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Wastewater monitoring as a supplementary surveillance tool for capturing SARS-COV-2 
community spread. A case study in two Greek municipalities  
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A B S T R A C T   

A pilot study was conducted from late October 2020 until mid-April 2021, aiming to examine the association 
between SARS-CoV-2 RNA concentrations in untreated wastewater and recorded COVID-19 cases in two Greek 
municipalities. A population of Random Forest and Linear Regression Machine Learning models was trained and 
evaluated incorporating the concentrations of SARS-CoV-2 RNA in 111 wastewater samples collected from the 
inlets of two Wastewater Treatment Plants, along with physicochemical parameters of the wastewater influent. 
The model’s predictions were adequately associated with the 7-day cumulative cases with the correlation co-
efficients (after 5-fold cross validation) ranging from 0.754 to 0.960 while the mean relative errors ranged from 
30.42% to 59.46%. Our results provide indications that wastewater-based predictions can be applied in diverse 
settings and in prolonged time periods, although the accuracy of these predictions may be mitigated. 
Wastewater-based epidemiology can support and strengthen epidemiological surveillance.   

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an 
enveloped beta coronavirus responsible for the ongoing COVID-19 
pandemic. Transmission of SARS-CoV-2 occurs predominantly through 
direct or indirect contact with infected individuals, when respiratory 
particles are inhaled or deposited onto exposed mucous membranes 
(Cevik et al., 2020). Upon exposure, the virus binds to the 
angiotensin-converting enzyme 2 (ACE-2) receptor, which in the respi-
ratory system is mainly expressed on type II alveolar epithelial cells (Ni 
et al., 2020). Within infected cells viral RNA is replicated and translated 
and new viral particles are released infecting adjacent cells. The infec-
tion of the type II alveolar epithelial cells can result in various patho-
logical findings, including the development of the Acute Respiratory 
Distress Syndrome (ARDS) which occurs either through mechanisms 
involving the release of inflammatory cytokines (cytokine storm) or by 
apoptosis pf the host’s pneumocytes (Parasher, 2021). In addition to the 
respiratory system, the ACE-2 receptor has also been found to be 
expressed in gastrointestinal cells, and it has been hypothesized that 
SARS-CoV-2 can infect and replicate in the gastrointestinal tract (Ng and 
Tilg, 2020; Wong et al., 2020). Until present, numerus studies have 
confirmed the presence of SARS CoV-2 RNA in stool samples, in a sig-
nificant proportion of infected individuals (Jones et al., 2020). 

Wastewater-based epidemiology has been gaining increasing atten-
tion in the era of COVID-19 pandemic, as a supplementary tool for 
monitoring the epidemiological burden in communities and detecting 
trends in the dynamics of virus spread. The concept is based on the fact 
that infected individuals excrete SARS-CoV-2 RNA, mainly through feces 
(Jones et al., 2020), which is then carried through the sewerage system 
to the Wastewater Treatment Plants (WWTPs), where it can be detected 
in untreated wastewater samples. Consequently, wastewater samples 
acquired from the inlet of treatment plants can be considered as 

representative samples of the population residing in the entire catch-
ment area. Monitoring SARS-CoV-2 spread through wastewater mea-
surements may constitute a cost-effective approach which is not affected 
by biases and limitations occurring in conventional surveillance prac-
tices (e.g spatial and temporal differences in health seeking behaviors, 
sampling rate, contact tracing, screening etc) (Larsen and Wigginton, 
2020). 

