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Gene expression analysis method 
integration and co‑expression 
module detection applied to rare 
glucide metabolism disorders using 
ExpHunterSuite
Fernando M. Jabato1,2, José Córdoba‑Caballero1, Elena Rojano1,2, Carlos Romá‑Mateo2,3, 
Pascual Sanz2,4, Belén Pérez2,5,6, Diana Gallego2,5,6, Pedro Seoane1,2,7*, 
Juan A. G. Ranea1,2,7,8 & James R. Perkins1,2,7,8

High-throughput gene expression analysis is widely used. However, analysis is not straightforward. 
Multiple approaches should be applied and methods to combine their results implemented and 
investigated. We present methodology for the comprehensive analysis of expression data, including 
co-expression module detection and result integration via data-fusion, threshold based methods, 
and a Naïve Bayes classifier trained on simulated data. Application to rare-disease model datasets 
confirms existing knowledge related to immune cell infiltration and suggest novel hypotheses 
including the role of calcium channels. Application to simulated and spike-in experiments shows that 
combining multiple methods using consensus and classifiers leads to optimal results. ExpHunter Suite 
is implemented as an R/Bioconductor package available from https://​bioco​nduct​or.​org/​packa​ges/​
ExpHu​nterS​uite. It can be applied to model and non-model organisms and can be run modularly in R; 
it can also be run from the command line, allowing scalability with large datasets. Code and reports for 
the studies are available from https://​github.​com/​fmjab​ato/​ExpHu​nterS​uiteE​xampl​es.

RNA sequencing (RNA-seq) is widely used across molecular biology and biomedicine, including rare disease 
research1. However, different experimental designs, sequencing protocols and technologies mean that the prop-
erties of the output data can vary greatly. A single analysis package is rarely sufficient to ensure robust analysis2.

Various workflows exist for initial RNA-seq data analysis to produce a table of counts, which serves as input 
for downstream processes such as differential expression (DE) analysis3,4. DE methods are based on different 
assumptions and analysis procedures, making it impossible to know the most appropriate method for a given 
dataset5. This has led to the appearance of workflows that include multiple differentially expressed gene (DEG) 
detection packages6. Previous studies have looked at combining results of multiple DEG methods to improve 
DEG detection, using consensus and ranking based strategies as well as p-value integration7–9. However, to our 
knowledge no previous work has applied machine learning based classification methods to this problem. Detected 
DEGs serve as input for functional enrichment analysis, in which lists of genes are converted into biological 
knowledge10. Although protocols suggest using functional enrichment in addition to DE analysis, few pack-
ages implement both3. Fewer still combine multiple annotation databases and custom term sets. Co-expression 
analysis, which searches for groups of co-expressed genes (CEGs) that correlate with phenotypic data11, is also 
often overlooked in RNA-seq data analysis, despite its potential for better understanding molecular processes 
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and disease12. It can be used as an alternative to DEG detection, or as a complementary analysis technique. Here 
we present a comprehensive methodology for the analysis of transcriptomic data. We provide a collection of 
tools, the ExpHunter Suite, implemented as an R/Bioconductor package including auxiliary scripts for assess-
ing performance and simulating RNA-seq data. It incorporates the DEgenes Hunter pipeline13, in addition to 
co-expression analysis, multiple reports related to quality control and result interpretation, and provide ways 
to compare and combine results. It can be used with and without reference genomes and has been applied to 
a range of species14–19, with annotation being provided through orthologous translation to perform functional 
analysis of non-model organisms, as demonstrated in previous work involving our group20. It is also possible to 
specify multifactorial experimental designs and control for additional factors. An overview of the methodology 
is given in Fig. 1.

We apply it to simulated and spike-in and real datasets, showing that some widely-used expression analysis 
methods can behave quite differently depending on the properties of the data, potentially over-predicting or 
estimating inaccurate values. We provide novel methodology to combine results, including a Naïve Bayes classi-
fier approach, that lead to robust DEG detection. The real datasets are derived from two experiments modelling 
rare diseases related to carbohydrate metabolism. We use the package to confirm existing knowledge related to 
immune cell-infiltration in Lafora disease and calcium channel involvement in PMM2-CDG, and suggest related 
genes for further study. Through co-expression analysis, we find examples of divergent expression patterns 
between mRNA transcript and protein levels for the same gene, detect genes related to the extracellular matrix 
with a potential role in PMM2-CDG and modules of genes including triggers of NK-κ B and MAPK processes 
in Lafora disease. These finding show the capability of our methodology to detect novel genes and functions for 
further study.

