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Abstract: Enniatins (ENs) are depsipeptide mycotoxins produced by Fusarium fungi. They are known
for their capacity to modulate cell membrane permeability and disruption of ionic gradients, affecting
cell homeostasis and initiating oxidative stress mechanisms. The effect of the acute toxicity of ENs A,
A1, B and B1 at two different concentrations after 8 h of exposure was analysed in Wistar rats by a
transcriptional approach. The following key mitochondrial and nuclear codified genes related to the
electron transport chain were considered for gene expression analysis in stomach, liver, kidney and
lower intestine by quantitative Real-Time PCR: mitochondrially encoded NADH dehydrogenase 1
(MT-ND1), mitochondrially encoded cytochrome c oxidase 1 (MT-COX1), succinate dehydrogenase
flavoprotein subunit A and ATP synthase F1 subunit alpha, respectively. Moreover, the expression
of markers involved in oxidative stresssuperoxide dismutase 1 (SOD1), glutathione peroxidase 1
(Gpx1), heme oxygenase 1, apoptosis B-cell lymphoma 2, Bcl2 Associated protein X (Bax), tumor
suppressor protein (p53), inhibition of apoptosis nuclear factor kappa of activated B cells, immune
system interleukin 1β and intestinal tight junction Occludin merely in lower intestine tissues have
been investigated. For mitochondrial genes, the main differences were observed for MT-ND1 and
MT-COX1, showing its deficiency in all selected organs. With regard to the intestinal barrier’s cellular
response to oxidative stress, the activity of the antioxidant gene SOD1 was decreased in a dose-
dependent manner. Similarly, the catalytic enzyme GPx1 was also downregulated though merely at
medium dose employed. On the contrary, the pro-apoptotic Bax and p53 regulators were activated
after ENs exposure, reporting a significant increase in their expression. Furthermore, the alteration of
intestinal permeability was assessed by the abnormal activity of the tight junction protein occludin.
In summary, ENs may generate mitochondrial disorders and induce oxidative stress in intestinal
barrier function.

Keywords: enniatins; oxidative phosphorylation; in vivo; quantitative Real-Time PCR (qPCR)

1. Introduction

In spite of many years of research and the introduction of good practices in the food
production, storage and distribution chain, nowadays, mycotoxins are a big risk to food
safety. A useful tool capable to protect consumers against their toxic effects is the hazard
analysis and critical control points (HACCP) for production and storage, but currently
this system only applies to legislated mycotoxins [1]. In the past, emerging mycotoxins
have been considered less important because of their low probability of acute toxicity.
Nevertheless, they have a high prevalence in food products, sometimes even in high
concentrations [2].

Regarding the toxicity of enniatins (ENs), limited data was available until now, hence
they are currently under occurrence and toxicity evaluation [3]. ENs are emerging myco-
toxins produced by filamentous fungi of the Fusarium genus, mainly by the F. acumuniatum,
F. avenaceum, F. oxysporum, F. Poae, F. sporothrichioides, F. Sambucinum and F. Tricinctum
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species [4]. They can be found in a wide variety of food and feed, mainly in cereals and
their derivatives, dried fruit, spices, cocoa and coffee. ENs’ chemical structure corresponds
to a cyclic depsipeptide, and so far, more than 23 belonging to the A, B and J types, have
been identified [5]. However, the most frequent ENs detected in food and feed are enniatin
A (ENA), enniatin A1 (ENA1), enniatin B (ENB) and enniatin B1 (ENB1) [6].

The toxicity of ENs is based on their ionophoric properties. They facilitate the trans-
port of mono or divalent cations such as K+ or Ca2+ across membranes, thereby disrupting
normal physiological concentrations of these ions [7]. Moreover, it has been shown that
ENs can induce a cytotoxic effect by producing reactive oxygen species (ROS) and sub-
sequently causing lipid peroxidation and alteration of the normal cell cycle due to their
anti-proliferative effects on several cell types [5]. Furthermore, they can decrease the
calcium retention capacity of the mitochondrion matrix leading to the collapse of the mito-
chondrial membrane potential via the permeability transition pore opening, and they can
cause oxidative phosphorylation decoupling [8].

