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Abstract: Thyroid cancer is the most common malignancy of the endocrine system, encompassing
different entities with distinct histological features and clinical behavior. The diagnostic definition,
therapeutic approach, and follow-up of thyroid cancers display some controversial aspects that
represent unmet medical needs. Liquid biopsy is a non-invasive approach that detects and analyzes
biological samples released from the tumor into the bloodstream. With the use of different tech-
nologies, tumor cells, free nucleic acids, and extracellular vesicles can be retrieved in the serum of
cancer patients and valuable molecular information can be obtained. Recently, a growing body of
evidence is accumulating concerning the use of liquid biopsy in thyroid cancer, as it can be exploited
to define a patient’s diagnosis, estimate their prognosis, and monitor tumor recurrence or treatment
response. Indeed, liquid biopsy can be a valuable tool to overcome the limits of conventional man-
agement of thyroid malignancies. In this review, we summarize currently available data about liquid
biopsy in differentiated, poorly differentiated/anaplastic, and medullary thyroid cancer, focusing on
circulating tumor cells, circulating free nucleic acids, and extracellular vesicles.

Keywords: differentiated thyroid cancer; anaplastic thyroid cancer; medullary thyroid cancer; liquid
biopsy; diagnosis; prognosis; therapy

1. Introduction

Thyroid cancer (TC) is the most frequent endocrine malignancy, accounting for about
2% of total cancers [1,2]. Worldwide, its incidence has increased three-fold over the past
30 years because of screening intensification and environmental and lifestyle changes [3].
The vast majority of TCs have an epithelial origin and include differentiated (DTC), poorly
differentiated (PDTC), and anaplastic (ATC) tumors [1,4]. Differentiated TCs, which
usually display an indolent clinical behavior and a favorable prognosis, can be further
classified as papillary (PTC) (85–90%), follicular (FTC) (5–10%), and Hurthle cell (HCTC)
(3%) carcinomas [5,6]. Poorly differentiated and anaplastic TCs are rarer, but they are
characterized by an aggressive course and a poor prognosis [7]. Finally, a small proportion
of TCs stem from neuroendocrine C-cells and present medullary histotypes (B-Raf proto-
oncogene MTCs); up to one quarter (25%) of these tumors are familiar [8].

The biological features of TCs have been extensively investigated. Among DTCs,
molecular alterations frequently involve B-Raf proto-oncogene (BRAF) and Rat Sarcoma
(RAS) oncogene or gene fusions involving Ret proto-oncogene (RET), while deregulation of
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TP53 and Wingless/Integrated (Wnt)/β-catenin pathways are mainly implicated in their
progression and dedifferentiation [9–12]. In 98% of inherited and up to 45% of sporadic
MTCs, single nucleotide substitutions of RET are present [13]. Recently, micro-RNAs
(mi-RNAs) also appear to play a role in TC biology [14], and different mi-RNAs signatures
correlate with the malignant potential of thyroid nodules as well as with TCs subtypes and
their aggressiveness [15,16].

Despite this deep biological knowledge, clinical management of TCs still presents
controversies. Although fine needle aspiration biopsy (FNAB) represents the current gold
standard for initial diagnosis of TC, it exhibits some limitations due to the high incidence
of non-diagnostic results, especially in the case of follicular lesions [17] (Figure 1). In the
post-surgical follow-up of DTC, monitoring thyroglobulin (Tg) levels is a routine practice.
However, the presence of anti-Tg-antibodies (TgAb) may interfere with Tg measurement,
thus hampering its potential utility as a tumor marker [18]. Additionally, while the majority
of DTCs can be cured with surgery followed by hormone replacement and radioactive
iodine (RAI, also called I-131) [6], the management of advanced, poorly differentiated,
and anaplastic TCs is far more challenging [19–21]. These tumors can be treated with
tyrosine kinase inhibitors (TKIs) [22], such as lenvatinib and sorafenib for DTC, dabrafenib,
trametinib, and vemurafenib for BRAF mutated PTC or ATC, cabozantinib and vandetanib
for MTC, or selpercaptinib in RET mutated MTCs [10,23,24].

Figure 1. Advantages of liquid biopsy over tissue biopsy in thyroid cancer. FNAB, fine needle
aspiration biopsy.