It has been claimed that active carriers of the virus in a community 
served by a particular WWTP can be back-calculated from sewage 
measurements through a function incorporating the concentration of 
SARS-CoV-2 RNA detected in wastewater samples along with the 
catchment area population, the wastewater flow, the decay ratio of 
SARS-CoV-2 RNA in wastewater and the excretion rate of SARS-CoV-2 
RNA from infected people (Ahmed et al., 2020; Li et al., 2021). How-
ever, the accurate estimation of abovementioned parameters is complex 
and characterized by a considerable degree of uncertainty recently 
reviewed by Li et al. (2021). Shading dynamics have been shown to have 
high inter-individual and temporal variability (Miura et al., 2021), while 
analytical uncertainties concerning the absolute quantitation of 
SARS-CoV-2 RNA in wastewater should also be kept in mind. Nonethe-
less, there are several studies reporting associations between 
SARS-CoV-2 levels in wastewater and indicators related to virus’s 
spread. The current state of knowledge concerning this association 
suggests that quantitative estimates of viral load in sewage can be linked 
to epidemiological indicators such as cumulative incidence, estimated 
period prevalence and hospitalization rates (Peccia et al., 2020; Medema 
et al., 2020a, 2020b; Vallejo et al., 2020). The determination of 
magnitude, the temporal consistency and the generalizability of these 
associations in diverse settings, remains a critical issue to be clarified in 
the evaluation of WBE as a credible surveillance tool. Moreover, some 
reports indicate that sewage surveillance can function as a crucial early 
warning tool (Róka et al., 2021; Wu et al., 2020). In the present study we 
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examined the association between SARS-CoV-2 RNA concentrations in 
untreated wastewater and 7-day cumulative cases in two Greek mu-
nicipalities of ~150.000 residents each, during a 5 month period, from 
late October 2020 until mid-April 2021, when two distinctive peaks of 
the epidemic occurred. 

2. Methods 

2.1. Study settings and sampling 

Wastewater samples were acquired from two different Waste Water 
Treatment Plants located in the cities of Larissa and Volos, Central Greece. 
Sixty-three wastewater samples were collected from the WWTP of Larissa 
between October 29, 2020 and April 14, 2021 and 48 samples were 
collected from WWTP of Volos between November 9, 2020 and April 14, 
2021. The sewerage network in the municipality of Larissa has a length of 
516 Km, and receives only municipal wastewater. It currently serves 
approximately 150,000 residents. Samples were obtained from the sewage 
inlet of the treatment plant. The vast majority of samples (58/63) were 
taken with the use of a Sigma SD900 portable sampler, (HACH Company, 
US), while the first 5 samples were collected by merging 4 different grab 
samples collected at 2-h intervals. The composite 24-h samples were ob-
tained with a sampling rate of 150 ml/hour. The sewerage network in the 
municipality of Volos has a length of 775Km, and receives mainly 
municipal wastewater and a small proportion of industrial wastewater 
(≈5%). It currently serves approximately 155,000 residents. Samples were 
obtained from the sewage inlet of the treatment plant with the use of an 
AS950 portable sampler (HACH Company, US). Composite 24-h samples 
were obtained, with a sampling rate of 100ml/10min. In both WWTPs, at 
the end of the 24-h period, wastewater was transfused to 1.5 l containers 
which were immediately transported to the laboratory for analysis within 
isothermal boxes at 2–8 ◦C. 

2.2. Laboratory analyses 

For SARS-CoV-2 detection in wastewater, a concentration protocol 
based on polyethylene glycol precipitation of the virus from 105 mL of 
primary effluent, followed by high-speed centrifugation was applied. 
For each sample, a standard concentration of poliovirus Sabin 1 vaccine 
strain was added, as a process control virus, in order to control con-
centration and extraction efficiency. RNA extraction was performed on a 
KingFisher Flex System (ThermoFisher Scientific) using the MagMAX™ 
Viral/Pathogen Nucleic Acid Isolation Kit (Applied Biosystems™). 
Finally, for the real-time reverse transcription polymerase chain reac-
tion (RT-PCR) the TaqPath™ COVID-19 CE-IVD RT-PCR Kit (Applied 
Biosystems™) (targets three different SARS-CoV-2 specific genomic re-
gions; ORF1ab, the Spike ORF and the Nucleocapsid ORF) was used 
following the manufacturer’s instructions, on a validated QuantStudio™ 
5 Real-Time PCR System (ThermoFisher Scientific). Furthermore, for 
each sample a 10-1 dilution was also analyzed, and both samples and 
their dilutions were analyzed in duplicate. Subsequently, viral load in 
each sample was calculated as shown below: 

genome copies number= 10Ct− b
m [1] 

