by the naked eye that the color of the MVCM-(PR, Br−)
system changes from yellow to blue (inset in Figure 6A). There is a good linear relationship
between A590nm/A430nm and CH2O2 in the range of 5.0–150 µM (Figure 6B) under the opti-
mized experimental conditions. The regression equation is A590nm/A430nm = 0.00961CH2O2
+ 0.01084 (R2 = 0.9954). According to the definition of the detection limit (detection limit,
S/N = 3), the colorimetric detection limit of H2O2 is 3.25 µM. The analytical performance
of the MVCM is comparable to other reports (Table S2).
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shows the corresponding photographs of the color changes.

3.7. Selectivity and Applicability of MVCM-Based H2O2 Detection System

To verify the specificity and feasibility of the H2O2 detection system based on MVCM-
PR, some potential interfering substances were added to the reaction system instead
of H2O2, including Fe3+, Cu2+, Mg2+, NO3

−, Cl−, Glu, Lac, Fru, Phe, and commercial
disinfectants (AL, about 2.5–3.5% H2O2, diluted 1000 times). As shown in Figure 7A,
although the concentration of these interferers is 10 times higher than that of H2O2, in
the reaction system containing the interferers, the ratio of A590nm/A430nm has no obvious
change, and the color change is very small. However, the diluted AL system has an obvious
blue absorption at 590 nm, and the absorbance decreases at 430 nm. According to the
calibration chart shown in the Figure 6B, the concentration of H2O2 in AL is calculated to
be about 0.887 M, which is close to its true concentration (0.816–1.142 M). Therefore, this
result shows that the H2O2 detection system based on MVCM-PR has good specificity and
feasibility under some complex conditions.
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Glu, Fru, Lac, and Phe). The absorbance was monitored at 590 nm and 430 nm after incubating at
37 ◦C for 50 min. Error bars represent the standard deviation of three trials.

In order to study the anti-interference property of the H2O2 detection system based
on MVCM-PR, some substances that may appear in the actual analysis were added into
the reaction solution, containing Hg2+, K+, Na+, NO3

−, Cl−, C2O4
2−, Glu, Fru, Lac, and

Phe. Although the concentration of these interferers is 10 times higher than that of H2O2,
the sensor system based on MVCM has good anti-interference performance (Figure 7B).

In milk and contact lens solutions, H2O2 often serve as preservative, stabilizer, and
bactericide. Since excess H2O2 is bad for human health, it is of great significance to detect
H2O2 residues in milk and contact lens solutions. The detection of H2O2 in actual samples
(such as tap water, milk, and contact lens solutions) was evaluated, and the results are
shown in Table 2. The recovery rate of the H2O2 concentration in the above samples by the
standard addition method was 92.00–104.40%, and the relative standard deviation (RSD)
was less than 2.93%. These data suggest that the MVCM could be used as a probe to detect
H2O2 in real samples such as tap water, milk, contact lens solutions, etc., without being
significantly affected by environmental interferences.

Table 2. Results of detecting H2O2 in real samples.

Sample Original (µM) Added (µM) Found (µM) Recovery (%) RSD (%) (n = 3)

tap water N.D. 9.0 8.28 92.00 2.15
N.D. 80.0 80.94 101.17 2.93
N.D. 120.0 115.20 96.00 1.30
N.D. 125.0 130.60 104.40 0.35

milk N.D. 9.0 8.76 97.33 2.53
N.D. 80.0 80.34 100.43 1.26
N.D. 125.0 118.86 95.09 1.15

contact lens solution N.D. 9.0 8.75 97.22 1.95
N.D. 80.0 81.07 101.33 2.51
N.D. 125.0 127.90 102.32 2.75

N.D.: not detected.

4. Conclusions

In summary, an MVCM was prepared by partial oxidation with Ce-MOF as the
precursor. The haloperoxidase-mimicking activity of the MVCM was proved using the
phenol red bromination assay. In addition, we confirmed the active species produced
in the reaction catalyzed by the haloperoxidase mimic. The OH radicals and bromine
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radicals played an important role in the mimic catalytic reaction of the haloperoxidase of
the MVCM. Compared with other materials, the MVCM nanozyme material has better
substrate affinity. Importantly, in the presence of different concentrations of H2O2, the
resulting MVCM-PR system produces obvious color changes. To study its applicability, a
distinguishable ratiometric colorimetric method for detecting H2O2 was developed. This
MVCM nanozyme provides a new form of ratiometric colorimetric sensing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/bios11070204/s1, Figure S1: SEM image of the original Ce(III)-MOF; Figure S2: C1s XPS
high-resolution spectra of MVCM; Figure S3: MALDI-TOF MS spectra (positive ion modes) of (A)
phenol red and (B) bromophenol blue; Figure S4: The absorption spectrum of MVCM and Ce(III)-
MOF(A), CeO2−x and MVCM (B) under the same reaction condition; Figure S5: The bleaching
of celestine blue (CB) at 640 nm indicates the formation of oxidized bromine species (e.g., OBr−);
Figure S6: Celestite blue (CB) reacts in different systems. (1. MVCM + NH4Br + CB; 2. H2O2 +
NH4Br + CB; 3. MVCM + H2O2 + CB; 4. MVCM + CB; 5. H2O2 + CB; 6. MVCM + NH4Br + H2O2
+ CB); Figure S7: Probable catalytic mechanism of the MVCM as haloperoxidase mimic; Figure S8:
Dependence on the bromine source; Figure S9: Ce-MOF was treated with different NaOH/H2O2
volumes; Figure S10: Steady-state kinetic assays of MVCM. The H2O2 concentration was varied, the
concentration of NH4Br and PR was fixed (A); the NH4Br concentration was varied, the concentration
of H2O2 and PR was fixed (C); and the double-reciprocal plots of haloperoxidase-like activity of
MVCM with a fixed concentration of one substrate relative to varying concentration of the other
substrate (B and D); Table S1: A comparison of Km value for materials-based haloperoxidase mimics;
Table S2: Comparison detection limit in different catalyst systems by means of different methods.
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