In this scenario, liquid biopsy can be a valuable resource to assist TC management,
as it can be exploited to define the correct diagnosis, predict tumor prognosis, monitor
disease evolution, and establish pharmacological approaches [25] (Figure 1). Using liquid
biopsy, circulating tumor cells (CTCs), circulating free nucleic acids (cf-DNA, cf-RNA and
mi-RNA), and tumor-derived extracellular vesicles (EVs) released in the bloodstream can
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be detected and analyzed [26]. Further, CTCs are shed from the tumor mass and enter
circulation, where they can remain unitary, cluster together, or lodge in new tissues to
form metastasis [27]. Circulating free-DNA released from cancer cells in 160–180 base
pairs fragments (i.e., circulating tumor-DNA (ct-DNA)) can contain information about
molecular alterations present in the primary tumor [27–30]. Circulating free-DNA and
circulating mi-RNAs are most stable, thus easier to investigate, compared to cf-RNA [31].
Extracellular vesicles are micro-particles released in the bloodstream from tumor and
normal cells containing proteins, DNA, RNA, mi-RNA, lipids, and metabolites [32,33].

In this review, we provide an overview of liquid biopsy applications in different TC
histotypes, focusing on its use in the diagnosis, prognostic definition, and treatment of
these diseases.

2. Liquid Biopsy in Differentiated Thyroid Cancer
2.1. Liquid Biopsy in the Diagnosis of Differentiated Thyroid Cancer

Circulating tumor cells, cf-DNA, cf-RNA, mi-RNAs, and EVs may represent a source of
information in the diagnostic workup of primary or recurrent DTCs (Figure 2a and Table 1).

Figure 2. Potential implications of liquid biopsy for the diagnosis, prognostic definition, and therapy
of differentiated (a), poorly differentiated/anaplastic (b), and medullary (c) thyroid cancer. cf-DNA,
circulating free-DNA; cf-RNA, circulating free-RNA; CTC, circulating tumor cells; DTC, differentiated
thyroid cancer; EV, extracellular vesicles; mi-RNA, micro-RNA; MTC, medullary thyroid cancer;
PDTC/ATC, poorly differentiated thyroid cancer/anaplastic thyroid cancer.
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Table 1. Potential implications of liquid biopsy for the diagnosis, prognostic definition, and therapy of differentiated
thyroid cancer.

Clinical
Application

Sample
Type Object Modification References

Diagnosis

CTC

Expression of the CTC-associated gene
SLC5A5 Lower in FTC than FA [34]

Expression of the CTC-associated gene
LGALS3 Higher in PTC than FTC [34]

Serum level of CEC Higher in recurrent PTC [35]

cf-DNA

cf-DNA quantity and integrity Higher in DTC [36,37]
mcf-DNA Lower in DTC [37]

BRAF-V600E detection More common in PTC than FTC [38]
Metilation level of 5 genes on cf-DNA Higher in DTC than benign nodules [39]

5mC and 5hmC levels in cf-DNA Decreased in TC [40]
Hypermethylation of MGMT promoter

in ct-DNA Higher in PTC [41]

cf-DNA quantity, BRAF-V600E
detection, SLCA8 and SLC26A4

hypermethylation
Coexist in PTC [42]

cf-RNA
Serum level of CEA mRNA Found in FTC but not in FA [43]

Serum level of TSHR mRNA Higher in DTC [44]

mi-RNA

mi-RNA-375, 34a, 145b, 221, 222, 155,
Let-7, 181b Higher in PTC than benign nodules [45]

mi-RNA-222 Higher in PTC [46]
let-7a, let-7c, let-7d, let-7f Higher in PTC [47]

mi-RNA-146 and mi-RNA-221 Higher in recurrent PTC [48]

EV
mi-RNA-31–5p Higher in PTC [49]

mi-RNA-21 and mi-RNA-181a-5p Differentiated FTC from PTC [49]
Let-7b, Let-7d, Let-7f and Let-7g Higher in FTC than FA [50]

Prognosis

CTC
CTC count Higher in metastatic DTC or poor responder to RAI [51]

CTC number Higher in advanced DTC stage [52]

cf-DNA BRAF-V600E detection Associated with disease aggressiveness in PTC [53]

mi-RNA mi-RNA-222 and mi-RNA-146 Higher in DTC with poor outcome [54]

Therapy

CTC
CEC count Decreased in DTC responding to RAI therapy [55]