Ct: Cycle threshold value measured for the unknown sample 
b: y-intercept of the standard curve 
m: slope of the standard curve   

rnatotal: Total volume of RNA eluted from magnetic bead extraction 
rnaPCR: Volume of purified RNA tested in PCR 
concentratetotal: Total volume of wastewater concentrate 
concentrateextracted: Volume of wastewater concentrate from which 

RNA was extracted 
wastewater: volume of the original wastewater sample processed 

with PEG procedure. 
In each sample, pH, electrical conductivity, total suspended solid 

(TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand 
(COD), Total Nitrogen (N), Ammonium-Nitrogen (NH4+-N), total 
phosphorus (P) and chlorides (Cl− ) were determined, according to in- 
house methods based on APHA et al., 2017 (APHA/AWWA/WEF, 2017). 

2.3. Acquisition and processing of epidemiological and sewage data 

Daily COVID-19 cases from the municipalities served by each WWTP, 
were obtained from the Hellenic National Public Health Organization, in 
collaboration with the Region of Thessaly. In the developed dataset, for 
each date cases were attributed based on the sampling date, not the 
reporting date. Epidemiological data were smoothed using cubic spline 
interpolation after adjusting for the week day effect. More specifically, 
two time points per week were used for spline interpolation; the first 
data point within a given week was the average value of cases from 
Sunday until Wednesday and the second data point within a given week 
was the average value of cases from Thursday until Saturday. Based on 
these two data points per week, the cubic spline interpolated the cases 
for each day of the week. This procedure was performed to reduce the 
“noise” and correct the systematic variation of sampling rate occurring 
within the same week. Cumulative cases of the previous 7 days were 
then calculated for each date. A similar approach was performed for 
smoothing of wastewater RNA concentrations to reduce the within week 
variability between measurements. In particular, the weekly average 
was appointed to the mid-day of the week (Thursday) and then cubic 
spline interpolation was performed. In Supplementary Figures (SF1- 
SF4), the actual and smoothed/adjusted daily cases and wastewater 
SARS-CoV-2 RNA concentrations are presented for both municipalities. 

2.4. Machine learning models to determine the association between RNA 
concentrations in sewage water and epidemiological data 

To examine the correlation between wastewater measurements and 
the 7-day cumulative cases, Linear Regression (LR) and Random Forest 
(RF) models were trained and tested with the machine learning Waikato 
Environment for Knowledge Analysis (Weka), using default parameters. 
Concerning RFs, 100 random trees were estimated, whereas the depth of 
each tree was not set to a certain threshold, but was allowed to be un-
limited (all other parameters were default). All models were evaluated 
with 5- fold cross-validation. Machine learning models were trained and 
tested using as predictors/features the following expressions of SARS- 
CoV-2 concentrations: i) RNA copies/ml, ii) RNA copies/ml normal-
ized for COD, iii) RNA copies/ml normalized for BOD, iv) RNA copies/ 
ml normalized for TSS, v) RNA copies/ml multiplied with total flow 
(m3/day). Next, we evaluated the various models’ performance incor-
porating different mathematical expressions of the normalized values 
namely decimal logarithm (log10), natural logarithm (ln) and square 
root as well as non-transformed values. The performance of the models 
was evaluated by calculating the correlation coefficients, mean absolute 
errors and root mean squared error. 

Feature selection was performed within WEKA by implementing the 

virus genome per ml= genome copies number*
rnaTotal

rnaPCR *
concentratetotal

concentrateextracted*
1

wastewater
[2]   
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WrapperSubsetEval method for LR and RFs. When a certain subset of 
features was selected as optimal for a certain combination of training set 
(municipality of Larissa, or municipality of Volos or both municipality 
together) and for a certain algorithm (LR or RF), this feature set was also 
used to develop models of the other combinations of cities/algorithm. 
For example, based on feature selection, a certain subset of features was 
selected to develop a LR model of Larissa. This same subset of features 
was used to develop five other models, i) a LR model of Volos, ii) a RF 
model of Larissa, iii) a RF model of Volos, iv) a LR model of the com-
bined data of Larissa and Volos, and v) a RF model of the combined data 
of Larissa and Volos. The same procedure was followed for each 