Figure 1.   Overview of the workflows implemented in ExpHunter Suite and their input/output. The green box 
represents the DEgenes Hunter module related to differential expression analysis; the blue box represents the 
functional Hunter module related to functional enrichment analysis. Boxes with dashed borders represent input 
and output files, including html reports.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15062  | https://doi.org/10.1038/s41598-021-94343-w

www.nature.com/scientificreports/

Results
Performance of differentially expressed gene detection methods using simulated data‑
sets.  DE analysis was performed on a range of simulated expression datasets, to evaluate how different prop-
erties of the dataset can affect the performance of DEG detection and combination methods. Multiple expression 
datasets were simulated based on the two rare disease RNA-seq experiments described in this article and an A. 
thaliana dataset from the R package TCC​21.

For the 108 combinations of parameters described in Supplementary Methods, Table 1, 100 datasets were 
simulated per experiment, leading to 24,300 datasets. We compared the DEGs detected by the different methods 
to the simulated DEGs (Fig. 2). This figure also shows the performance obtained when using combined-FDR 
values, which are based on the results of the different methods, as described in “Materials and methods” section. 
We focus on the results for 10,000 genes and three replicates, similar trends were found with other parameter 
combinations (Supplementary Report 1).

All packages show similar performances in most situations, with no single method performing the best in 
all scenarios (Fig. 2). Importantly, the combined-FDR method tends to perform well in general. Performance 
improves when the simulated logFC for the DEGs is greater. Notably, increasing the proportion of DEGs does not 
lead to better performance, but less variation in performance across replicates. The properties of the experiment 
used to generate the simulated data is also a key factor, with all methods performing better for the simulations 
based on the Lafora disease experiment. Previous studies have shown the influence of the underlying dataset in 
expression data-analysis, such as the MAQC-II study, in which multiple predictive models were built based on 
gene expression data to classify a sample with respect to disease-related endpoints22.

Figure 2.   Boxplots showing area under the curve (AUC) for different DEG detection methods applied to a 
range of simulated datasets. The datasets shown include three replicates and 10,000 genes. Plots are grouped by 
experiment from which the simulated dataset was derived (rows) and proportion of simulated DEGs (columns). 
Within each plot different values of simulated log2 fold change values for the DEGs are shown (x-axis). Boxplot 
colours represent different DEG detection methods.
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Our methodology allows the use of a consensus based threshold to ensure robust results, based on the num-
ber of methods detecting a given gene as DE. This minimum-vote threshold is further described in “Materials 
and methods” section. We applied this to the simulated datasets (Fig. 3), investigating different minimum-vote 
thresholds and comparing results with the combined-FDR. Using a one package threshold leads to reduced 
performance across most measures except recall. Increasing the threshold leads to increased precision at the 
cost of recall. The combined-FDR method performs comparatively well across all measures, obtaining similar 
results to a minimum-vote threshold of 2.

Better results are observed for the Lafora disease experiment derived simulations across most measures, with 
the exception of the vote system with a minimum-vote threshold of 1. As with the individual package analysis, 
this is followed by the PMM2-CDG and A. thaliana experiments. In terms of F-measure, defined as the har-
monic mean of precision and recall, also known as F1-score,, this gradually increased with larger minimum-vote 
thresholds for Lafora disease, whilst the opposite was true for A. thaliana. This shows the importance of taking 
the properties of the dataset into account in DE analysis. It also suggests that there is no single best strategy for 
all experiments.

Spike‑in transcript detection.  We applied the methodology to a publicly available RNA-seq dataset 
derived from samples to which known quantities of endogenous RNA had been added. Three groups of mice 
received different mixes corresponding to different quantities of transcripts of known genes; a fourth group of 
samples received no mix. For DEG detection, we focused on the comparisons between samples receiving mixes, 
as these represented more subtle changes in gene expression than those involving the no mix receiving samples.