CTCs expressing NIS Decreased in DTC responding to RAI therapy [56]

cf-DNA

ct-DNA levels Higher in poor responder or unresponsive DTC [57]
BRAF-V600E detection Associated to incomplete response to RAI in PTC [53]
BRAF-V600E detection Higher in PTC with minimal residual disease [58]
ct-DNA copy number Higher in PTC with residual disease after surgery [58]

cf-RNA Level of BRAF-V600E cf-RNA Decrease in PTC during RAI or TKIs treatment [59]

CEA, carcinoembryonic antigen; CEC, circulating epithelial cells; cf-DNA, circulating free-DNA; cf-RNA, circulating free-RNA; CTC,
circulating tumor cell; ct-DNA, circulating tumor-DNA; DTC, differentiated thyroid cancer; EV, extracellular vesicles; FA, follicular
adenoma; FTC, follicular thyroid cancer; mi-RNA, micro-RNA; PTC, papillary thyroid cancer; RAI, radioactive iodine; TC, thyroid cancer;
TKI, tyrosine kinase inhibitors; TSHR, thyroid stimulating hormone receptor.

In the pre-operatory setting, the expression of genes associated with CTCs can help
distinguish benign from malignant thyroid nodules with the follicular feature. For example,
the expression of the CTC-associated gene SLC5A5 is lower in liquid biopsies of patients
with FTC compared to patients with follicular adenoma (FA), while LGALS3 expression is
higher in PTC than in FTC patients [34]. In the follow-up of surgically removed PTCs, serum
levels of circulating epithelial cells (CECs) expressing epithelial cell adhesion molecule
(EpCAM) and thyroid-stimulating hormone receptor (TSHR) are significantly higher in
patients with disease recurrence and undetectable serum Tg due to TgAb [35].

Evaluating cf-DNA quantity, integrity, mutational profile, and methylation levels
can be useful for the diagnostic definition of DTC [60,61]. Indeed, cf-DNA quantity and
integrity appear to be higher in patients with a cytological diagnosis of DTC than in unaf-
fected subjects [36,37]. Conversely, mitochondrial cf-DNA (mcf-DNA) is lower in the same
subset of patients [37]. Results of the feasibility and significance of BRAF-V600E detection
in cf-DNA of DTC patients remain controversial [62–67]. Although this mutation can be
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retrieved in cf-DNA from both FTCs and PTCs patients, it is more common in the second
histotype [38]. In a retrospective study, measuring the methylation levels of five genes on
cf-DNA (calcitonin, E-cadherin, tissue inhibitor of metalloproteinase 3, death-associated protein
kinase, and retinoic acid receptor-β2) displayed 77% accuracy in the differential diagnosis
between DTCs and benign nodules [39]. In another study, the decrease of 5-methylcytosine
(5mC) and 5-hydroxymethylcytosine (5hmC) levels in cf-DNA predicted the probability
of a thyroid cancer diagnosis [40]. More recently, Kathami et al. demonstrated that hy-
permethylation of MGMT promoter in ct-DNA correlates with the presence of PTC [41].
Interestingly, combining the cf-DNA quantity measurement with the detection of BRAF-
V600E, SLCA8, and SLC26A4 hypermethylation can also assist in the early diagnosis of
PTC [42].

Circulating free-RNA has also been investigated as a potential diagnostic marker
of DTCs. For instance, carcinoembryonic antigen (CEA) messenger RNA (mRNA) can be
found in the serum of patients with FTC but not in those with benign lesions [43], while
blood measurement of TSHR mRNA can improve the pre-operative detection of DTC when
associated with FNAB [44].

The role of circulating mi-RNAs in the diagnosis of PTC has been extensively investi-
gated and recently reviewed. Comprehensively, a set of mi-RNAs (mi-RNA-375, 34a, 145b,
221, 222, 155, Let-7, and 181b) can be designated as a diagnostic biomarker to distinguish
PTCs from benign nodules and identify cancer at an early stage [45]. Additional evidence
suggests that plasma-derived mi-RNA-222 and another set of circulating mi-RNAs (let-7a,
let-7c, let-7d, and let-7f) can be significantly increased in PTC patients compared to subjects
with goiter or healthy controls [46,47]. In a prospective observational study, the serum
levels of 754 mi-RNAs were measured in 11 PTC patients before and after surgery. Among
these, mi-RNA-146 and mi-RNA-221 were further validated as tumor biomarkers during
post-surgical follow-up and showed a significant correlation with disease recurrence, even
in patients with low Tg levels [48].

