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Abstract: Infections with the deadliest malaria parasite, Plasmodium falciparum, are accompanied by
a strong immunological response of the human host. To date, more than 30 cytokines have been
detected in elevated levels in plasma of malaria patients compared to healthy controls. Endothelial
cells (ECs) are a potential source of these cytokines, but so far it is not known if their cytokine
secretion depends on the direct contact of the P. falciparum-infected erythrocytes (IEs) with ECs in
terms of cytoadhesion. Culturing ECs with plasma from malaria patients (27 returning travellers)
resulted in significantly increased secretion of IL-11, CXCL5, CXCL8, CXCL10, vascular endothelial
growth factor (VEGF) and angiopoietin-like protein 4 (ANGPTL4) if compared to matching controls
(22 healthy individuals). The accompanying transcriptome study of the ECs identified 43 genes that
were significantly increased in expression (>1.7 fold) after co-incubation with malaria patient plasma,
including cxcl5 and angptl4. Further bioinformatic analyses revealed that biological processes such as
cell migration, cell proliferation and tube development were particularly affected in these ECs. It can
thus be postulated that not only the cytoadhesion of IEs, but also molecules in the plasma of malaria
patients exerts an influence on ECs, and that not only the immunological response but also other
processes, such as angiogenesis, are altered.
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1. Introduction

Despite the advances in malaria control programs, malaria remains one of the most
detrimental infectious diseases worldwide. In 2019, about 229 million cases of malaria were
recorded, including 409,000 cases of deaths [1]. Within the five species that cause malaria
in humans, Plasmodium falciparum is the most clinically relevant one and responsible for
most deaths. The complications caused by malaria infection are multifactorial; both the
parasite and the host contribute. A central part of the pathogenesis is the cytoadhesion
of P. falciparum-infected erythrocytes (IEs) within the vascular bed of vitally important
organs, such as the brain, heart, lung, stomach, skin and kidney [2—4]. Besides blockage of
capillaries due to the cytoadhesion of the IEs, increased inflammatory cytokine production,
endothelial dysfunction and increased vascular permeability also occur in the affected
tissue [5-7]. As a result of the immune response induced by parasite growth and cytoadhe-
sion to the endothelium, patients develop fever, headaches, muscle aches and rigors [8-12].
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According to the age and immune status of the patient, severe lethal complications, such
as cerebral malaria (CM), lung injury, renal failure, acidosis and severe anaemia, may
develop [11-13]. Not only the acute complications affect the patients, but also one third
of survivors (African children and adult travellers) were found to suffer from long-term
health problems, such as cognitive and neurological impairments [14-16].

Several in vitro studies have shown that interaction of the IEs with endothelial cells
(ECs) increase the expression of various genes encoding proinflammatory cytokines, such
as IL-6, IL-1 and tumor necrosis factor-alpha (TNF-«), and chemokines, such as CXCLS,
CCL2, CCL20, CXCL1, CXCL2 and CCLS5, which are important for the recruitment of
leukocytes to the endothelium during inflammation [17-19].

Diverse plasmodial antigens and released components, as well as endogenous metabo-
lites associated with danger signals, have repeatedly been shown to stimulate the im-
mune system. Glycosylphosphadidylinositol anchors of P. falciparum proteins have been
the first ones described [20], leading to production of the proinflammatory cytokines in
macrophages [21]. It was also shown that in monocytes fed with hemozoin, expression of
genes encoding for cytokines and chemokines was increased [22]. In macrophages, incu-
bation with hemozoin resulted in an increase in various chemokine transcripts, including
CCL3, CCL4, CXCL1 and CCL2 [23], but phagocytosis of hemozoin leads to impairment of
macrophage function [24]. Thus, P. falciparum malaria is accompanied by a strong immuno-
logical reaction of the host. This considerable increase in systemic and local inflammation
contributes significantly to the pathogenesis of malaria. The immune response triggered
by P. falciparum is a very complex event. To date, well over 30 cytokines have been de-
scribed, which can be detected in serum or plasma of malaria patients in larger quantities
compared to healthy controls. These include CCL2, CCL4, CXCL4, CXCL8, CXCL10, CCL3,
IL-1p3, IL-6, CXCL2, TNF-¢, interferon-gamma (INF-y), IL-1«, IL-12, IL-17A, IL-15, IL-10,
IL1-RA, CCL20, vascular endothelial growth factor (VEGF), IL-13, IL-31, IL-33, CXCL9,
IL-9, CCL28 and granulocyte-colony stimulating factor (G-CSF) [5,25-38]. Significantly
increased amounts of CCL2, CCL4, CXCL4, CXCL8, CXCL10, IL-1RA, IL-6, TNF-x and
G-CSF were detected in patients with CM [27,29,39,40] and the amount of some cytokines
(CCL2, CCL4, CXCL4, CXCL8, CXCL10 and CCL3) directly correlates with the severity of a
malaria infection [25,26,29,30,36].

Plasma levels of 29 biomarkers, including various chemokines and cytokines, were
investigated in patients with CM and non-CM. However, significantly increased levels in
patients with CM compared to non-CM were only found for IL-6, CXCL8 and IL-1RA [26].
A positive correlation with parasitaemia was described for CCL20 and CXCL9 [36].

To date, there are no studies comparing the levels of different cytokines in the plasma
of P. falciparum-infected returning travellers and, in parallel, elucidating the influence of
these plasmas on the stimulation of ECs and the associated secretion of these factors into
the cell culture supernatant as well as their influence on EC gene expression.

Our studies showed that co-incubation of brain ECs with plasma from malaria pa-
tients resulted in significantly increased secretion of IL-11, CXCL5, CXCL10, VEGF and
angiopoietin-like protein 4 (ANGPTL4). A comparative transcriptome analysis revealed
that, in addition to an inflammatory response, biological processes such as cell migration,
cell proliferation and tube development, as well as the KEGG ‘IL-17 signalling pathway’,
were particularly affected.