The European Food Safety Authority reported an ENB-induced genotoxic effect
in vivo after acute oral administration [9]. Recently, the in vivo toxicity of ENs was re-
viewed, reporting immunotoxicity in peripheral blood lymphocytes in Wistar rats. ENB
was found in high concentration in rats’ liver and fat, demonstrating the molecule’s ten-
dency to bioaccumulate in lipophilic tissues. The jejunum, duodenum and colon were
also identified as a possible absorption area for ENA in female rats during a sub-chronic
exposure [10].

In vitro studies have confirmed ENs’ toxicity in several cell lines. ENB alone, or
in mixture with other ENs, induced lysosomal disruption and necrosis in Caco-2 cells,
lysosomal damage in mouse monocyte macrophage RAW 267.4 and apoptosis in rat
hepatoma cell line H4IIE [11]. Likewise, ENs induced nuclear fragmentation and apoptotic
body formation in adenocarcinomic human alveolar basal epithelial (A549), Small Cell
Lung Carcinoma (GLC-4), human cervix carcinoma (KB-3-1) and human leukemia (HL-60)
cells [12]. Moreover, the linkage between ENs toxicity and the alteration of mitochondrial
related pathways has been recently investigated in vitro. Transcriptomics helped to observe
how mitochondria were the main affected organelles in Jurkat cells after ENB exposure,
finding the highest expression alterations in oxidative phosphorylation related genes [13].
ENs’ toxicity in human epithelial cells (ECV304) was also confirmed in the expression of
several genes belonged to complex I (CI), IV and V, although ATP synthase resulted as
the most affected [14]. Furthermore, after ENB and BEA mixture exposure, a proteomics
analysis revealed changes in the protein levels in the inner and outer membrane in Jurkat
cells in a concentration-dependent manner [15].

In order to better understand ENs’ toxicity, Wistar rats were chosen as an in vivo model
to analyze changes in the expression of selected genes involved in electron transport chain
(ETC), oxidative stress, apoptosis, inflammation and intestinal tight junction in rat stomach,
liver, kidney and lower intestine. More specifically, mitochondrially encoded hydride
nicotinamide adenine dinucleotide (NADH) dehydrogenase 1 (MT-ND1) belonging to CI,
succinate dehydrogenase flavoprotein subunit A (Sdha) of complex II (CII), mitochondrially
encoded cytochrome c oxidase 1 (MT-COX1) of CIV and ATP synthase F1 subunit alpha
(ATP5) of CV activity were assessed in all the organs considered. Furthermore, the oxidative
stress markers superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1), heme
oxygenase 1 (Hmox1), apoptosis regulators B-cell lymphoma 2 (Bcl2), Bcl2 Associated
protein X (Bax), tumor suppressor protein p53, nuclear factor kappa of activated B cells
(Nf-κB) inflammation cytokine interleukin 1β (Il-1β and intestinal tight junction protein
Occludin were analyzed in colon tissues.

2. Materials and Methods
2.1. Reagents

The standards of standard solution stock (purity: 99%) of ENA (mw: 681.92 g/mol),
ENB (mw: 639.82 g/mol), ENA1 (mw: 667.87 g/mol), ENB1 (mw: 653.85 g/mol) and
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phosphate buffer saline (PBS) were obtained from Sigma-Aldrich (Madrid, Spain). All the
stock solutions were prepared by dissolving 1 mg of mycotoxin in 1 mL of pure methanol,
obtaining a 1 mg/mL (1000 mg/L) solution. These stock solutions were diluted with
methanol in order to obtain the appropriate multi-compounds working standard solutions.
All the standards were kept at −20 ◦C.

For RNA extraction, TRIzolTM reagent was purchased from Invitrogen™ (Carlsbad,
CA, USA), whereas for its purification, the ReliaPrep™ RNA Miniprep System kit from
Promega (Madison, WI, USA) was employed. Deionized water (resistivity < 18 MV cm)
was obtained using a Milli-Q water purification system (Millipore, Bedford, MA, USA).
TaqMan™ Reverse Transcription kit and PowerUp™ SYBR™ Green for quantitative Real-
Time PCR (qPCR) analysis were purchased from Applied Biosystems (Carlsbad, CA, USA).