Figure 3.   Boxplots showing performance metrics for different combination methods across a range of 
simulated experiments. The simulated datasets shown included three replicates, 10,000 genes and a simulated 
DEG proportion of 0.05. Plots are grouped by metric (rows) and experiment (columns). Boxplot colours 
represent the different combination methods used. The broken horizontal red line represents the median value 
for the combined-score system. Recall sensitivity, precision  positive predictive value (PPV). Threshold refers to 
the minimum-vote threshold used for combining the results of different methods.
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We calculated F-measure in order to compare the performance of the DEG detection methods and combina-
tion strategies (Fig. 4). Full details are shown in Supplementary Report 2. In terms of the individual methods, 
F-measure was highest for DESeq2. As with the simulated datasets, combined-FDR tends to perform well in most 
situations. Similar trends were found for AUC, except that limma performed better than edgeR (Supplementary 
Results—Methods Comparison Fig. 1A). Average performance is summarised in Table 1.

For the vote system, a threshold of only one DEG detection method leads to the highest recall, as expected 
(Table 1). This comes at the cost of precision, which is lower than for all other measures with the exception of 
NOISeq. Once the threshold is raised to 2, precision increases greatly, without causing much reduction in recall. 
Notably, precision does not increase further with the use of stricter thresholds. The Naïve Bayes approach achieves 
top performance in terms of F-measure, comparable to the consensus approach with a cut-off of 2 and DESeq2. 
For this analysis, the Naïve Bayes model was trained using simulated data-sets based on the characteristics of 
the Lafora dataset.

In terms of the estimated logFC, all methods showed similar correlation with the known values (Table 2). Here 
we included samples with no mix added, as the logFC values should theoretically be infinite in this case, however 
the different DEG detection methods deal with this problem in distinct ways. To allow for comparison with the 
real values, transcripts in the no mix samples were arbitrarily ascribed values of 1 attomoles/microlitre. Full 
details are shown in Supplementary Report 3. Correlation between estimated and known logFC values for these 
comparisons was worse than for the comparisons not involving the no mix sample (Table 2). Of note, as shown 
in Supplementary Results—Methods Comparison Fig. 1, panels B and C, we see that many non-significant genes 
in limma are indeed changing in expression by a large amount, whilst conversely using edgeR, almost all genes 
that have a relatively high logFC are significant, in line with the Venn diagram (Supplementary Results—Meth-
ods Comparison Fig. 2), illustrating the importance of running multiple packages and investigating the results.

Differences in log2 fold change estimation between methods using real datasets.  When 
applied to the rare disease datasets, the DEG detection methods showed remarkable differences to each other 
in terms of estimated logFC in a number of situations. This is illustrated in Fig. 5. Notably, the PMM2-CDG 

Figure 4.   Performance of the different DEG detection methods and vote system to detect DEGs. Boxplots 
showing the distributions of F-measure values for each method and combination approach. Individual data 
points are shown and connected according to the comparison between spike-ins for which they were calculated. 
Combined refers to the combined-FDR results. Threshold refers to the minimum-vote threshold for combining 
method results.

Table 1.   Average performance of the different methods across multiple metrics. FP false positives, FN false 
negatives, AUC​ area under the curve, recall sensitivity, precision positive predictive value (PPV). AUC is not 
shown for the threshold and Naïve Bayes methods as only single values of sensitivity and specificity could be 
produced with these methods. Numbers in bold represente the highest values for each metric.

FP FN Precision Recall F-measure AUC​

Combined 4.33 3.33 0.86 0.89 0.88 0.98

DESeq2 4.33 3.00 0.87 0.90 0.88 0.98

edgeR 4.33 3.67 0.86 0.88 0.87 0.96

limma 2.33 10.67 0.90 0.66 0.76 0.98

NOISeq 17.33 3.33 0.65 0.89 0.74 0.96

Threshold 1 17.33 3.00 0.65 0.90 0.75 –

Threshold 2 4.33 3.00 0.87 0.90 0.88 –

Threshold 3 4.33 3.67 0.86 0.88 0.87 –

Threshold 4 4.33 3.67 0.86 0.88 0.87 –

Naïve Bayes 4.33 3.00 0.87 0.90 0.88 –
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dataset, shows a much larger number of genes with significant variance, with one gene obtaining logFC values 
of − 23.5, − 8.8 and − 2.6 for DESeq2, edgeR and limma respectively. In general, limma estimated lower values. 
This graphic is included in the output reports as a way of identifying potential outlier genes and, in more extreme 
cases, problems in a dataset.