2. Materials and Methods
2.1. Blood Plasma of Malaria Patients and Healthy Control Individuals

The study was performed on 27 EDTA-plasma samples from patients diagnosed with
P. falciparum malaria, with parasitaemia between <1% and 11%. All patients were adult trop-
ical returnees and were treated as in- or outpatients in Hamburg, Germany. Patients were
either seen in the outpatient clinic of the University Medical Center Hamburg-Eppendorf
(UKE) at the Bernhard Nocht Institute for Tropical Medicine, treated as inpatients at the
UKE, or at the Bundeswehrkrankenhaus Hamburg. As controls, 22 plasma samples from



Cells 2021, 10, 1656

30f20

healthy individuals were used. The study was approved by the relevant ethics committee
(Ethical Review Board of the Medical Association of Hamburg, reference numbers PV3828
and PV4539) (Supplementary Table S1).

2.2. HBEC-5i Brain Endothelial Cell Line

This project was carried out using human brain endothelial cells HBEC-5i, derived
from the cerebral cortex and immortalized with the SV40 large T antigen (American Type
Culture Collection (ATCC), Manassas, VA, USA; no. CRL-3245). HBEC-5i cells were seeded
in 0.1% gelatin-coated T25 culture flasks. For normal cell culture, DMEM/F-12 complete
growth medium (Gibco, Thermo Fisher Scientific, Bremen, Germany) containing 40 pug/mL
endothelial cell growth supplement (ECGS; Merck Millipore, Darmstadt, Germany), 10%
heat-inactivated foetal calf serum (Capricorn Scientific, Ebsdorfergrund, Germany) and
9 pg/mL gentamycin (Sigma-Aldrich Merck, Darmstadt, Germany) was used. The en-
dothelial cells (ECs) were cultivated at 37 °C and 5% CO, atmosphere and split every
2-4 days when a confluence of 70-90% is reached.

2.3. Stimulation Assay of ECs with Plasma of Malaria Patients and Healthy Control Individuals

The 96-well plates were coated with 50 uL of 0.1% gelatin (Sigma-Aldrich Merck,
Darmstadt, Germany) in Dulbecco’s Phosphate-Buffered Saline (DPBS; PAN, Biotech,
Germany) per well and incubated at 37 °C for 30 min. After incubation, the gelatin was
aspirated and 50 uL DMEM/F-12 medium was placed in each well and incubated at 37 °C
for 15 min to adjust the pH value. After removal of the DMEM /F-12 medium, 1 x 10* ECs
in 200 uL. DMEM/F-12 medium were added to each well. The cells were cultivated for two
days with a medium change after the first day.

For the stimulation assay, the cells were washed twice with 100 uL/well DMEM/F-12
medium each before addition of the human plasma. In total, 80 uL of a plasma mixture
consisting of 58 pL DMEM/F-12/gentamycin medium, 2 pL heparin (10,000 units/mL;
Braun, Melsungen, Germany) and 20 pL human plasma were added per well. Each plasma
sample was analysed in quadruple. The 96-well plate was then incubated for 6 h at 37 °C
(5% COy). After completion of the 6 h incubation, the supernatant was removed, and
the wells were washed 4 times with DMEM/F-12/gentamycin medium. Then 100 uL
of DMEM/F-12 complete growth medium was added and the cells were incubated for
another 42 h before the cell culture supernatant was removed; after a total amount of 48 h,
the four replicates were pooled, centrifuged and the supernatant immediately frozen at
—80 °C.

For the transcriptome analyses, the ECs were incubated in T25 cell culture flasks
(monolayer 70-90%) containing 4.5 mL DMEM/F-12/gentamycin medium, 50 uL heparin
(10,000 units/mL; Braun, Melsungen, Germany) and 500 pL plasma of malaria patients and
healthy controls, respectively (plasma concentration 10%), for 7 h. Afterwards, the cells
were washed and lysed with 200 uL Trizol (Invitrogen, Thermo Fisher Scientific, Bremen,
Germany) and stored at —80 °C until the RNA was isolated.

2.4. LEGENDplex™ Assay

The LEGENDplex Kits used were multiplex bead-based assay panels manufactured
by BioLegend, Inc. (San Diego, CA, USA). The two bead panels that were chosen for
measurement of cytokine concentration in every sample included the pro-inflammatory
cytokines IL-1oc and IL-13, the pro- and anti-inflammatory cytokines IL-6, IL-7, IL-12 and
IFN-{3, the anti-inflammatory cytokines IL-1RA, IL-10 and IL-11, and the proinflammatory
chemokines CCL3, CCL20, CXCL1, CXCL5, CXCL8, CXCL10 and VEGEF. The bead-assays
were performed following instructions provided by the manufacturer in duplicates. After
completion of the reaction, the samples were transferred to FACS tubes to be read on a flow
cytometer (BD Accuri® C6 Flow Cytometer, Thermo Fisher Scientific, Bremen, Germany).

The concentration of a particular analyte was determined by the provided LEGEND-
plexTM Software v8 based on a known standard curve. Values with evident methodical



Cells 2021, 10, 1656

4 0f 20

errors were excluded. After calculating the mean of the two replicated values for each
analyte, statistical analyses were performed using GraphPad Prism (version 9.02 (134)
GraphPad Software Inc, San Diego, CA, USA). A Mann—-Whitney U test was run to deter-
mine differences in cytokine concentration between groups. Exact p-values corrected for
ties were calculated and differences considered significant for p-values < 0.05. In case of
normally distributed data, an independent samples t-test was performed to support the
results (data not shown). Patient’s plasma samples were divided into three subgroups,
based on parasitaemia. Kendall’s tau b correlation was run to determine the relationship
between the analyte concentration and level of parasitaemia. The correlation between the
cytokines and parasitaemia was performed by means of a correlation analysis using the
nonparametric Spearman correlation (GraphPad Prism, version 9.02 (134)). For multiple
testing, the Benjamini-Hochberg adjustment and conservative Bonferroni correction were
applied [41].

2.5. ANGPTL4 and TNF-a ELISA

Human ANGPTL4 and TNF-o was measured using ELISA after respective dilution of
the sample in a reagent dilution buffer following the instructions of the manufacturers (R&D
Systems, Minneapolis, MN, USA). Significance was evaluated using the Mann-Whitney
U test.