2.2. In Vivo Study Design

Fourteen female Wistar rats (243–278 g) were acquired from Pharmacy animal facility
(Universitat de València, Valencia, Spain). Animals were divided in three groups: four rats
in the control group and five rats in each treated one, with medium and high exposure.
Each group was housed in one cage in a windowless room with a 12-h light–dark cycle.
The study rooms were maintained under controlled conditions appropriate for the species
(temperature 22 ◦C, relative humidity 45–65%). The control group was exposed to the
vehicle (PBS), while five of the treated ones were intoxicated with medium concentrations:
single dose of EN A 256, ENA1 353, ENB 540, ENB1 296 µg/mL; and the other five were
intoxicated with the higher ones: single dose of ENA 513, ENA1 706, ENB 1021, ENB1
593 µg/mL. Mycotoxins were administered dissolved by sonication in 1 mL of PBS by
oropharyngeal administration using a metal cannula. After 8 h exposure with water but no
feed, they were sacrificed by isoflurane gas asphyxiation and the organs (liver, stomach,
kidneys, lower intestine) were removed and stored at −20 ◦C.

2.3. RNA Extraction

Total RNA of the control and exposed rats was isolated using from approximately
50 mg of frozen tissue according to TRIzolTM manufacturer’s protocol (Invitrogen™, Carls-
bad, CA, USA). Samples were homogenized in TRIzolTM (50 mg/mL) with a T25 Ultra-
turrax Digital High-Speed Homogenizer (IKA®, Staufen, Germany). Extracted RNA was
purified according to ReliaPrep™ RNA Miniprep System kit (Promega, Madison, WI,
USA). The purity and quantity of RNA were evaluated spectrophotometrically using a
NanoDrop™ 2000 (Thermo Scientific™, Madrid, Spain), showing concentrations between
370 and 2359 ng/µL and appropriate 260/280 nm and 260/230 nm ratios both around 2
(Table 1). RNA samples were stored until their dilution to 100 ng/µL with ultrapure Milli
QH2O system until their reverse transcription to cDNA.

2.4. Gene Selection and Primer Design

Gene-specific primers were designed using Primer-BLAST by using default criterion
of the software with amplified products ranging from 83 to 122 bp and Tm at 58 ◦C. Primer
sequences were used in qPCR analyses. Standard curve by qPCR was performed for all
primer’s pairs and a single amplification product for each gene was obtained by the melting
curve assay StepOne Plus Real-time PCR instrument (Applied Biosystems, Foster city, CA,
USA). Primer amplification efficiency was determined from standard curve generated by
serial dilution of cDNA (5-fold each) for each gene. Correlation coefficient (R2 values) and
amplification efficiencies (E) for each primer pairs were calculated from slope of regression
line by plotting mean Cq values against the log cDNA dilution factor in StepOne software
(Table 2).
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Table 1. Target organ samples: control (C), medium dose (M), high dose (H) extracted RNA concen-
tration (ng/µL), RNA purity ratios 260/280 and 260/230.

Sample RNA (ng/µL) 260/280 260/230

Stomach

C1 738.4 1.93 2.07
C2 370.8 1.90 2.26
C3 246.7 1.85 1.95
C4 1051.2 2.01 2.15
M1 546.4 1.89 1.76
M2 647.1 1.96 2.07
M3 923.2 1.95 2.10
M4 1003.8 1.98 2.21
M5 1312.1 1.96 2.07
H1 607.8 1.92 2.08
H2 1177.1 1.99 2.21
H3 1388.9 2.02 2.01
H4 652.0 1.92 2.08
H5 1259.3 1.99 2.21

Liver

C1 664.1 2.10 2.24
C2 695.8 2.10 2.20
C3 493.9 2.07 2.10
C4 638.0 2.11 2.28
M1 914.3 2.16 2.24
M2 2199.2 2.12 2.05
M3 1613.9 2.17 2.22
M4 1592.0 2.15 2.14
M5 1340.0 2.18 2.14
H1 1875.7 2.13 2.17
H2 1017.6 2.15 2.32
H3 1199.6 2.16 2.35
H4 1502.6 2.16 2.31
H5 1334.5 2.15 2.31