municipality/model combination. Thus, a large population of models 
was assessed and from this population, the best performing model was 
selected for each of the six combinations of city (Larissa, Volos or both 
municipalities together) and algorithm (LR or RF). In addition, Larissa 
and Volos specific LR and RF models were also developed by using only 
the square root of SARS-CoV-2 RNA concentrations or the square root of 
COD normalized concentrations. These 8 additional simple models were 
developed as a baseline to estimate the improvement of the model’s 
performance when using the extra features. For all models incorporating 
more than one feature the Variance Inflation Factors (VIFs) for each 
feature were computed to assess multicollinearity, by using IBM SPSS 

Table 1 
Association between sewage measurements and cumulative cases by different machine learning models.   

Model description Evaluation set Correlation coefficient Mean Absolute Error % 

1 Method: Linear Regression Dataset 1 (Larissa), 5-fold CV 0.8814 42.27 
Train set: Dataset 1 (Larissa) Dataset 2 (Volos) 0.9077 343.95 
Features: 

̅̅̅̅̅̅̅
Cw

√
, P, NH4–N, N  Dataset 1 (Larissa) 0.8934 37.02 

2 Method: Random Forest Dataset 1 (Larissa), 5-fold CV 0.8878 38.85 
Train set: Dataset 1 (Larissa) Dataset 2 (Volos) 0.7984 93.6 
Features: 

̅̅̅̅̅̅̅
Cw

√
, P, NH4–N  Dataset 1 (Larissa) 0.9897 11.64 

3 Method: Linear Regression Dataset 1&2(All data), 5-fold CV 0.8646 43.81 
Train set: Dataset 1&2 (All data) Dataset 1 (Larissa) 0.8622 43.82 

Features: 
̅̅̅̅̅̅̅̅̅̅
Cw

COD

√

, M3, pH, P, NH4–N  
Dataset 2(Volos) 0.9074 37.15 

4 Method: Random Forest Dataset 1&2(All data), 5-fold CV 0.9188 33.72 
Train set: Dataset 1&2 (All data) Dataset 1 (Larissa) 0.9921 9.25 
Features: 

̅̅̅̅̅̅̅
Cw

√
, Cl− , P, NH4–N, N  Dataset 2 0.9923 11.28 

5 Method: Linear Regression Dataset 2 (Volos), 5-fold CV 0.9377 35.89 
Train set: Dataset 2 (Volos) Dataset 1 (Larissa) 0.7281 188.15 
Features: 

̅̅̅̅̅̅̅
Cw

√
, P, NH4–N  Dataset 2 (Volos) 0.9511 24.29 

6 Method: Random Forest Dataset 2 (Volos), 5-fold CV 0.9602 31.56 
Train set: Dataset 2 (Volos) Dataset 1 (Larissa) 0.7371 49.87 
Features: 

̅̅̅̅̅̅̅
Cw

√
, Cl, NH4–N  Dataset 2 (Volos) 0.9956 8.25 

7 Method: Linear Regression Dataset 1 (Larissa), 5-fold CV 0.7741 59.46 
Train set: Dataset 1 (Larissa) Dataset 2 (Volos) 0.9244 43.88 

Features: 
̅̅̅̅̅̅̅̅̅̅
Cw

COD

√ Dataset 1 (Larissa) 0.7904 55.22 

8 Method: Random Forest Dataset 1 (Larissa), 5-fold CV 0.7543 53.88 
Train set: Dataset 1 (Larissa) Dataset 2 (Volos) 0.8347 62.97 

Features: 
̅̅̅̅̅̅̅̅̅̅
Cw

COD

√ Dataset 1 (Larissa) 0.9674 18.79 

9 Method: Linear Regression Dataset 2 (Volos), 5-fold CV 0.9107 45.47 
Train set: Dataset 2 (Volos) Dataset 1 (Larissa) 0.7904 49.13 

Features: 
̅̅̅̅̅̅̅̅̅̅
Cw

COD

√ Dataset 2 (Volos) 0.9244 31.86 

10 Method: Random Forest Dataset 2 (Volos), 5-fold CV 0.8721 52.58 
Train set: Dataset 2 (Volos) Dataset 1 (Larissa) 0.7359 50.69 