2.6. RNA Isolation

RNA was isolated using a PureLink RNA Mini Kit (Thermo Fisher Scientific, Bremen,
Germany) according to the manufacturer’s instructions. Genomic DNA contamination was
removed using the TURBO DNA-free Kit (Invitrogen, Thermo Fisher Scientific, Bremen,
Germany) followed by a magnetic bead enzymatic wash using Agencourt RNAClean XP
(Beckman Coulter, Krefeld, Germany). The concentration and quality of isolated RNA
were assessed using an Agilent 2100 Bioanalyser System with the Agilent RNA 6000 Pico
Kit (Agilent Technologies, Ratlingen, Germany). The RNA was sent to BGI (Shenzhen,
China), where RNAseq was performed using the Illumina HiSeq 4000 PE100 platform
(approximately 11 M PE reads per samples). Reads were quality and adapter trimmed
using Trimmomatic [42] and aligned to the human transcriptome by RSEM [43] using
Bowtie2 [44] as an aligner. Differential expression was determined using DESeq2 [45].

3. Results
3.1. Determination of Concentrations of Different Cytokines in Plasmas of Malaria Patients and
Healthy Controls

In the first part of this study, the plasmas of 27 patients infected with P. falciparum
with a parasitaemia between <1% and 11% and of 22 healthy individuals were analysed
for the presence of 16 different cytokines. All 27 patients were adult tropical returnees
with symptomatic P. falciparum malaria (Supplementary Table S1). In this study, the pro-
inflammatory cytokines IL-1cc and IL-1f3, the pro- and anti-inflammatory cytokines IL-6,
IL-7,1L-11, IL-12 and IFN-f3, the anti-inflammatory cytokines IL-1RA and IL-10 and the
proinflammatory chemokines CCL3, CCL20, CXCL1, CXCL5, CXCL8 and CXCL10, as
well as the growth factor VEGE, were analysed using a customized LEGENDplex assay
(Supplementary Table S2).

For cytokines IL-6, IL-1RA, IL-10 and IL-11 and chemokines CXCL1, CXCL8, CXCL10,
CCL3 and CCL2, significantly higher concentrations were found in plasma samples of
malaria patients compared to healthy controls (Figure 1A). For IL-6, IL-1RA, CCL3, CCL20
and CXCL10, the significant difference was already detected at a parasitaemia < 1.0%. For
CXCLS8, IL-10 and CXCL1, a significantly higher value was found at a parasitaemia > 1%
and for IL-11 and CXCLS5 only at a parasitaemia > 2.5% (Figure 1A).
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Figure 1. Levels of cytokines in plasma derived from malaria patients (M) and healthy control individuals (H). (A) The
amount of cytokines was measured with a bead-based LEGENDplex assay (1 = 13-26, Supplementary Tables S2 and S3).
Data are expressed as the mean + standard deviation (SD). Statistical analyses were performed using the Mann-Whitney U
test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001). (B) For CXCL1, the correlation between the amount of cytokine
and parasitaemia was performed by means of a nonparametric Spearman correlation using GraphPad Prism (version 9.0.2
(134)). Abbreviations: Healthy controls (HAY); malaria patients (MAD); malaria patients with a parasitaemia < 1% (MP<1%),
1-2.5% (MF1-25%) and >2.5% (MF>2:5%),

The greatest increase in the amount in the plasmas of malaria patients compared to
healthy controls was observed for IL-1RA (HA: 1.8 + 6.9 pg/m, MA!L: 1296 + 1378 pg/m;
720-fold increase), followed by CXCL1 (HA: 3.1 & 11.7 pg/mL, MAll: 54.4 + 103.0 pg/mL;
17.5-fold increase), CCL20 (HA: 3.5 & 5.0 pg/mL, MAl: 31.8 + 36.6 pg/mL; 9.1-fold
increase) and IL-11 (HA: 32 + 8.2 pg/mL, MAIL 271 4+ 415 pg/mL; 8.5-fold increase)
(Figure 1A, Supplementary Table S3). For CXCL1, there is a correlation between the amount
of cytokine detected and the different levels of parasitaemia (p = 0.0013, r = 0.5) (Figure 1B).
For none of the other cytokines could a correlation with parasitemia be demonstrated.
Interestingly, CXCLS5 is the only chemokine that was detected at significantly lower levels
in plasma of malaria patients than in plasma of healthy controls (Figure 1A). For VEGF, no
significant difference was found between patients with malaria infection and the healthy
controls, but four malaria plasma samples showed an increase of the VEGF amount, while
all remaining individuals had levels beyond the detection limit of the LEGENDplex assay
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(Figure 1A). The amounts of IL-1 «, IL-1f, IL-7, IL-12 and IFN-f3 were also below the
detection limit of the LEGENDplex assay.

Thus, for nine of the 16 cytokines examined, a significantly increased amount and for
one (CXCL5) a lower amount was found in the plasma of infected individuals compared
to healthy controls. Five cytokines were below the detection level of the assay (Figure 1A,
Supplementary Table S3).

The amount of TNF-« in the plasmas of malaria patients and healthy controls was
determined separately by ELISA. On average, significantly less TNF-« is present in the
plasmas of malaria patients compared to controls (HA: 3770 4 11,925 pg/mL, MAIL
75 £ 160 pg/mL; however, this was not significant (p = 0.0531) (Figure 2, Supplementary
Table S4).

60,000
40,000

20,000

800 T

TNF-o (pg/mL)

® ®
600
400
200
0-
HAI MAI MP<1% MP125% \P>2.5%

Figure 2. Amount of TNF-« in plasmas of malaria patients and healthy individuals (Supplementary
Table S4). Abbreviations: Healthy controls (HA); malaria patients (MA); malaria patients with a
parasitaemia < 1% (MP<1%), 1-2.5% (MF1=25%) and >2.5% (MF>25%).

3.2. Determination of Concentrations of Various Cytokines in the Culture Supernatant of ECs
Stimulated with Plasma from Malaria Patients and Healthy Controls

The next step was to investigate whether the plasma of malaria patients and non-
infected, healthy individuals have an influence on EC cytokine secretion. It must be
mentioned here that, of course, not only cytokines present in plasma, but also various
plasmodial antigens and released components, as well as endogenous metabolites, can
stimulate ECs. For this purpose, ECs of the brain EC line HBEC-5i were stimulated for
six hours with human plasma using a concentration of 25%. Afterwards, the plasma-
containing culture supernatant was removed, and the ECs were cultivated in DMEM/F-12
complete growth medium. Cell culture supernatants were collected 48 h after starting the
stimulation and the level of cytokines secreted was analysed. Subsequently, the culture
medium was removed, and the level of cytokines secreted in the culture supernatant was
analysed (Supplementary Table S2). Preliminary studies have shown that significant effects
could only be measured 48 h after stimulation.