Kidneys

C1 1197.6 2.07 2.27
C2 2359.5 2.01 2.16
C3 1550.3 2.12 2.14
C4 1615.1 2.1 2.25
M1 1995.0 2.10 2.18
M2 1585.0 2.07 2.26
M3 1606.0 2.07 2.22
M4 1211.6 2.11 2.16
M5 600.8 2.06 2.26
H1 329.6 2.06 2.25
H2 247.4 2.11 2.30
H3 715.7 2.10 2.15
H4 615.0 2.10 2.15
H5 2407.3 2.12 2.25

Colon

C1 1728.0 2.16 2.20
C2 1581.0 2.18 2.20
C3 759.0 2.17 2.22
C4 2306 2.10 2.14
M1 1838.0 2.15 2.20
M2 1891.0 2.14 2.17
M3 1407.0 2.16 2.23
M4 1360.0 2.18 2.23
M5 1619.0 2.17 2.19
H1 1961.0 2.17 2.19
H2 1736.0 2.16 2.19
H3 838.0 2.17 2.21
H4 1084.0 2.17 2.21
H5 859.0 2.16 2.20



Foods 2021, 10, 1630 5 of 14

Table 2. Gene symbol, forward (F) and reverse (R) primers, efficiency and linearity of the selected genes plus reference
genes β−actin and 18S rRNA.

Gene Sequence Efficiency Linearity

MT-ND1 F: CGAGCTCCCTTCGACTTAAC
R: GAATAGGGCGAATGGTCCTG 101.806 0.991

Sdha F: GACGATCTCTGCGGTATGAC
R: TCGGTGTATGGACCCATCTT 107.658 0.975

MT-COX1 F: GCTGGAGCATCCGTAGATTT
R: ATTGGGTTATAGCAGGGGGT 106.425 0.985

ATP5 F: GTGATGTGTCCGCCTACATT
R: ACAAGCCCACATTAATGGCA 107.423 0.978

SOD1 F: ACACAAGGCTGTACCACTGC
R: CCACATTGCCCAGGTCTCC 124.573 0.991

GPx1 F: GTCCACCGTGTATGCCTTCTCC
R: TCTCCTGATGTCCGAACTGATTGC 105.269 0.990

Hmox1 F: CACGCATATACCCGCTACCT
R: AAGGCGGTCTTAGCCTCTTC 146.284 0.981

Bcl2 F: ACTGAGTACCTGAACCGGCATC
R: GGAGAAATCAAACAGAGGTCGC 148.237 0.990

Bax F: AAGAAGCTGAGCGAGTGTCT
R: CAAAGATGGTCACTGTCTGC 117.003 0.981

p53 F: GTTCCGAGAGCTGAATGAGG
R: TTTTATGGCGGGACGTAGAC 111.153 0.990

Nf-κB F: CTTCTCGGAGTCCCTCACTG
R: CCAATAGCAGCTGGAAAAGC 102.480 0.996

Il-1β F: CTTGTCGAGAATGGGCAGTCT
R: TGTGCCACGGTTTTCTTATGG 105.269 0.990

Occludin F: AGTACATGGCTGCTGCTGATG
R: CCCACCATCCTCTTGATGTGT 143.830 0.990

β-actin F: AACCTTCTTGCAGCTCCTCCG
R: CCATACCCACCATCACACCCT 94.242 0.996

18S rRNA F: GAGCGTGTGATCACCATCAT
R: TCCTTCACGTCCTTCTGTCT 105.487 0.979

2.5. Reverse Transcription and qPCR

Real-time amplification reactions were performed in 96 well plates using SYBR Green
detection chemistry and were run in triplicate on 96-wells plates with the StepOne Plus
Real-time PCR instrument (Applied Biosystems, Foster City, CA, USA). Reactions were
prepared as follows: 100 ng template, 500 µM of each primer, the required amount of 2x Fast
SYBR Green and completed to 20 µL with RNAse free water (Applied Biosystems, Foster
City, CA, USA). The cycling conditions were set as default: initial denaturation step of
95 ◦C for 5 min to activate the Taq DNA polymerase, followed by 40 cycles of denaturation
at 95 ◦C for 15 s, annealing at 58 ◦C for 15 s and elongation at 72 ◦C for 30 s. The melting
curve was generated by heating the amplicon from 60 to 90 ◦C. Therefore, threshold cycles
(Ct) were automatically determined using the StepOne Plus Software version 2.3 (Applied
Biosystems, Foster, CA, USA). Three technical replicates were performed for each condition.
Experiments were performed according to MIQE (Minimum Information for Publication of
Quantitative Real-Time PCR Experiments) guidelines [16].