Moreover, specific changes in EV mi-RNA profiles appear to correlate with the de-
velopment of PTC. Indeed, mi-RNA-31-5p is over-expressed in EVs from PTC patients,
while mi-RNA-21 and mi-RNA-181a-5p differentiate FTC from PTC [49]. More recently, the
overexpression of four mi-RNAs (Let-7b, Let-7d, Let-7f, and Let-7g) in thyreo-peroxidase
(TPO)-positive EVs accurately distinguished FTC from FA [50].

2.2. Liquid Biopsy for Prognostic Definition of Differentiated Thyroid Cancer

Liquid biopsy can also be used to predict the clinical course of DTC, by the evaluation
of CTCs, cf-DNA, and mi-RNAs (Figure 2a and Table 1).

Using negative enriching immunofluorescence in situ hybridization (NE-iFISH), Qiu
et al. showed a potential prognostic implication of CTC count in DTC patients. In their
study, the identification of five or more CTCs correlated with the presence of metastasis,
while isolating seven or more CTCs predicted poor response to RAI [51]. In another study,
the number of CTCs was significantly higher in subjects with a previous DTC compared
to healthy controls, and the number of cells isolated was proportional to the tumor stage
at diagnosis. Additionally, patients with no evidence of disease recurrence who received
RAI >8 years previously had more CTCs compared to those with a shorter treatment-free
interval [52].

In a cohort of 57 PTC patients, 24 harbored BRAF-V600E in ct-DNA. The presence of
this mutation was associated with disease aggressiveness since it correlated with tumor size,
multifocal growth, extra-thyroidal gross extension, and pulmonary micro-metastasis [53].
Similarly, an increase in the plasma level of mi-RNA-222 and mi-RNA-146 appears to
predict poor outcomes in DTC patients [54].
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2.3. Liquid Biopsy in the Treatment of Differentiated Thyroid Cancer

Liquid biopsy can also be exploited to monitor response to treatment in patients with
DTC. CTC count, ct-DNA, and cf-RNA can potentially outperform serum Tg measurement
or radiological imaging as response evaluation methods (Figure 2a and Table 1).

In a pilot study, an early decrease in CEC counts after RAI treatment correlates with
disease response in DTC patients [55]. Zheng and colleagues investigated sodium/iodide
symporter (NIS) expression in CTCs from DTC patients and found a correlation between a
decreased or unchanged number of total NIS+ CTCs and the efficacy of RAI therapy [56].

According to a study by Allin et al., changes in ct-DNA levels can anticipate tumor
progression compared to Tg in patients receiving targeted therapies for DTC [57]. Using
co-amplification at lower denaturation temperature-PCR (COLD-PCR) in combination with
digital droplet polymerase chain reaction (ddPCR), Jensen et al. identified BRAF-V600E
mutation cf-DNA in 57 PTC patients. According to their results, BRAF-V600E-mutated
patients display nearly five-fold higher odds of achieving an incomplete response to
RAI [53]. Measurement of BRAF-V600E mutant ct-DNA can also be informative of the
presence of minimal residual disease. In a cohort of BRAF-V600E mutated PTC patients,
levels of BRAF-V600E mutant ct-DNA were higher in the case of disease persistence
(0–2.07%) compared to no evidence of disease (0–0.04%). Similarly, ct-DNA copy numbers
were higher in patients with metastases (20 copies/mL) than in those without residual
disease after thyroidectomy (1 copy/mL) [58].

Additionally, the levels of BRAF-V600E cf-RNA appear to decrease after surgery and
during systemic treatment with RAI or TKIs in patients with early, recurrent or advanced
PTC [59].

3. Liquid Biopsy in Poorly Differentiated and Anaplastic Thyroid Cancer

Poorly differentiated and anaplastic thyroid tumors represent rare and aggressive
entities and little is known about the role of liquid biopsy in their management.

In some real-world experiences, cf-DNA has been employed in ATC patients to
identify actionable mutations (i.e., BRAF-V600E) [68,69] and to anticipate disease response
or progression before they become radiologically apparent [70] (Figure 2b and Table 2).

Table 2. Potential implications of liquid biopsy for the diagnosis, prognostic definition, and therapy
of poorly differentiated/anaplastic thyroid cancer.

