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Abstract: The human paranasal sinuses are the major source of intrinsic nitric oxide (NO) production
in the human airway. NO plays several roles in the maintenance of physiological homeostasis and
the regulation of airway inflammation through the expression of three NO synthase (NOS) isoforms.
Measuring NO levels can contribute to the diagnosis and assessment of allergic rhinitis (AR) and
chronic rhinosinusitis (CRS). In symptomatic AR patients, pro-inflammatory cytokines upregulate
the expression of inducible NOS (iNOS) in the inferior turbinate. Excessive amounts of NO cause
oxidative damage to cellular components, leading to the deposition of cytotoxic substances. CRS
phenotype and endotype classifications have provided insights into modern treatment strategies.
Analyses of the production of sinus NO and its metabolites revealed pathobiological diversity that
can be exploited for useful biomarkers. Measuring nasal NO based on different NOS activities is a
potent tool for specific interventions targeting molecular pathways underlying CRS endotype-specific
inflammation. We provide a comprehensive review of the functional diversity of NOS isoforms in the
human sinonasal system in relation to these two major nasal disorders’ pathologies. The regulatory
mechanisms of NOS expression associated with the substrate bioavailability indicate the involvement
of both type 1 and type 2 immune responses.

Keywords: nitric oxide (NO); nitric oxide synthase; isoform; nasal NO; redox pathway; arginase;
paranasal sinus; allergic rhinitis; eosinophil; chronic rhinosinusitis

1. Background

Nitric oxide (NO), a paramagnetic molecule with an odd number of electrons, is a
radical with extreme reactivity that is responsible for many of its biological effects. Trans-
mitted signals mediated by NO are important in the regulation of a variety of physiological
and pathological functions, including functions in the nervous, vascular, and respiratory
systems [1–4]. As NO is an uncharged messenger molecule and is highly soluble in hy-
drophobic environments, it can diffuse freely in cell membranes. In human airways, NO is
well known to have physiologically fundamental roles in the homeostasis of both epithelial
and endothelial cells, and it stimulates cell proliferation, migration, and differentiation [5,6].
The short half-life and the highly reactive structure of NO require a controlled enzymatic
NO synthetic activity that is regulated via complex mechanisms.

Nitric oxide synthase (NOS) catalyzes L-arginine to L-citrulline by the action of the
NADPH and tetrahydrobiopterin (BH4)-dependent oxidation, and it produces NO as one
of the reaction products [7]. In humans, three NOS isoforms exist: the neuronal (nNOS,
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NOS1) isoform, the endothelial (eNOS, NOS3) isoform, and the inducible (iNOS, NOS2)
isoform [8]. All three isoforms are flavoproteins that contain tetrahydrobiopterin, heme,
and an area that is homologous to cytochrome P450 reductase [9,10]. Collectively, eNOS
and nNOS are termed constitutive NOS (cNOS). The combination of cNOS and calmodulin
(CaM) is dependent on the cellular concentration of Ca2+. The rapid Ca2+ influx that is
induced by various harmful triggers can thus activate cNOS with rapid responses so that
cNOS can play a protective role. In contrast, the combination of iNOS and (CaM) does not
require Ca2+ regulation [10–13].

In the human nasal cavity, submucosal networks of the blood vessels are constructed
mainly by the abundant sinusoid vessels and capillary anastomoses in the inferior turbinate,
where NO derived from eNOS diffuses in a gradient manner with nondirectional dispersion.
NO performs several regulatory functions in the neurovascular system [14], including roles
in smooth muscle relaxation [15], neuronal transmission [4], and the inhibition of platelet
aggregation as a part of autonomic nerve function (nasal cycles). NO also has the ability to
control the production of surfactants via airway alveolar cells in premature infants [16].

Inhaled NO is universally approved for the treatment of perioperative pulmonary
hypertension associated with severe respiratory failure. In this sense, the inhalation of
gaseous NO through the nasal cavity is theoretically beneficial [17]. Once formed by eNOS,
the vasodilation effects of NO are mediated largely by cyclic guanosine monophosphate
(cGMP). In contrast, the expression of iNOS in human airways is rather dependent on tran-
scription factors such as nuclear factor-κB (NF-kB), and is activated by pro-inflammatory
cytokines [18,19] including tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-
1β) [18–22], interleukin (IL)-4, and IL-13 [23–25]. Excessive amounts of NO synthesized by
iNOS, in combination with other reactive nitrogen oxide species (RNOS), have been consid-
ered important mediators of the pathophysiological events underlying a broad spectrum
of inflammatory airway responses [26,27].