Features: 
̅̅̅̅̅̅̅̅̅̅
Cw

COD

√ Dataset 2 (Volos) 0.9871 13.20 

11 Method: Linear Regression Dataset 1 (Larissa), 5-fold CV 0.8157 55.58 
Train set: Dataset 1 (Larissa) Dataset 2 (Volos) 0.9373 51.77 
Features: 

̅̅̅̅̅̅̅
Cw

√ Dataset 1 (Larissa) 0.8249 57.77 

12 Method: Random Forest Dataset 1 (Larissa), 5-fold CV 0.7792 51.79 
Train set: Dataset 1 (Larissa) Dataset 2 (Volos) 0.8492 84.60 
Features: 

̅̅̅̅̅̅̅
Cw

√ Dataset 1 (Larissa) 0.9739 17.21 

13 Method: Linear Regression Dataset 2 (Volos), 5-fold CV 0.9261 40.06 
Train set: Dataset 2 (Volos) Dataset 1 (Larissa) 0.8249 44.81 
Features: 

̅̅̅̅̅̅̅
Cw

√ Dataset 2 (Volos) 0.9373 29.56 

14 Method:Random Forest Dataset 2 (Volos), 5-fold CV 0.9547 30.42 
Train set: Dataset 2 (Volos) Dataset 1 (Larissa) 0.7801 47.17 
Features: 

̅̅̅̅̅̅̅
Cw

√ Dataset 2 (Volos) 0.9939 7.87 

Features: Cw: SARS-COV-2 RNA concentrations in wastewater (RNA Copies/ml), COD: Chemical Oxygen Demand(mg/l), NH4–N: Ammonium-nitrogen(mg/l), P: total 
Phosphorus(mg/l), N: total nitrogen(mg/l), Cl: Chlorides(mg/l).F: Wastewater flow (m3/day) Depended Variable: Cumulative reported cases of the previous 7 days Dataset 1: 
Waste water measurements and epidemiological data from the municipality of Larissa(63 data points), Dataset 2: Waste water measurements and epidemiological data from the 
municipality of Volos(48 data points), 5-fold CV: 5- fold cross-validation. 
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Statistics, Version 22.0 (IBM Corp., Armonk, NY, USA). 

3. Results 

Regarding the chemical composition and properties of wastewater in 
the examined municipalities, the values of the physicochemical pa-
rameters measured in wastewater samples differed significantly be-
tween the two investigated WWTPs. Major differences were observed in 
conductivity, chlorides, total nitrogen, ammonium Nitrogen and phos-
phorus. The mean values for each parameter are presented in Supple-
mentary Table 1. 

Concerning the smoothing and normalization processes, we observed 
that the cubic-spline corrected SARS-CoV-2 concentrations were better 
correlated to the seven day cumulative cases than the raw wastewater 
RNA measurements. In addition, the correlation was further increased 
when the cubic-spline corrected concentrations were converted to their 
square-root values. For the municipalities of Larissa and Volos sepa-
rately, the square-root of the viral load achieved the best correlation, 
whereas when the data of both municipalities were merged, the square- 
root of the RNA concentrations normalized for COD achieved slightly 
better performance. Concentrations normalized for BOD, TSS or multi-
plied by total flow did not demonstrate a higher correlation. 

Subsequently, 14 different machine learning models were developed 
from different training datasets. The VIFs for each feature included in 
the models are presented in Supplementary Table 2. In models 1, 3 and 4 
(Table 1) multicollinearity was observed with Total nitrogen (N) and 
ammonium nitrogen (NH4–N) having very high VIFs. For the main 
predictor (SARS-CoV-2 RNA concentration in wastewater) the VIFs were 
low (<2) in all models. 