Real dataset analysis.  PMM2‑CDG.  The methodology was applied to the PMM2-CDG dataset. Full 
details of the analysis are given in Supplementary Results—Case Studies and the ExpHunter Suite generated 
report in Supplementary Report 4. They highlight the importance of running exploratory plots such as PCA and 

Table 2.   Correlation between the estimated log2 fold change values from the differentially expressed gene 
detection methods and the known log2 fold change values for all spike-in sample comparisons, followed by 
the mean and standard deviation (sd) for each method. M1–3 refer to the samples with the corresponding 
mixes added; N refers to the sample to which no mix was added. The comparisons are shown such that n/m 
refers to comparison between n and m. For example, M2/M1 refers to the comparison between mix 2 and 
mix 1. Numbers in bold represente the highest values for each metric. Numbers in bold represente the highest 
values for each comparison.

M2/M1 M3/M1 N/M1 M3/M2 N/M2 N/M3 Mean sd

DESeq2 0.96 0.98 0.78 0.98 0.84 0.88 0.90 0.08

edgeR 0.96 0.98 0.79 0.98 0.85 0.88 0.91 0.08

limma 0.97 0.98 0.83 0.98 0.87 0.89 0.92 0.07

NOISeq 0.96 0.98 0.82 0.98 0.87 0.89 0.92 0.07

mean 0.96 0.98 0.81 0.98 0.86 0.89 0.91 0.07

Figure 5.   Log2 fold change values according to the different DEG detection methods for a subset of genes from 
the (A) PMM2-CDG and (B) Lafora disease datasets. Genes chosen based on the variance of estimated log2 fold 
change values across all three methods ( ≥ 0.01 ). Genes ordered along the x-axis by decreasing variance. The 
Lafora disease dataset showed relatively few genes with significant variance in terms of logFC.
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comparing the results of the different gene detection methods. Interestingly, of the three DEG detection methods 
run on this dataset, 1081 DEGs were detected by at least one of them, but only 345 were detected by all three, 
with DESeq2 detecting many more DEGs. Given the high variability between the different methods in terms of 
different numbers of DEGs detected, we used a minimum vote threshold of three to determine prevalent genes 
for downstream functional analysis.

The functional enrichment results point to the alteration of the formation and composition of basement 
membranes in the disease, due in part to extracellular matrix and collagen related processes, including impaired 
collagen IV network formation, associated with PMM2-CDG related symptoms, intra-cerebral haemorrhages 
and stroke like episodes23,24. Figure 6A shows these processes, linked by genes shown to be significantly DE in the 
experiment. These results are reinforced by the cluster analysis, which finds a module of genes highly correlated 
with the treated samples (Fig. 6B), which shows enrichment for functions related to cell secretion, in line with the 
involvement of the extracellular matrix found in the more general enrichment studies. Notably, through network 
analysis we find CACNA1H, highly underexpressed in the disease samples, which encodes a calcium channel 
involved in various developmental disorders25. Other calcium channels, such Cav2.1, have been reported to be 
involved in PMM2-CDG cerebellar syndrome and proposed as a therapeutic target26.

Lafora disease.  The utility of our package is further emphasized by the results of its application to the Lafora 
disease dataset, full details of which are given in Supplementary Results—Case Studies. The ExpHunter Suite 
generated report is shown in Supplementary Report 5. Exploratory analysis showed that disease and control ani-
mals formed separate groups, with further subdivision between the different mutants. In contrast to the PMM2-
CDG analysis, DESeq2 did not detect any genes that were not be found by the other methods.

Results of the enrichment analysis applied to all DEGs confirmed previous findings related to microglia-
astrocyte cross talk in neurodegeneration27. Further analysis of the clusters highly correlated with the mutant 
animals found similar results, including immune system and inflammatory processes known to be important in 
the disorder and suggesting potential targets for further study and helping better understand its underpinning 

Figure 6.   Example plots taken from the PMM2-CDG study report produced by ExpHunter Suite. (A) 
functional enrichment plot for GO Biological Processes showing overrepresented categories and genes amongst 
DEGs. (B) Dendrogram based on correlation between the co-expression modules and the categorical vectors, 
calculated as described in “Materials and methods” section.
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mechanisms (Fig. 7A)28 Supplementary Report 6 shows the ExpHunter Suite generated report for one of these 
clusters.

This analysis also demonstrates the utility of the clustering for detecting potential outliers, identifying a 
module of genes that correlates strongly with a single sample. It also identifiers transcripts and proteins for the 
same gene showing correlation with distinct co-expression modules (Fig. 7B), potentially indicative of post-
translational modifications.

