Trimethylamine |
E. coli
|
E. coli, P. aeruginosa, S. aureus, and B. subtilis
|
Tetracycline |
Increasing the transmembrane pH and lowering the transport of tetracycline inside the cell |
[39] |
Ammonia (NH3) |
E. coli
|
E. coli
|
Tetracycline |
Promoting intracellular accumulation of polyamines by modifying membrane permeability |
[40] |
Indole |
E. coli
|
Pseudomonas putida
|
ampicillin |
Inducing the Pseudomonas TtgGHI antibiotic efflux pump |
[41] |
2,3-Butanedione and glyoxylic acid |
B. subtilis
|
E. coli
|
Ampicillin and tetracycline |
The induction of the expression of hipA and hipB, TA system related genes, resulting in bacterial persistence |
[42] |
2-Aminoacetophenone |
P. aeruginosa
|
Acinetobacter baumanii
|
Meropenem and tetracycline |
Stimulating persisters formation |
[43] |
Hydrogen sulfide (H2S) |
Bacillus anthracis, P. aeruginosa, S. aureus, and E. coli
|
B. anthracis, P. aeruginosa, S. aureus, and E. coli
|
A range of different antibiotics targeting DNA, RNA, cell wall, or protein biosynthesis |
Mitigation of oxidative stress imposed by antibiotics |
[44] |
Dimethyl trisulfide, 1-methylthio-3-pentanone and o-aminoacetophenone |
Burkholderia ambifaria
|
E. coli
|
Aminoglycosides, such as gentamicin and kanamycin |
Unknown |
[45] |
Nitric oxide (NO) |
Many Gram-positive bacteria, such as B.subtilis and S. aureus
|
NO producing and non-producing microorganisms |
A broad spectrum of antibiotics such as cefuroxime |
Chemical modification of toxic compounds and the alleviation of the oxidative stress |
[46] |