Clinical
Application

Sample
Type Object Modification References

Diagnosis cf-DNA
TP53, BRAF and

PIK3CA mutations Concordance with mutations
retrieved in tumor tissue

[71]

BRAF-V600E detection [72]

Prognosis cf-DNA
PIK3CA mutation Worse OS in ATC [71]

BRAF-V600E detection Increased in ATC progression [72]
NRAS and TP53

mutations
Higher in progressive PDTC

and ATC [57]

Therapy cf-DNA BRAF-V600E detection Indication for TKI treatment [68,69]
ATC, anaplastic thyroid cancer; cf-DNA, circulating free-DNA; OS, overall survival; PDTC, poorly differentiated
thyroid cancer; TKI, tyrosine kinase inhibitor.

Recently, Qin et al. examined the concordance of ATC-related mutations in cf-DNA
with those detected in tumor tissue, trying to determine the prognostic significance of
cf-DNA mutations. As expected, TP53, BRAF, and PIK3CA were the most frequently
mutated genes. In 28 treatment-naïve ATC patients, the concordance rate of detected
mutations in TP53, BRAF, and PIK3CA between cf-DNA and matched tissue was 82.1%,
92.9%, and 92.9%, respectively. Moreover, patients with a PIK3CA mutation detected on
cf-DNA had worse overall survival (OS) [71]. The same group evaluated the employment
of ddPCR for the identification of BRAF-V600E mutation on cf-DNA in 44 ATC patients,
finding a 93% concordance rate with DNA sequencing on tumor tissue. Additionally,
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dynamic measurement of BRAF-V600E levels by ddPCR during treatment was available for
16 patients. Whether the reduction in circulating biomarker levels correlated with tumor
shrinkage, their increase was weakly associated with disease progression [72]. However,
other research found that an increase in mutations in circulating NRAS and TP53 in a PDTC
and an ATC patient anticipated, by several months, radiological disease progression [57].

4. Liquid Biopsy in Medullary Thyroid Cancer

Several studies are accumulating about the use of liquid biopsy in MTC patients to
detect and analyze CTCs, cf-DNA, and mi-RNAs (Figure 2c and Table 3).

Table 3. Potential implications of liquid biopsy for the diagnosis, prognostic definition, and therapy
of medullary thyroid cancer.

Clinical
Application

Sample
Type Object Modification References

Diagnosis

cf-DNA cf-DNA amount Higher in MTC [42]

mi-RNA

mi-RNA-222-3p and
mi-RNA-17-5p Higher in MTC [73]

mi-RNA-375 Higher in active disease [74]
mi-RNA-144 and

mi-RNA-34a Higher in RET-mutant cancer [75]

Prognosis

CTC

Ctn+ CTC level Higher in MTC with worse
prognosis [76]

CTC detection Concordance with OS and
mortality risk [77,78]

CTC detection Higher in metastatic cancer [79]

cf-DNA
RET-M918T detection Correlation with worse OS [80]

RET and BRAF
mutations

Concordance with unfavorable
prognosis [57]

mi-RNA mi-RNA-375 Higher in metastatic cancer and
reduced OS [74]

Therapy cf-DNA RET mutations Correlation with selpercaptinib
resistance [81]

cf-DNA, circulating free-DNA; CTC, circulating tumor cell; ctn+, calcitonin positive; mi-RNA, micro-RNA; MTC,
medullary thyroid cancer; OS, overall survival.

Circulating tumor cells showed a prognostic and predictive role in this subset of
patients. In a recent report, calcitonin positive (Ctn+) CTCs were identified in the serum
of 15 patients with surgically removed MTC, up to 12 years after initial diagnosis. Of
note, high CTC levels were found in the serum of three MTC patients with low blood Ctn.
According to the authors, this group of patients may have a poorer prognosis; further
validation of these results in larger cohorts are needed [76]. Older reports suggest that
cytokeratin 20 (CK20) and gastrine-releasing peptide (GRP) expression can also be used
to identify MTC-derived CTCs with good sensitivity and specificity [82]. According
to other evidence, the detection and enumeration of CTCs with the approved EpCAM-
based CellSerch technology can predict OS and mortality risk in patients with advanced
MTC [77,78]. The identification of five or more CTCs in patients with metastatic MTC
appears to predict shorter survival [79].