Table 1 presents the association between sewage measurements and 
cumulative cases, as determined by the various machine learning 
models applied. Random Forest and Linear Regression models trained 
with all available data, resulted in correlation coefficients of 0.919 
(model 4) and 0.865 (model 3) respectively after evaluation with 5-fold 
cross validation. The highest correlations were observed for models 
trained and evaluated with data from the municipality of Volos where 
the correlation coefficients ranged from 0.872 (model 10) to 0.96 
(model 6). For models trained and applied to data from the municipality 
of Larissa, the corresponsive coefficients ranged from 0.754 (model 8) to 
0.89 (model 2). When a municipality-specific model was tested against 
the other municipality meaning that the models were trained by data 
form one municipality and then evaluated with data from the other, the 
models still performed well although the associations were weaker. In 
particular, for models trained with the Larissa dataset and evaluated 
with data from Volos the correlation ranged from 0.798 to 0.937, while 
when the procedure was implemented in reverse (train set: Volos, 
Evaluation set: Larissa) the correlations ranged from 0.728 (model 5) to 
0.825 (model 13). It is noteworthy that in cross-municipality evaluation, 
simpler models not including physicochemical measurements per-
formed better. The mean absolute error for 5-fold cross-validation 
evaluations ranged from 30.42% to 59.46%. In cross-municipality 
evaluations, linear regression models based on non-normalized con-
centrations were characterized with very high errors (model 1 : 
343.95%, model 5: 188.15%), a phenomenon that was significantly 
mitigated when concentrations normalized for COD were included 
(model 7: 43.88%, model 9 49.13%). These extreme error levels were 
not observed in any of the RF models. 

Finally, as expected, 5-fold cross-validation of the data demonstrated 
significantly lower performance compared to non cross-validated eval-
uations, where the model’s estimations were very accurate (e.g model 
14, Correlation coefficient:0.99, mean absolute error: 7.87%). 

Fig. 1 provides a graphical representation of actual and predicted 
cases with 14 different Random Forest and linear regression models. In 
general, wastewater based predictions seem to capture short term 
changes in disease incidence and resembled the epidemic curve in both 
municipalities. However, we identified specific periods (e.g, January in 

Larissa) were considerable deviations between actual and predicted case 
were observed. On the other hand, very high accuracy was observed 
during the first epidemic wave in both municipalities (from October 
until December). When training and test sets were heterogeneous (the 
model was trained in one municipality and then tested on the other) the 
course of the epidemic was still captured satisfactorily (Fig. 1B and D). 

4. Discussion 

Sewage water surveillance for monitoring SARS-COV-2 RNA con-
centrations constitutes a low-cost and feasible approach for tracking 
community virus spread. In this study, we demonstrated that waste-
water monitoring can function as a supplementary surveillance tool and 
can reflect short-term changes of COVID-19 incidence during localized 
epidemics. Our results also suggest that when sewage monitoring data 
are supported by machine learning models the derived estimations of 
cumulative cases can be very accurate. It is very encouraging that 
various models performed relatively well in heterogeneous environ-
ments, in two WWTPs with different technical characteristics. 

In general, the population of trained models yielded satisfactory 
correlations between actual and predicted cases. These findings indicate 
that wastewater-based SARS-CoV-2 surveillance can be used for moni-
toring the trends and dynamics of the virus’s spread. More caution is 
suggested when quantitative estimates of incidence are attempted based 
on wastewater data, since the mean errors of the predictions are not 
insignificant. The fact that we could not identify a single model as the 
overall best performing in terms of correlation, accuracy and general-
izability in both municipalities, underlines the complexity of the rela-
tionship between sewage measurements and disease spread. The 
interpretation can be sought in the wide variety of factors potentially 
influencing the investigated relationship which include differences in 
technical characteristics of the WWTP, chemical composition and 
physicochemical properties of the wastewater samples, environmental 
parameters, analytical issues, sampling procedures, changes in surveil-
lance practices and alteration in the virus’s properties. Another issue to 
be discussed is that the strength association between actual and pre-
dicted cases varied over time. In the period of the first epidemic wave 
that peaked in November 2020, the model’s predictions were very ac-
curate in both municipalities, and both the increase and decline in dis-
ease incidence was captured satisfactorily. However, in the municipality 
of Larissa we observed a period (January 2021) when a clear increase in 
SARS-CoV-2 RNA concentrations was not confirmed by epidemiological 
data, since during this specific period the reported cases were stable. The 
second epidemic wave was also resembled by the model’s predictions, 
although the relationship seems altered (the ratio of sewage RNA mea-
surements to reported cases declined in comparison to the first wave). 
There is no ready explanation for this observation, but it should be noted 
that the two epidemic waves differed in terms of prevalence of different 
SARS-COV-2 variants, climatological parameters, testing rate and pre-
sumably health seeking behaviors. 