Stimulation of ECs with plasma from malaria patients resulted in significantly in-
creased levels of IL-11, CXCL5, CXCL8, CXCL10 and VEGF in comparison to stimulation
of ECs using plasma from healthy controls (Figure 2). In all cases, the measured dif-
ference was significant; but, in contrast to the results from the plasma samples, only a
1.5-2.3-fold increase was detected (IL-11: HAI: 346.4 4 157.3 pg/mL, MAl: 526.9 + 219.3
pg/mL, 1.5-fold; CXCL5: HAI: 152.5 & 128.6 pg/mL, MA!L: 263.5 4 117.8 pg/mL, 1.7-fold;
CXCL8: HA!L: 7085 + 7065 pg/mL, MA!L: 11,681 + 6360 pg/mL, 1.6-fold; CXCL10: HAL
30.4 + 34.2 pg/mL, MAL: 69.2 + 53.6 pg/mL, 2.3-fold; VEGF: HAL: 112.1 4 56.2 pg/mL,
MAIL: 170.1 4 59.3 pg/mlL, 1.5-fold) (Figure 3, Supplementary Table S3).
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Figure 3. Level of cytokines in the culture supernatants of endothelial cells (HBEC-5i) stimulated with plasma derived from
malaria patients (M) and healthy control individuals (H) were analysed with a bead-based LEGENDplex assay (1 = 6-26;
Supplementary Tables S2 and S3). Data are expressed as the mean =+ SD. Statistical analyses were performed using the
Mann-Whitney U test (* p < 0.05; ** p < 0.01; *** p < 0.001). Abbreviations: Healthy controls (HA); malaria patients (MAL;
malaria patients with a parasitaemia < 1% (MP<1%*), 1-2.5% (M1 ~25%) and >2.5% (M>25%),

Again, the amount of IL-1«, IL-1§3, IL-7, IL-12 and IFN-{3 were below the detection
limit of the LEGENDplex assay, in this case also of IL-10. In contrast to the CC levels in the
plasmas, no differences were detected for the cytokines IL-6, IL-1RA and the chemokines
CCL3, CCL20 and CXCL1 in the cell culture supernatants of HBEC-5i cells stimulated with
plasma from malaria patients and healthy controls (Figure 3).

If we corrected for multiple testing and included all cytokines with measurable val-
ues, most of the reported differences (supernatant and plasma) are still be significant
(Figures 1 and 3, Supplementary Table S5). For the supernatants, there is no different result
with either the Benjamini-Hochberg adjustment or the conservative Bonferroni correction.
For plasma, CXCL5 and IL-11 fail the Bonferroni correction, while with the Benjamini—
Hochberg adjustment CXCL5 proves significant and IL-11 just misses the cut-off (p = 0.0457,
cut-off = 0.0455).

No TNF-« was detected in the supernatants of endothelial cells after stimulation with
plasma from the malaria patients or with plasma from the healthy controls, respectively.

3.3. Amount of Secreted Angiopoietin-like Protein 4 (ANGPTL4) in Culture Supernatant of ECs
Stimulated with Plasma Derived from Malaria Patients and Healthy Individuals

Studies suggest a synergistic effect of ANGPTL4 and VEGF [46,47]. Therefore, both
the plasmas as well as the culture supernatants of the ECs stimulated with plasma were
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examined for the presence of ANGTPL4 using an ELISA assay. On average, there was
less ANGPTLA4 in the plasmas of the malaria patients than in the plasmas of the con-
trols (HA: 656.8 4 1108.7 ng/mL, MAI: 149.9 + 93.4 ng/mL); however, this was not
significant (Figure 4A). When the ECs were stimulated with the plasmas, the reverse was
observed. Stimulation with plasma from malaria patients resulted in an increase in the mea-
sured amount of ANGPTL4 in comparison to the controls (HAH: 13.8 £ 3.4 ng/mL, MAL
16.4 £ 5.6 ng/mL, p = 0.0691). However, the measured amounts were 10-50 times lower
than in the plasmas. Considering the different parasitaemia levels separately, only plasma
from patients with a parasitaemia of >2.5% has significantly higher levels of ANGPTL4
(20.7 £ 8.5 ng/mL, p = 0.0071) in the supernatant compared to the controls (Figure 4B,
Supplementary Table S6).

Plasma B Culture supernatant
*k

40- |

w
T

ANGPTL4 (ng/mL)
3
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MAL  MP<1%  \P125% \P>25% HAI MAL  MP<1%  MP1-25% \P>25%

Figure 4. Amount of ANGPTL4 in plasma (A) and culture supernatants (B) of endothelial cells (HBEC-5i) co-incubated
with plasma from malaria patients and healthy individuals. Statistical analyses were performed using the Mann-Whitney U
test (** p < 0.01) (Supplementary Table S6). Abbreviations: Healthy controls (HAL); malaria patients (MAD); malaria patients
with a parasitaemia < 1% (MF<1%), 1-2.5% (MF1-25%) and >2.5% (MP>25%).

3.4. Comparative Transcriptome Analyses of ECs Stimulated with Plasma of Malaria Patients and
Healthy Individuals

Next, we analysed whether the differences observed on the protein level in the culture
supernatant after stimulation of the ECs with plasma of malaria patients could also be
found on the RNA level. For this purpose, the HBEC-5i cells were stimulated with the
plasma of four malaria patients and of three healthy control individuals for seven hours and
subsequently their transcriptomes were analysed. The malaria patients had a parasitaemia
between 2.5 and 4% (Supplementary Tables S1, S7 and S8).