The role of cf-DNA as a marker of tumor diagnosis, prognosis and response to treat-
ment has been reported in MTC. For example, Ctn serum levels and the presence of RET
mutation inversely correlated with cf-DNA amount in 58 MTC patients. Hence, cf-DNA
may serve as a diagnostic marker of MTC when conventional parameters, such as Ctn and
RET, are negative [42]. Similarly, the detection of RET-M918T in cf-DNA appear to predict
MTC outcomes more accurately than Ctn doubling time, strongly correlating with worse
OS [80]. In a study by Allin and al., RET and BRAF mutations were identified in a cohort
of 15 MTC, with a detection rate in cf-DNA of 79%, higher than that found in PTC and
FTC patients. Mutations were more frequently detected in MTC patients with metastasis,
high tumor burden, and progressive disease, thus predicting an unfavorable prognosis [57].
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More recently, RET mutations were identified in the cf-DNA of MTC patients developing
disease progression after an initial response to selpercaptinib. In this study, RET-V804M
mutation, detected in two patients before treatment initiation, decreased during therapy
and reappeared together with RET-G810 mutations at the start of disease progression.
As the detection of these mutations has been linked with selpercaptinib resistance, ct-
DNA monitoring may facilitate the early identification of unresponsive patients who need
alternative therapies [81].

Circulating mi-RNAs can be easily obtained from MTC patients, and their levels
correlate with clinical-pathological features and disease prognosis [83]. Zhang et al. ana-
lyzed the expression of serum mi-RNA in 15 patients with aggressive MTC. Circulating
mi-RNA-222-3p and mi-RNA-17-5p were significantly upregulated in MTC patients and
discriminated between subjects with MTC and those with benign or healthy nodules [73].
Romeo et al. identified 51 mi-RNAs differentially expressed in a cohort of locally advanced
and metastatic MTC patients. Among them, mi-RNA-375 levels were significantly higher
in patients with active disease than in those unaffected or cured. Of note, elevated levels
of mi-RNA-375 correlated with distant metastasis and reduced OS, but not with disease
response to vandetanib [74]. Another study evaluated plasma levels of mi-RNA-144 and
mi-RNA-34a in 25 RET-mutant and 25 RET-wild type MTC patients and compared them to
healthy controls. According to their results, blood levels of mi-RNA-144 and mi-RNA-34a
were higher in cancer patients, especially if RET mutant, than in controls. However, these
data were not significantly associated with MTC prognosis [75].

5. Conclusions

In this review, we discussed the potential applications of liquid biopsy in TC. As
the incidence of thyroid carcinomas is increasing over time, more effective tools for the
management of these tumors are needed. In this context, liquid biopsy is a promising
alternative during the diagnostic workup, prognostic definition, therapeutic choices, and
follow-up of TC patients.

Liquid biopsy offers many advantages compared to traditional tissue biopsy, such
as less invasiveness, few side-effects, repeatability, and representativeness of tumor het-
erogeneity. Moreover, the applications of liquid biopsy are continually broadening [84],
with the development of new techniques such as CellSearch® and DEPArray® for CTC
detection and characterization, or automation of ct-DNA isolation [30]. Given the rapid
evolution and improvement in this field, other applications may emerge in the future
for the management of different TC subtypes. To pursue personalized medicine, BRAF
mutations in PTC or RET alterations in MTC can be routinely screened through liquid
biopsy to assess sensitivity towards targeted agents and to monitor the onset of resistance.

However, the use of liquid biopsy in TC still poses several challenges, mainly de-
pending on the sensitivity and specificity of the different methods, and tumor subtypes
and stages Additionally, liquid biopsy often displays standardization, reproducibility, and
validity issues [85]. Other technical problems may rely on the quantity of circulating
material retrieved, especially in the context of early-stage disease and in terms of CTCs
and ct-RNA. This latter aspect may represent a major limitation of liquid biopsy in TCs
harboring pathogenic rearrangements, such as those involving RET or the neurotrophic
receptor tyrosine kinase (NTRK).

In conclusion, although the clinical utility of liquid biopsy in TC is progressively
consolidating over time, efforts are needed to incorporate this technology into clinical
practice, as already happens in many other tumor types, e.g., lung cancer [86]. Even though
it is unlikely that liquid biopsy will completely substitute tissue biopsy, soon the two
techniques may be complementary. In this context, international consortia such as the
European Liquid Biopsy Society and the US-based BloodPAC are working to move liquid
biopsy from the bench to the bedside.
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