Our analysis was focused on the relationship between SARS-CoV-2 
RNA concentrations and 7-day cumulative cases, although a larger 
time window would also reflect a plausible scenario. SARS-CoV-2 RNA 
can enter the sewage system through wastewater discharged from 
households and other establishments frequently inhabited by active 
carriers, but also from hospitals and isolation facilities (Giacobbo et al., 
2021) and may occur in several forms in wastewater which include at 
least i) infectious protected, ii) non-infectious protected and iii) 
non-protected forms (Wurtzer et al., 2021). It has been shown that 
infected persons have been found to excrete the virus for prolonged 
periods (Cevik et al., 2021; Zhang et al., 2020). Thus, wastewater RNA 
concentrations are obviously affected from the accumulated cases re-
ported earlier than the 7 day period. However, the period that infected 
individuals excrete SARS-Cov-2 genetic material varies from person to 
person. From a practical perspective monitoring cumulative incidence 
within larger periods during an ongoing epidemic, is of limited 
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importance for policy makers as it mostly provides retrospective insights 
at the time of measurement. Our results indicate that estimating cu-
mulative cases choosing a 7-day window is feasible. We found no clear 
evidence that wastewater measurements can foreshadow reported cases. 
However, in the present report, samples were taken during epidemics in 
the examined municipalities, when significant circulation of the virus 
was present. More data of systematic wastewater monitoring covering 
periods preceding the beginning of outbreaks are essential to test the 
hypothesis. It still remains unclear if wastewater based epidemiology 
can address a critical limitation of epidemiological surveillance which is 
to capture silent SARS-CoV-2 transmission from asymptomatic and 
pre-symptomatic cases, a factor that substantially contributes to the 
emergence of COVID-19 outbreaks (Huff and Singh, 2020). 

Some limitations must be taken into account during result interpre-
tation. In some instances, a non-negligent degree of variance was 
observed in repeated wastewater measurements from the same WWTP 
in short time intervals. This variance cannot be entirely attributed to 
changes in the epidemiological burden and it is logical to assume that 
they are a consequence of changes in environmental, physicochemical or 
biological factors. Thankfully, the methods concerning the analysis and 
interpretation of the presence of SARS-CoV-2 in sewage water are 
constantly advancing. Promising efforts to reduce the associated un-
certainties by rationalizing the measurements and thus providing more 

reliable data are in progress (Petala et al., 2021). A deeper under-
standing of how different parameters affect the measured concentrations 
can lead to the development of more valid predictions and upgrade the 
role of wastewater epidemiology as an epidemiological surveillance 
tool. In addition, standardization of sampling procedures and optimi-
zation of the analytical protocols will not only increase reliability but 
also reproducibility and comparability of studies conducted in various 
settings (Alygizakis et al., 2021). Finally, the sample size used in this 
study was relatively small and a larger dataset could have improved the 
performance of machine learning models yielding lower error levels 
(Breiman, 2001). 

5. Conclusions 

The strong associations between wastewater-based based estima-
tions and actual COVID-19 cases observed in the present investigation, 
indicate that wastewater monitoring can be exploited by Public Health 
Authorities to increase the confidence in the results of conventional 
surveillance practices and can identify temporal trends of the disease’s 
spread. It is encouraging that the developed models performed well in 
heterogeneous environments in two different WWTPs, and for a pro-
longed time period. Future studies should focus on the mechanisms by 
which diverse factors (physicochemical, analytical, environmental, 

Fig. 1. Actual and predicted cases estimated by wastewater measurements using different Machine learning models in the Municipalities of Larissa and Volos 
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biological) can affect wastewater SARS-CoV-2 RNA levels, in order to 
develop novel methodologies that yield more robust and accurate 
estimations. 
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