2.6. Statyistical Analysis

Normalized Cp were calculated per sample as ∆Ct (experimental Ct—housekeeping
Ct mean) by using Ct values obtained by qPCR. A t-Student test was applied to evaluate
differences between each mycotoxin exposed sample group and the control considering
p ≤ 0.05 as statistically significant. Statistical analysis was assessed by SPSS 24.0 (IBM
Corp., Armonk, NY, USA). For gene expression analysis, three technical replicates of each
sample were analyzed for control group (C1, C2, C3, C4), medium dose treated group (M1,
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M2, M3, M4, M5) and high dose treated group (H1, H2, H3, H4, H5). Log2RQ median of
all genes was calculated for each condition, considering C1 as Log2RQ = 0.

3. Results
3.1. Activity of Mitochondrial and Nuclear Encoded Genes in Stomach

The transcriptional analysis of the selected mitochondrial genes was performed by
qPCR technique. In the first organ studied, a remarkable downregulation of mitochondrial
encoded MT-ND1 at highest dose was observed when compared to the control. Likewise,
nuclear encoded genes Sdha and Atp5 resulted as downregulated but solely after medium
treatment (Log2RQ = −3.5) (Figure 1).
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Figure 1. Box plot showing relative expression of mitochondrial and nuclear encoded genes in stomach when compared
to control C1 (Log2RQ = 0) to medium treatment (M) and high treatment (H) by quantitative PCR (qPCR). RQ, relative
quantification. The box plots show the median value (horizontal line), the top and bottom edges of the boxes (75% and 25%
percentiles) and whiskers, which are the furthest values away from the boxes that are not considered outliers. * p < 0.05;
** p < 0.01 significantly different from the control.

3.2. Activity of Mitochondrial and Nuclear Encoded Genes in Liver

The hepatic investigation after acute exposure to ENs reported significant changes
of all genes analyzed when treated with a medium dose. Once administering higher
dose, merely MT-ND1 and MT-COX1 revealed a considerable decrease of roughly twofold
compared to the control (p = 0.0002). Nevertheless, a moderate interindividual variability
was observed in the control groups of the latter genes (Figure 2).
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Figure 2. Box plot showing relative expression of mitochondrial and nuclear encoded genes in liver when compared to
control C1 (Log2RQ = 0) to medium treatment (M) and high treatment (H) by qPCR. RQ, relative quantification. The box
plots show the median value (horizontal line), the top and bottom edges of the boxes (75% and 25% percentiles), (F) extreme
cases, (o) outliers (atypical values) and whiskers, which are the furthest values away from the boxes that are not considered
outliers. ** p < 0.01; *** p < 0.001 significantly different from the control.

3.3. Activity of Mitochondrial and Nuclear Encoded Genes in Kidneys

Regarding the kidneys, the expression of MT-ND1 and MT-COX1 was strongly affected
at medium dose. A significant downregulation of both genes was observed (p = 0.0001),
although showing a noticeable interindividual variability among samples. Similarly, Sdha
followed the same trend, but in this case, a downregulation of nearly fourfold was found
in a dose-dependent manner (Figure 3).

3.4. Activity of Mitochondrial and Nuclear Encoded Genes in Lower Intestine

When studying the rats’ colon tissues, MT-ND1 and MT-COX1 were significantly
downregulated at medium dose, but not at the higher one. On the contrary, nonsignificant
changes were observed for nuclear encoded genes (Figure 4).
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extreme case and whiskers, which are the furthest values away from the boxes that are not considered outliers. * p < 0.05;
*** p < 0.001 significantly different from the control.
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3.5. Activity of Oxidative Stress Genes in Lower Intestine