After seven hours of stimulation, a significant increase was observed for il18
(p =0.0042), cxcll (p = 0.0029), cxcl5 (p = 0.0059) and angpti4 (p = 0.0002) after stim-
ulation with patient plasma. A tendency was only observed for vegf (p = 0.05). This
is due to the measured expression level of the control H8. This deviates significantly
from the expression level of the other two controls (expression level: 5820 vs. 860-935).
A decrease in expression, albeit non-significant, after stimulation with plasma from
malaria patients compared to the controls was observed for il11 expression (p = 0.05),
which is in contrast to the LEGENDplex results (Figure 5, Supplementary Table 59).
Using qPCR analysis for angptl4 and vegf, the difference in gene expression detected
after 7 h could no longer be observed 48 h after stimulation (data not shown).
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plasma from three healthy control individual and four malaria patients. HBEC-5i cells were incubated for 7 h in the presence
of 10% plasma derived from three control individuals and four malaria patients (Supplementary Tables S1, S3, S7 and
S8). Subsequently, RNA was isolated from the HBEC-5i cells and a comparative transcriptome analysis was performed
(Supplementary Table S9). VEGF*: Analysis excluding sample H8. M6, M9, M10, and M11: 4 biological replicates each; H5
and H10: 2 biological replicates each; H8: 1 biological replicate. Statistical analyses were performed using the Mann-Whitney
U test (** p < 0.01; *** p < 0.001).

Transcriptome analysis also provides an overall view of the changes in EC gene
expression after stimulation with patient plasma. For this analysis, genes with a base
mean level >40, a differential expression with a fold change <0.6/>1.7 and a padj <0.05
were included. Only thirteen genes were identified that were expressed between 1.7- and
3-fold higher after stimulation with the plasma of healthy control individuals compared
to stimulation with the patient plasma (Supplementary Tables S9 and 510). On the other
hand, 43 genes are expressed between 1.7- and 4.5-fold higher in ECs after stimulation with
plasma from malaria patients than after stimulation with plasma from healthy controls
(Table 1, Supplementary Tables S9 and S11).

To identify the biological processes in which the proteins encoded by the identified
genes but also the cytokines identified by LEGENDplex and ELISA are involved, a gene
set enrichment analyses (GSEA) was performed using g:Profiler analysis [48] (Table 1). The
g:Profiler analyses shows that within the gene ontology term biological processes (GO:BP),
‘positive regulation of cell migration’, ‘blood vessel development’ and ‘inflammatory
response’ are significantly regulated (padj = 7.602 x 107°,2.542 x 10~ and 2.474 x 1074,
respectively). The KEGG pathways ‘rheumatoid arthritis (padj = 4.499 x 10~%) and ‘IL-17
signaling pathway’ (padj = 3.436 x 10~%) also were found to be upregulated (Table 1).
To identify protein—protein interaction networks, a Markov Clustering (MCL) analyses
was performed using the program STRING, version 11.0 [49,50]. This analysis yields four
clusters, the largest comprising 20 proteins, which are involved in “positive regulation of cell
population proliferation” (padj 4.312 x 10~%) and “tube development’ (padj 1.948 x 10~°).
The cluster ‘cholesterol metabolic process’ (padj 3.1 x 10~°) contains four proteins and the
cluster ‘negative regulation of cell differentiation’ (padj 3.4 x 10~2) contains three proteins.
In addition, an unassigned cluster (three proteins) was predicted (Figure 6, Table 1).
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Table 1. Genes differentially higher expressed (>1.7 fold) in endothelial cells incubated with plasma from malaria patients
(M6, M9, M10, and M11) compared to incubation with plasma from healthy controls (H5, H10, and HS).

Expression Fold . .
Gene Level Change padj GO:BP KEGG MCL Name
HS, 10,8 M6, 9,10,11 2 3 4 5
1 CSF3 16 73 45 0.016 [ | Colony Stimulating Factor 3
2 ANGPTL4 1442 5419 38  417x10° | ] [ ] Angiopoietin Like 4
3 IL1B 821 2324 28 0.019 D e Interleukin 1b
4 CXCL5 55 149 2.7 0.049 I B Chemokine cxcl5
5 FOXS1 18 47 2.7 0.002 - Forkhead Box S1
6 HMOX1 410 1083 2.6 0.033 [ ] [ ] Heme Oxygenase 1
7 GDNF 39 98 25 0.044 [ ] [ ] Glial Cell Derived Neurotrophic Factor
8 OPCML 29 - 04 31 x 10-5 - Opioid Binding Proieill? e/ Cell Adhesion Mol.
9 GPR68 23 57 24 0.015 G Protein-Coupled Receptor 68
10 INSIG1 1065 2543 2.4 0.002 Insulin Induced Gene 1
11 TNFAIP6 21 49 23 0.026 - TNF Alpha Induced Protein 6
12 IGFBP5 3873 8901 2.3 3.15 x 1077 B nsulin Like Growth Factor Binding Protein 5
13 ESM1 809 1783 22 0.022 | | | ] Endothelial Cell Specific Molecule 1
14 POSTN 920 1922 2.1 5.43 x 107> [ ] Periostin
15 SERPINA9 57 116 2 3.75 x 1070 Serpin Family A Member 9
16 ADTRP 49 100 2 0.023 [ ] Androgen Dependent TFPI Regulating Protein
17 MSMO1 1097 2235 2 0.0002 [ ] Methylsterol Monooxygenase 1
18 HAS2 1299 2642 2 0.041 [ ] Hyaluron Synthase 2
19 LDLR 1491 3030 2 0.0012 | Low Density Lipoprotein Receptor
20  SHANKI 25 51 ’ 0.0036 - SH3 And Multiple Ainkzyrm Repeat Domains
21 RFX8 38 76 2 0.0031 REX Family Member 8, Lacking REX DNA bd.
22 CHST2 305 606 2 0.0012 | | Carbohydrate Sulfotransferase 2
23 EREG 128 253 2 0.0126 | | Epiregulin
24 PTX3 6486 12598 19 0.00012 | e Pentraxin 3
25 PTGS1 66 128 1.9 0.0123 [ | [ | Prostaglandin-Endoperoxide Synthase 1
26 RPSAP52 69 133 19 1.2 x 1077 Ribosomal Protein SA Pseudogene 52
27 FAMB4A 241 455 1.9 0.0012 LRAT Domain Containing 1
28 LAMC2 1258 2329 1.9 0.0341 Laminin Subunit Gamma 2
29 SERPINEl 57674 106566 18 0.0002 s I Serpin Family E Member 1
30 TMEM158 752 1377 1.8 3.63 x 107° Transmembrane Protein 158
31 FRMPD4 54 97 1.8 0.023 - FERM And PDZ Domain Containing
UDP-GIcNAc:BetaGal
32 B3GNTS5 150 267 18 0.0099 Beta-1,3-N-Acetylglucosaminyltransferase 5
33 CAMKIG 111 197 18 431 x 10-5 Calcium/ Calm(ﬁigge]?épendent Protein
34  HMGCS1 1014 1798 1.8 0.016 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1
35 PQLC2L 37 65 1.7 0.0176 Solute Carrier Family 66 Member 1 Like
36 CD93 114 197 1.7 0.00764 CD93 Molecule
37 TWIST2 122 212 1.7 0.0095 I  Twist Family BHLH Transcription Factor 2
38 IRX3 82 143 1.7 0.0035 [ ] Iroquois Homeobox 3
39 CXCL1 749 1293 1.7 0.0017 - C-X-C Motif Chemokine Ligand 1
40 RRAD 146 251 17 0.0301 Ras Related Glé;c;lr}:iz Ié?glbltor / Calcium
41 POU2F2 104 180 1.7 0.0065 POU Class 2 Homeobox 2
4 HSPA1B 3762 6447 17 0.0055 Heat Shock Protein Faitl‘lglly A (Hsp70) Member
43 PLIN2 2740 4688 1.7 0.0022 - Perilipin 2
44 % VEGF 1884 2700 1.4 ns | | ] Vascular Epidermal Growth Factor
45+ LU 3135 2494 08 ns B Interleukin 11
46*  CXCL10 73 5.2 0.67 ns D e C-X-C Motif Chemokine Ligand 10
47 * CXCL8 1203 1462 1.2 ns e e C-X-C Motif Chemokine Ligand 8