Discussion
It is clear that there is no single method for DEG detection that can be recommended as a one size fits all solu-
tion. Amongst the spike-in and simulated dataset analyses, for which ground-truth DEG expression values can 
be calculated, the top performing method varies between datasets. This becomes even more marked for the real 
datasets. For example, the Lafora disease experiment, showed DESeq2 was the most conservative method, not 
predicting any additional genes that were not found by at least one other method (Supplementary Results—Case 
Studies Fig. 5B). Conversely, for the PMM2-CDG experiment DESeq2 was by far the least conservative, predict-
ing hundreds of DEGs not found by either of the other methods. In general, NOISeq and DESeq2 showed high 
recall, whereas limma showed higher precision.

Given these finding, our methodology includes various methods for DEG detection. Our intention here 
was not to perform a comprehensive comparison of DEG detection methods under multiple scenarios and for 
different implementations; these already exist29–31. Instead we suggest a somewhat agnostic approach, making 
use of the multiple reports produced by our package. Moreover, we would suggest the use of a minimum vote 
threshold cut-off where possible. As we have shown, increasing this threshold leads to improved precision at the 
cost of recall. Although for the spike-in data the optimum threshold was 2 in terms of F-measure, this may differ 
for other organisms, tissues and experimental designs. As such, we are hesitant to extrapolate these findings to a 
more general rule, especially given the effects of differences in dataset properties as described above. Moreover, 
it should be noted that another study has recommended much higher thresholds, although this was based on 
the analysis of a single human dataset6.

The Naïve Bayes classifier presented here performed as well as the best performing single and combination 
methods on the spike-in dataset. Training the classifier using the simulated experiments based on the Lafora 
disease dataset, we have allowed it to learn from a wide range of potential scenarios in terms of numbers of dif-
ferential expressed genes, magnitude of fold change and more. We have focused on Naïve Bayes here because 
this model can be trained in a matter of seconds; further work could look at more elaborate classifiers. This work 
opens up a new window into the use of machine learning.

In terms of fold change estimation, methods could vary by orders of magnitude for some genes. By identify-
ing such discrepancies, our methodology can identify outlying genes and samples. Fold change is an important 
criterion when selecting genes for confirmation using techniques such as qPCR, as such its incorrect estimation 
could lead to poor target selection. This also has important implications for downstream analyses that use logFC, 
such as the popular GSEA method32.

A key component of the ExpHunter Suite, and a step overlooked in many protocols that deal with RNA-seq 
data, is the implementation of WGCNA to detect CEG modules, and their relationship with external variables 
pertaining to the samples11. Other software exists to implement such methods33, however they are dedicated to 
this purpose only, requiring the user to seek other methods and protocols.

Here we have shown, using two datasets with distinct designs and from different organisms, how co-expres-
sion analysis can be used to add an important extra facet to RNA-analysis. It allows us to confirm existing 
hypotheses and speculate novel ones. We also underline the importance of including functional enrichment when 
analysing the modules, allowing us to find things that were not necessarily found with DE analysis. For example, 

Figure 7.   Example plots taken from the Lafora disease study report. (A) Functional enrichment plot for 
GO Biological Processes overrepresented among genes in co-expression module 23. (B) Eigen-gene values 
for module 1, which represent averaged expression values for the genes within the module, as described in 
“Materials and methods” section, alongside external measure values for all significantly correlated categorical 
and continuous vectors significantly correlated with the eigen-values (p-value < 0.05), calculated as described in 
“Materials and methods” section.
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for Lafora disease, the chemokines found in the DE analysis were also found in an important module, alongside 
other genes showing similar expression patterns that were not found in the original analysis. Correlation of such 
modules with external factors is also often overlooked. We have shown that transcripts and proteins for the same 
gene can correlate with distinct modules, posing novel hypotheses about post-translational modifications that 
may affect protein stability and activity.

The biological findings shown here are currently being studied further, to elucidate the role of the collagen 
genes, ECM and basement membranes in PMM2-CDG and the potential role of the chaperones in restarting 
the cell-cycle process. For Lafora disease, the relationship between the gene modules and chemokines is being 
investigated. These appear related to the secretion of pro-inflammatory mediators and as such the results pre-
sented here indicate novel transcriptional regulators.

