Skip to main content
. Author manuscript; available in PMC: 2021 Jul 23.
Published in final edited form as: Biometrika. 2020 Jul 13;107(4):997–1004. doi: 10.1093/biomet/asaa029

Table 1.

Bayesian variable selection with the extended stochastic gradient Langevin dynamics (eSGLD), reversible jump Metropolis-Hastings (RJMH), split-and-merge (SaM) and Bayesian Lasso (B-Lasso) algorithms, where FSR, NSR, MSE1 and MSE0 are reported in averages over 10 datasets with standard deviations given in the parentheses, and the CPU time (in minutes) was recorded for one dataset on a Linux machine with Intel® Core™i7–3770 CPU@3.40GHz.

Algorithm FSR NSR MSE1 MSE0 CPU(m)
eSGLD 0(0) 0(0) 2.91 × 10−3(1.90 × 10−3) 1.26 × 10−7(1.18 × 10−8) 3.3
RJMH 0.50(0.10) 0.16(0.042) 1.60 × 10−1(3.89 × 10−2) 2.64 × 10−5(8.75 × 10−6) 180.1
SaM 0.05(0.05) 0.013(0.013) 1.29 × 10−2(1.27 × 10−2) 1.01 × 10−6(1.00 × 10−6) 150.4
B-Lasso 0(0) 0(0) 2.32 × 10−4(3.58 × 10−5) 1.40 × 10−7(5.08 × 10−9) 32.8