* Differential amount detected in LegendPlex assay. Abbreviations and color code: GO term: Biological Processes (GO:BP): (1)
positive regulation of cell migration (padj 8.301 x 107%); (2) blood vessel development (padj 3.601 x 107°); (3) inflammatory response
(padj 3.497 x 1075); KEGG pathway: (4) rheumatoid arthritis (padj 1.537 x 107%); (5) IL-17 signalling pathway (padj 2.131 x 107%);
MCL-Clustering (GO:BP): red—positive regulation of cell population proliferation (padj 4.312 x 10~°) and tube development (padj
1.948 x 1079); green—negative regulation of cell differentiation (padj 3.4 x 1072); yellow—cholesterol metabolic process (padj
3.1 x 107°); blue—unassigned cluster.



Cells 2021, 10, 1656

11 of 20

4{MsMO1

4

A\

\

PTGS1 Edge confidence
low

—ig medium
PLIN2

ﬂ — high
| ANGPTL4 —_— highest
HMGCS1
A o
GO: Biological Processes
LDLR
. positive regulation of cell population proliferation /
N’ tube development
. negative regulation of cell differentiation
\ / W K
AL INSIG1 ﬂEREG \./\ PTX3 \ y » cholesterol metabolic process
L 4 A 4 . unassigned cluster
A 4
mIGFBPS
W POSTN OPCML SHANK1
A £
N A4 N
NR)@ mwwsrz
A 4 A 4

Figure 6. Detection of protein—protein networks through Markov Clustering (MCL) using STRING: functionalprotein

association networks [49,50]. Proteins that have not been assigned to a network are not included in the figure. The proteins

with a red circle can be assigned to ‘positive regulation of cell population proliferation” and ‘tube development’, proteins

with a green circle can be assigned to ‘negative regulation of cell differentiation’, and proteins with a yellow circle can be

assigned to ‘cholesterol metabolic process” within the gene ontology terms biological processes (GO:BP). Proteins with a

blue circle belong to an unassigned cluster.

4. Discussion

Previously, more than 30 cytokines have been identified whose production is increased
due to P. falciparum infection and that, as a result, can be detected in higher amounts in
plasma of malaria patients compared to healthy controls. For some of them, such as CXCL8
and CXCL10, a correlation with severity of the disease was observed [7,25,30,36,37,51]. Clas-
sical immune cells, such as macrophages/monocytes and dendritic cells, are well known
for their cytokine production in malaria [22,23,52]. The role of ECs in this context is only
fragmentarily understood although they are in constant contact with circulating cytokines
and among the first to detect pathogens and they express receptors for pathogen and cytokine
recognition (for a review, see [53]). They are the interface between the circulatory system
and surrounding tissue, regulating the diapedesis of immune cells (for a review, see [54])
and transporting cytokines from the tissue to the circulatory system [55,56]. Furthermore,
they were recently shown to internalize IEs, possibly leading to blood-brain barrier (BBB)
breakdown [57]. However, they are also active players in innate and adaptive immune re-
sponse (for a review, see [54]) and capable of cytokine secretion themselves [58,59]. It is well
studied that cytoadhesion of IEs in the capillaries of various organs not only causes blockage
of blood flow, which can lead to organ hypoxia and thus organ failure, but also activates
ECs. This leads to increased cytokine production, which can induce endothelial dysfunction
and thereby contribute to pathogenesis of CM [5-7]. An increase in gene expression induced
by cytoadhesion has been demonstrated for a number of cytokine-encoding genes [17-19].
However, it is not only cytoadhesion of IEs that leads to an increase in cytokine production.
This could also be demonstrated for Plasmodium antigens. It was shown that hemozoin leads
to an increased secretion of CXCL8 and CCL5 from the endothelium [60]. Similarly, isolated
P. falciparum histones stimulate the production of CXCLS [61].

There is general agreement that EC activation is important in the pathogenesis of
complicated forms of malaria. However, different approaches to identify the underlying
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mechanisms in EC activation by P. falciparum or its metabolites have so far not been able
to reach a unified conclusion [62]. One explanation for the divergent results could lie in
the tissue-specific variations of the endothelia, which cause different patterns of immune
response [63]. However, one should also keep in mind that the immortalised cell lines
used, but also the primary endothelial cells, can show different reaction types. In view of
the variability in protein expression and chemokine secretion, it is of utmost importance to
determine the response of ECs from human brain microvasculature to P. falciparum infection
if new approaches in the treatment of cerebral malaria are to be pursued.