In terms of how the package has been implemented, it can run as user-written scripts, combining the differ-
ent functions as required, or directly from the command line, requiring little previous R knowledge. As such, 
the package can be used by the widest possible user-base. This command line usage also means the package can 
be run on computer clusters, important when running co-expression analysis on large datasets. In addition, 
the reports have been designed to provide intuitive explanations of the different stages of the analysis, showing 
multiple graphical representations of the data and how to interpret them. The modular design of the package 
permits the user to jump to specific steps in the methodology. We would like to emphasize the need for the stable 
implementations of proposed methodologies and workflows.

Material and methods
Package overview.  The ExpHunter Suite methodology has been implemented as two main analysis mod-
ules. They can be run interactively as conventional R packages or directly from the command line as scripts. 
The DEgenes Hunter module performs quality control, expression-based filtering, DE and co-expression analy-
sis. The functional Hunter module performs functional enrichment analyses, using the output of the DEgenes 
Hunter module as input. Both produce multiple files and reports as shown in Fig. 1. The modules can be run 
from the command line as scripts or from within the R environment functions. Full details at https://​bioco​nduct​
or.​org/​packa​ges/​ExpHu​nterS​uite.

Quality control, filtering and normalisation.  The count table can be filtered to remove genes with little 
evidence of expression, based on a minimum number of reads mapping to a minimum number of samples (two 
counts per million mapped reads in two samples by default).

To assess data quality, the package runs principal component analysis (PCA), calculates correlation between 
samples and produces expression heatmaps, before and after normalisation. More advanced quality control is 
also implemented for the DEG and CEG analysis packages.

Differential expression analysis.  ExpHunter Suite can launch one or several DEG detection packages. 
Currently, edgeR, limma, NOISeq and DESeq2 are included34–37 using default parameters.

DEG detection packages require a table of counts and an indication of which samples are controls and which 
are treated, specified in the target file or by input arguments. Overexpressed and underexpressed genes in treated 
samples will have positive or negative base 2 logarithmic fold change (log2 fold change, logFC) values, respec-
tively. The target file can also contain additional factors to include in the DE models, such as pairing and control 
for external factors. Columns in this file can also be included in multifactorial experimental designs, to look for 
group-specific changes and interactions between factors.

Genes are tagged as prevalent/possible DEGs, based on package results, using a user-specified threshold: if a 
gene is detected as DE by at least as many packages as the threshold, it is considered a prevalent DEG according 
to this vote system. Conversely, if a gene is detected as DE by at least one method but fewer than the threshold, 
it is considered a possible DEG. By default, the threshold comprises an adjusted p-value < 0.05 and absolute 
logFC ≥ 1.

The package also performs score integration to obtain combined logFC and adjusted p-value/FDR values for 
each gene across all packages. LogFC values are combined using the arithmetic mean and the FDR values are 
combined using Fisher’s method. The combined-FDR can also be used to decide whether a gene is DE, instead 
of the vote system described above.

Naïve Bayes classifier.  The results of the different DE detection packages can also be combined using a Naïve 
Bayes classifier. For this approach, we train the model using vectors of p-values calculated by each package 
alongside labels indicating whether the vector represents a DEG or non-DEG. These vectors are derived from 
simulated datasets described below in the Study datasets sections. Multiple datasets were created including dif-
ferent numbers of genes changing between case and control samples and different magnitudes of fold change. 
The model, once trained on these datasets, can then be used to predict DEG status for a novel gene, given a vector 
of p-values. Full details are given in Supplementary Methods.

Co‑expression network analysis.  Weighted gene co-expression network analysis (WGCNA)11,38 is 
employed to locate modules of genes showing correlated expression across samples. This process is automated, 
but produces various graphics that can indicate problems that require user intervention. The expression values 
for the genes in each module are also summarised to produce a single value per sample (eigen-gene value)11. 
Correlation between the eigen-gene values for each module and the additional factors in the target file are also 
calculated. For quantitative values, correlation is calculated directly using Pearson’s correlation coefficient. Qual-

https://bioconductor.org/packages/ExpHunterSuite
https://bioconductor.org/packages/ExpHunterSuite
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itative variables are first converted into binary vectors using the WGCNA package. Full details in Supplementary 
Methods.