The intestinal tract is frequently exposed to ROS production and the associated activa-
tion antioxidant enzyme defense systems. For this purpose, genes involved in oxidative
stress processes were selected. After the treatments, the most altered was SOD1, showing a
loss of its expression, which was significant at medium dose (p = 0.0002). In addition, the
antioxidant enzyme GPx1 was slightly downregulated but had a weaker response to the
medium treatment (p = 0.05) (Figure 5).
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3.6. Activity of Apoptotic Genes in Lower Intestine

Apoptosis is an important process which maintains the function of the intestinal
barrier at its normal state by regulating its homeostasis. In this study, the activity of genes
implicated in apoptotic pathways was evaluated. The expression of pro-apoptotic genes
Bax and p53 showed an overexpression of nearly fourfold changes at both doses. On the
contrary, the nuclear factor Nf-κB and the anti-apoptotic gene Bcl2 did not report significant
changes when compared to the control (Figure 6).

3.7. Inflammatory Response and Permeability in Lower Intestine

The activation of oxidative stress and apoptotic processes was checked by the activity
of pro-inflammatory cytokine Il-1β, which surprisingly did not report significant alterations
after ENs exposure. Moreover, the function of intestinal permeability was evaluated by
assessing the expression of occludin, an integral membrane protein localized at intestinal
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epithelial tight junction barrier. In this case, results have shown a significant increase in its
expression in both medium and high treatment, reaching up to 10-fold (Figure 7).
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4. Discussion

A recent proteomics approach confirmed the toxic capacity of ENs after acute exposure
in rat’s liver and pointed to diverse biological processes as a target [17]. Proteomics findings
showed that 13 of the significantly altered proteins were involved in the mitochondria,
among which are ATP5 alpha and beta. ATP5 alpha protein expression was enhanced
at both doses (log2FC medium dose: 4.1144; high dose: 2.2354) as well as antioxidant
activity, showing the upregulation of four proteins including the SOD1 enzyme, but solely
at the highest exposure (log2FC high dose:9.6712). In this study, using those liver samples
and adding the stomach, kidney and lower intestine from the same animals, changes
in the expression of selected genes related to mitochondria, oxidative stress, apoptosis,
inflammatory response and permeability processes were evaluated. These findings have
shown that acute exposure to ENs caused changes in the expression of all analyzed genes
depending on the type of tissue.

Regarding the gene expression in the ETC, the first complex, mitochondrial CI defi-
ciency is the most prevalent defect in the respiratory chain causing mitochondrial disorders.
The activity of CI subunit 1 MT-ND1 is involved in the formation of the fourth proton
pumping site by promoting proton translocation across the membrane [18]. After ENs
administration, it has been observed a leakage of its expression in all organs analyzed,
which could be related to an impairment of membrane homeostasis. According to these
findings, lower activity of this gene was implicated in non-alcoholic fatty acid liver disease
in rats and chronic kidney disease in mice [19,20]. However, on the contrary, elevated
levels of MT-ND1 expression indicated mitochondrial dysfunction in the villous adenoma
of human tissue, resulting with the accumulation of mutations in mtDNA [21].

Secondly, succinate-coenzyme Q reductase is a mitochondrial enzyme complex con-
sisting of four protein subunits (Sdha, Sdhb, Sdhc and Sdhd), which is involved in the
tricarboxylic acid cycle (TCA) and the ETC [22]. The loss of the normal TCA cycle promotes
tumorigenesis due to metabolic alterations with enforced dependence on glycolysis for
energy production [23]. CII Subunit -a was altered by ENs mixture, being downregulated
in rats’ stomach, liver and kidneys, hinting at an impairment caused by these mycotoxins.
According to previous findings, the lack of this gene is associated with mitochondrial
dysfunction, which led to the development of wild type gastrointestinal stromal tumors
and hereditary renal cell carcinoma [24,25].

Thirdly, cytochrome c oxidase, localized in the inner mitochondrial membrane, is
the final electron acceptor in the ETC and its deficiency is a prevalent cause of oxidative
stress status in mitochondria [26]. MT-COX1 gene is the main subunit of the complex,
and it is responsible for the homeostatic synthesis of prostanoids [27]. The expression of
MT-COX1 was significantly decreased in the liver at both doses of ENs employed, along
with renal and intestinal tissues, although solely at medium dose. Its downregulation is
related to the progression of esophageal adenocarcinoma, colon carcinogenesis, reduced
proliferation and increased macro autophagy [28,29]. Moreover, MT-COX1 deficiency
exacerbates hepatic diseases in mice [30] as well as in the present research, suggesting
that ENs’ toxicity could play a role in hepatic function. Contrasting with this evidence,
MT-COX1 resulted as overexpressed in mammalian and zebrafish kidneys under oxidative
stress conditions [31,32].