The aim of the study presented here was to investigate the immunostimulatory po-
tential of plasma samples drawn from P. falciparum-infected patients on ECs in absence of
adhering IEs. All 27 malaria patients included in the study were adults with symptomatic
malaria. However, the severity of infection according to the WHO criteria could only be
determined in a subgroup of the samples included in our study (n = 17) [64]; for the rest
(n = 10), the clinical manifestation is unknown. Within these 17 patients, only three patients
could be assigned to severe malaria. As a subgroup of three severe malaria patients is too
small for statistical analyses with the corresponding corrections for multiple comparisons,
it was decided not to distinguish between clinical manifestations in this study.

In plasmas of the 27 travel returnees infected with P. falciparum examined in this study,
a LEGENDplex assay detected significantly higher concentrations for 9 of the 16 cytokines
analysed compared to the corresponding healthy controls, namely, IL-6, IL-1RA, IL-10,
IL-11, CCL3, CCL20, CXCL1, CXCL8 and CXCL10. Interestingly, the concentration of
CXCLS5 in the plasma of malaria patients was below the detected levels in controls. This is
consistent with the observation made by a study conducted in Cameroon, which shows
decreased serum levels of CXCLS5 in P. falciparum-infected individuals. The reason for
the lower amount of CXCL5 in plasma of malaria patients is not yet clear [35]. A similar
observation was made for TNF-a. Again, there was a tendency for greater amounts to be
present in the plasmas of the healthy controls compared to the malaria patients, which was
nevertheless not significant.

The dysfunction of ECs and the associated development of vascular damage in the
brain, resulting in impairment of the BBB, is one of the consequences of a malaria infection.
Oggungwan and colleagues demonstrated that sera from malaria patients are able to
increase cell permeability in vitro [65]. Increased endothelial permeability associated with
malaria has also been shown elsewhere [66—69]. One trigger of endothelial dysfunction
may be stimulation by various cytokines. They could be circulating in the blood stream or
produced within the surrounding tissues or by the ECs themselves, acting in an autocrine
or paracrine manner. ECs can produce pro-inflammatory and anti-inflammatory cytokines
and chemokines as well as growth factors in response to various stimuli, including IL-1c,
IL-1B, IL-3, IL-5, IL-6, IL-10, IL-11, CXCLS8, CXCL10, IL-11 and VEGEF ([70]; for a review,
see [71]).

After stimulation of ECs with plasma from malaria patients, we could measure an
increased amount in the culture supernatants for IL-11, CXCL5, CXCL8, CXCL10, VEGF
and ANGPTLA4 (only if plasma of malaria patients with a parasitaemia >2.5% were used)
compared to stimulation with plasma from healthy individuals. For all other cytokines
examined, the prevalence of a malaria infection in the plasma donor led to no significant
differences in cytokine secretion by ECs stimulated with the plasma. This is also the case
for TNF-o, which was not detectable in the supernatants of endothelial cells stimulated
with both plasma from the control and malaria patients. Furthermore, no expression of
the TNF-a coding gene could be detected. This is in contrast to the described increased
expression of TNF-« after direct interaction of 1Es with endothelial cells [17-19].

However, it must be emphasized here that the stimulation experiments were carried
out with the immortalised brain endothelial cell line HBEC-5i. Although this exhibits
essential features of cerebral ECs, there are also deviations. EC proteins, such as CD51,
ICAM-1 and VCAM-1, are presented on the surface, while others, such as CD31, CD36 and
CD62E, are absent [72]. In addition, HBEC-5i cells carry chondroitin sulfate A (CSA) as a
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dominant molecule on its surface [73]. Nevertheless, HBEC-5i exhibits essential features of
cerebral EC, including tight junction structures in particular [72].

CXCLS8 binds to CXCR1 and CXCR2, the most important receptor for chemotaxis and
mostly expressed on neutrophils. In models of ischemic brain injury, blockage of CXCL8
shows neuroprotective effects and leads to a reduction in infarct volume. In traumatic brain
injury, elevated CXCLS levels in cerebrospinal fluids are connected to BBB damage and
increased mortality (for a review, see [74]). Additionally, CXCLS8 is involved in angiogenesis.
It has been shown that recombinant human CXCLS8 can induce EC proliferation and is also
involved in capillary tube organization [75,76].

As mentioned above, stimulation with plasma from malaria patients resulted in a
significantly increased concentration of CXCLS in the culture supernatant of ECs. Thus, it
can be postulated that plasmodial antigens present in plasma might stimulate this secretion,
which has also been described in other studies [60,61].

CXCLS5, like CXCLS, is important for neutrophil recruitment and activation. The im-
portance of CXCL5 in malaria pathology is unknown. However, CXCL5 has been described
to play a role in ischemia-reperfusion-induced injury in human brain microvascular ECs as-
sociated with BBB disruption. CXCL5 has been shown to be upregulated in ischemic stroke
and this correlates positively with brain injury. In addition, CXCL5 appears to interfere
with brain EC function by regulating the p38 MAP kinase signalling pathway [77]. CXCL5-
induced impairment of brain endothelial barrier function has also been demonstrated in
other contexts [78]. In rats, pretreatment of ECs with IL-10 inhibited CXCL5-mediated
cytokine gene transcription [79]. This is consistent with IL-10 functioning as a crucial anti-
inflammatory and protective cytokine in experimental cerebral malaria [80,81]. Elevated
plasma concentrations of IL-10 are detected in both mild and cerebral malaria, which is
compatible with our findings, but for non-survivors of cerebral malaria a decrease in IL-10
levels was shown [27,82]. An inverted ratio in cytokine concentration between the malaria
and control group in plasma and supernatant, as observed in CXCL5 and ANGPTL4, does
not constitute a contradiction. Instead, it highlights the need to assess cytokine profiles
at the cellular level, if aiming to understand the complex interactions taking place in CM.
Brain swelling due to the disruption of the BBB and (cytokine-containing) fluid influx was
found to occur in 84% of children dying due to cerebral malaria, but only in 27% of the
survivors [83]. However, no correlation between peripheral blood cytokine concentrations
and the occurrence of brain swelling in these children could be detected, implying a more
local event [84]. Cytokine concentrations measured in peripheral blood represent only
the systemic effects and are affected by receptor binding, degradation and excretion. The
crucial site of cytokine impact is the cell-surrounding micromilieu [85]. HBECs can secrete
cytokines in an apical or basolateral direction (for review [86]). Apically released cytokines
would be diluted in the circulating blood, creating a locally acting gradient.