Functional analysis.  The functional analysis module is aimed at interpreting gene lists by looking for 
enrichment of sets of functionally related genes, i.e. sets of genes involved in the same biological process/path-
way, with shared function or similar cellular location. These sets can be predefined, or the user can supply his 
own set using the Gene Matrix Transposed file format (*.gmt). Functional analysis using a non-model organism 
can be performed using an orthologue dictionary to borrow information from another species. This module 
integrates directly with the DEgenes Hunter module, searching for enrichment within the lists of identified 
DEGs/CEGs.

Multiple annotation systems have been integrated: Gene Ontology39, KEGG40 and Reactome Pathway 
Knowledgebase41. Over-Representation Analysis is used, based on significant overlap between the input DEG/
CEG gene list and the different sets of functionally related genes42. Gene Ontology (GO) is analysed using both 
topGO43 and clusterProfiler42, KEGG using clusterProfiler and Reactome using ReactomePA44.

Output files and results.  Tables of results are generated for each of the DEG detection methods specified. 
A general output table is also created, which contains all DEG and CEG related results. HTML reports that allow 
the user to inspect the results and identify potential problems are also produced. The DE analysis report contains 
multiple plots for checking the quality of the samples, including Venn diagrams and bar charts of the results of 
the DEG detection methods. A section containing the co-expression results is also added, if applicable.

The functional analysis module produces a set of tables showing the enriched categories. There is a general 
report to help the reader interpret the results and identify the most relevant enriched terms, as well as connec-
tions between terms. If co-expression analysis is performed, a report is also created for each module, containing 
additional information such as plots of gene expression and the relationship between eigen-gene values and 
phenotypic data.

Study datasets.  We show the utility of our methodology by applying it to simulated datasets, publicly avail-
able spike-in data and real RNA-seq rare-disease datasets. Full details including experimental design and how 
the packages were used are given in Supplementary Methods. Simulated datasets The ExpHunter Suite includes 
methodology to simulate an RNA-seq counts table, based on the R package TCC​21. Full details are given in Sup-
plementary Methods. Using this method, we produce datasets based on the Arabidopsis thaliana count table 
from TCC and the real disease datasets. In total, 24,300 simulated datasets were produced, investigating a range 
of parameters (Supplementary Methods, Table 1). The AutoFlow workflow manager was used to handle package 
executions45. Spike-in data RNA-seq data was obtained from a previously published experiment using mouse 
embryonic stem cells, for which synthetic RNA corresponding to 47 transcripts had been added (spiked-in) to 
the samples before sequencing46. These transcripts correspond to endogenous mouse genes whose expression 
could not be detected in these samples. Real study cases We applied our methodology to two rare disease data-
sets. A minimum-vote threshold of 3 was used to determine prevalent DEGs for downstream analysis. The first 
disease, PMM2-CDG is a heterogeneous, multi-systemic disease caused by the deficiency of the PMM2 enzyme, 
for which there is no effective treatment47,48. The dataset was derived from skin fibroblast cell lines from patients 
and controls, and distinct groups of samples were derived before and after the addition of a molecular chaper-
one. The second, Lafora disease is a neurodegenerative disorder that leads to progressive myoclonus epilepsy, 
characterised by the accumulation of insoluble poorly branched glycogen deposits in the brain and peripheral 
tissues49. The dataset consisted of three groups of mice: two mutant groups which exhibited disease symptoms 
(Epm2a and Epm2b) and a control group.

The study was approved by the Ethics Committee of the Universidad Autonoma de Madrid (CEI-105-2052) 
and conducted according to the principles of the Declaration of Helsinki. All participants gave informed consent.

Data availability
Code is available at the bioconductor landing page https://​bioco​nduct​or.​org/​packa​ges/​ExpHu​nterS​uite. The latest 
version of the code can be found at https://​github.​com/​seoan​ezonj​ic/​ExpHu​nterS​uite. There is a specific github 
site for the simulated data and case-studies at: https://​github.​com/​fmjab​ato/​ExpHu​nterS​uiteE​xampl​es. The dataset 
supporting the results of this article are available in the Sequence Read Archive SRA [https://​www.​ncbi.​nlm.​nih.​
gov/​sra/​PRJNA​746239 (Lafora Disease) and https://​www.​ncbi.​nlm.​nih.​gov/​sra/​PRJNA​747153 (PMM2-CDG)] ;  
all FASTQ files as well as important processed data necessary to repeat analysis have been made available.
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