The last complex studied was mitochondrial ATP synthase (CV), which is formed of
two functional domains: F1, situated in the mitochondrial matrix and Fo, located in the
inner mitochondrial membrane. It produces most of the cell ATP by rotary catalysis, and
its deficiency plays a crucial role in severe human disorders such as neuropathy, ataxia,
encephalopathy (Leigh syndrome) and hypertrophic cardiomyopathy [33,34]. ATP5, the
subunit α of CV F1 domain, was downregulated in gastric and hepatic tissues, but solely after
medium treatment. According with these findings, reduced levels of its expression led to the
decrease of oxidative phosphorylation in chicks, prostate and lung cancer, decrease in tissue
metabolism, reduction in protein synthetic capacity and impairment of ATP-biosynthetic



Foods 2021, 10, 1630 12 of 14

functions in rat liver [35,36]. In contrast, Ref. [37] reported highly overexpressed ATP5 in
glioblastoma tumor cells and endothelial cells of microvascular proliferation.

Beyond the mitochondrial dysregulation, several studies in vitro have demonstrated
ENs intestinal effects in specific cell lines, reporting its cytotoxicity and the activation of
oxidative stress processes, even at low molecular concentrations [38]. The activity of three
essential markers implicated in cellular response to oxidative stress was evaluated in vivo
after ENs acute exposure. SOD1 is an antioxidant enzyme which regulates the superoxide
levels from cytosol and mitochondrial intermembrane [39]. It has been observed that its
deletion is related to ROS production and the reduction of antioxidant enzymes activities
in colon tissues, agreeing with the downregulation observed in the present research [40].
Similarly, it has been observed that the higher activity of the key catalytic enzyme GPx1
promote the progression of distinct types of cancer, including colon cancer, which is in
line with the overexpression observed after the highest dose of ENs mixture employed in
female rats [41,42] As regard the intestinal inflammation modulator Hmox1, it has been
shown to inhibit the activation of apoptotic pathways in different cell lines but in this case,
did not show significant changes in its expression [43].

The homeostasis of the intestinal barrier is also disturbed by an imbalance that occurs
between pro- and anti-apoptotic genes. In particular, it has been demonstrated that the
p53 gene is involved in the initiation of the apoptosis mechanisms of the cellular cycle
and its overexpression has been associated with different types of intestinal cancer [44,45].
Moreover, tumor suppressor p53 regulates the anti-apoptotic (Bcl2) and pro-apoptotic (Bax)
members of the Bcl-2 proteins family, which control apoptosis by monitoring mitochondrial
outer membrane permeabilization [46]. In this study, p53 and Bax genes were upregulated
after ENs treatment, whereas on the contrary, anti-apoptotic Bcl-2 did not show significant
changes, suggesting apoptosis activation.

As a consequence of the development of oxidative-stress-induced cellular damage and
apoptosis, the onset of inflammation and structural disfunction can successively occur [47].
The activity of the structural protein occludin, for instance, is related to intestinal epithelial
disorders and abnormal secretory function [48]. Its upregulation in intestinal cells was
implicated in the decrease of gut permeability in accordance with this result, hinting the
activation of defense mechanisms [49].

5. Conclusions

ENs generated toxic responses in rat tissues at the mitochondrial level at the medium
and high concentrations employed, more evident for MT-ND1 and MT-COX1 in all organs
analyzed. Furthermore, the activation of oxidative stress and pro-apoptotic genes was
shown in lower intestine tissues but not confirmed by inflammatory cytokine activity Il-1β.
At the structural level, changes in the epithelial barrier have been observed, suggesting the
decrease of barrier permeability. In conclusion, the results obtained in this study suggest
that ENs could play a role in mitochondrial disorders and intestinal acute toxicity. However,
there is a need of further investigation in ENs long-term exposure in order to survey their
possible chronic effect on animals.
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