VEGF is a key regulator of physiological angiogenesis. VEGF (i) can promote prolifer-
ation and migration of ECs; (ii) serve as a survival factor for ECs; and (iii) is known as a
vascular permeability factor, based on its ability to induce vascular leakage [87-91]. VEGF
is known to bind to vascular endothelial growth factor receptor 1 (VEGFR-1) (Flt-1) and
vascular endothelial growth factor receptor 2 (VEGFR-2) (KDR/FIK-1) on ECs, resulting
in a mitogen-activated protein kinase (MAPK) signalling cascade [92]. VEGF seems to
play a particularly important role in the repair of brain tissue and wound healing ([93],
for a review, see [94]). Increased levels of VEGF can be detected in malaria patients and
an increased expression of VEGF was also observed in astrocytes of patients who died of
CM [90,95]. However, the role that VEGF plays in CM in particular is still not clear. There is
evidence of both a protective and a pathogenic influence for VEGF in the pathology in CM
(for a review, see [94]). In our study, VEGF could not be detected in any of the 14 samples
examined from the healthy individuals and in the malaria patients VEGF could only be
detected in four of the 26 plasma samples analysed. This result contrasts with the findings
of Furuta and colleagues mentioned above, where elevated VEGF levels were found in
malaria patients compared to patients with febrile illnesses or healthy adults [90]. However,
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Armah and colleagues also found no difference in the VEGF levels between Ghanaian
children with CM, severe malaria or not infected with Plasmodium [25]. One explanation for
these divergent results in malaria research in general might lie within genetic differences.
P. falciparum is the strongest known force of evolutionary selection in the recent history of
humankind. Diverse adaptions led to differences in resistance, reactions and susceptibility
to plasmodial infections between ethnic groups and individuals (for a review, see [96]). A
different picture emerges for the amount of secreted VEGF in the culture supernatants of
plasma-stimulated ECs. Here, we could detect significantly (p = 0.0044) higher concentra-
tions in the supernatants of ECs stimulated with plasma from malaria patients compared to
controls. In vitro studies also show that parasite antigens (crude extract of IEs) can induce
VEGEF secretion from, in this case, human mast cell lines [90].

An interplay between VEGF and ANGPTL4 has been described in different diseases,
such as obesity and diabetic macular oedema [46,47]. As mentioned above, significantly
lower amounts of ANGPTL4 can be detected in the plasma of malaria patients compared
to the plasma of healthy individuals. This picture is reversed, however, if one consid-
ers the amounts of ANPTLA4 in the culture supernatants of ECs stimulated with plasma.
Here, just as for VEGF, significantly higher concentrations can be detected in the culture
supernatants after simulation with plasma from the malaria patients (with a parasitaemia
>2.5%) compared to plasma from the healthy individuals. Both VEGF and ANGPTL4 are
proangiogenic molecules. Besides angiogenesis, ANGPTL4 is involved in several other
processes, such as lipid metabolism, wound healing, inflammation, and redox regulation
(for a review, see [97]). For ANGPTL4, but also VEGEF, it has been shown that expression is
also strongly increased by hypoxia, thereby leading to induction of angiogenesis [98-100].

CXCL10, like VEGF and ANGPTL4, is present in significantly higher concentrations
in culture supernatants of ECs stimulated with plasma from malaria patients compared
to plasma from healthy individuals. While VEGF and ANGPTL4 have angiogenic and
proliferative effects, CXCL10 has angiostatic and anti-proliferative effects [101-103]. The
important role of CXCL10 is illustrated in a study by Wilson and colleagues. Here, sig-
nificantly elevated levels of CXCL10 and CXCL4 were found in patients who had died
from CM compared to patients who had survived CM or patients with mild malaria [29].
CXCL10 produced by endothelial cells was shown to play a key role in inducing firm adhe-
sion of T cells and preventing cell detachment from the brain vasculature. The induction
of CXCL10 was completely dependent on IFN-y receptor signalling and played a crucial
role in mediating the T-cell-endothelial cell adhesion events that initiate the inflammatory
processes that damage the endothelium and promote the development of CM [104]. Bodnar
and colleagues showed that incubation of ECs with CXCL10 also significantly reduced
tube formation [105].

That the angiogenesis of ECs is strongly influenced by the plasma of malaria patients
also becomes clear when looking at the differential gene expression after stimulation of
ECs with plasma from malaria patients in comparison to healthy individuals (Table 1). In
particular, GO terms such as ‘positive regulation of cell migration’, ‘blood vessel/tube
development’, ‘negative regulation of cell differentiation” and ‘inflammatory response’
were significantly upregulated in ECs stimulated with patients” plasma in comparison to
the controls. Based on these results, it can be postulated that there must be a very delicate
balance between these molecules to stimulate proliferation of ECs on the one hand and to
limit angiogenesis as well as endothelial dysfunction.

5. Conclusions

Our results clearly show that not only cytoadhesion of IEs can lead to stimulation
of ECs, inducing the production of various cytokines, but also the plasma of malaria
patients, specifically, the parasite and host molecules contained therein, which trigger
these processes and thus cause a different cytokine profile than the plasma of healthy
controls. IL-11, CXCL5, CXCL8, CXCL10, VEGF and ANGPTL4 have been secreted in
significantly higher amounts. This is consistent with the pre-existing finding that plasma
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from malaria patients impairs endothelial barrier integrity in human umbilical vein ECs [65].
We were able to demonstrate the activation of ECs derived from the microvasculature of
the human brain and specify their response. However, we did not identify the plasma
factors responsible for this effect and thus cannot say whether they are of parasitic or
host-specific origin.
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