In the following review, we summarize the current knowledge about NO and NOS
and their impact on disease states in common upper airway inflammations, i.e., allergic
rhinitis (AR) and chronic rhinosinusitis (CRS). We emphasize the rationale and the po-
tential usefulness of analyses of the fractional exhaled NO (FeNO) and nasal NO, as the
information gained by such analyses can be translated into clinical management.

2. NOS Activities in the Human Nose and Paranasal Sinuses
2.1. NOS Expression and NO Homeostasis in Human Paranasal Sinuses

NO is a free radical that exerts antibacterial effects as a part of the human body’s innate
immune defense. As illustrated in Figure 1, epithelial motile cilia covering a large area of
the human paranasal sinuses produce bactericidal levels of NO that increase ciliary beating,
which is the airway’s major physical defense. NO activates the production of cGMP
to activate protein kinase G, which increases ciliary beating and enhances mucociliary
clearance [28]. The ciliary beat frequency (CBF) sampled from human sphenoid sinus
mucosa increased 24 h after treatment with L-arginine in a dose-dependent manner. A
nonspecific NOS inhibitor, i.e., NG-nitro-L-arginine methyl ester (L-NAME), inhibited the
L-arginine-induced increase in CBF [29]. The immunoreactivity of both iNOS and eNOS
was observed in the ciliated epithelial cells, with eNOS staining being more intense [29].
In a recent study, the stimulation of human nasal epithelial cells with IL-13 under air–
liquid interface (ALI) conditions tended to result in an increased level of NO excretion
compared to the control conditions [30]. Together, the above-described results demonstrate
the potential of the airway epithelial layers to contribute a sizeable counterpart to the
excreted NO in the type 2 inflammation that is common to asthma, AR, and eosinophilic
chronic rhinosinusitis (ECRS).
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Fig. 1. Expression and distribution of different NOS isoforms in human sinonasal mucosa. NOS: nitric oxide synthase, ROS: reactive oxygen species, IHC: 
immunohistochemistry, DHTM: Ros-dihydrotetramethylrosamine, DAF2-DA: 4,5-diaminofluorescein diacetate.

Figure 1. Expression and distribution of different NOS isoforms in human sinonasal mucosa. NOS:
nitric oxide synthase; ROS: reactive oxygen species; IHC: immunohistochemistry; DHTM: Ros-
dihydrotetramethylrosamine; DAF2-DA: 4,5-diaminofluorescein diacetate.

Airway pathogens that are responsible for sinonasal infection are susceptible to NO to
various degrees [8,31,32]. Interestingly, products with a bitter taste that are secreted from
common microorganisms are detected by the receptors of upper-airway epithelial cells.
These products elicit T2R (taste family 2 bitter receptor proteins)-activated downstream re-
sponses to enhance the production of NO with bactericidal activities [33–35]. Bacteriostatic
or bactericidal effects of NO may be species-specific. For example, at physiologic concen-
trations, the common sinonasal organisms Pseudomonas aeruginosa and Candida albicans are
more sensitive to NO, whereas Klebsiella pneumoniae and Staphylococcus epidermis are more
resistant to NO [36].

The production of endogenous NO also exerts antiviral effects against common human
respiratory viruses. NO is able to not only inactivate viral particles but also modulate the
host immune response that usually triggers an inflammatory response [37]. NO inhibits
the activities of viral enzymes (such as proteases, reverse transcriptase, and ribonucleotide
reductases) by means of nitrosylation of the amino acids involved in the catalytic process,
which leads to interference in viral replication [38,39]. It has also been proposed that the
antiviral mechanisms of NO can be applied to the replication of SARS-CoV-2 (severe acute
respiratory syndrome coronavirus 2), the virus that causes COVID-19 [40]. NO has the
potential to abrogate the replication cycles of SARS-CoV-2 mainly by the S-nitrosylation of
specific cysteine residues.

There is TAS2R38 genotype variability in endogenous NO levels in CRS patients
with various phenotypes, who generally show lower NO levels in the sinonasal tract [41].
Mucosal exposure to inhaled pathogens also stimulates a defensive swarm of microbiocidal
exosomes, which mediates innate immunosurveillance and the defense mechanisms of
the human sinonasal epithelium [42]. Lipopolysaccharide (LPS)-stimulated exosomes in
mucus sampled from the human nose induced a fourfold increase in NO production by
promoting cellular iNOS signaling pathways in in vitro cultures [43].

2.2. NOS Expression as an Inflammatory Mediator

Nitric oxide plays both physiological and inflammatory roles, based on the surround-
ing pro- or anti-inflammatory conditions, as well as the local concentration of NO itself.
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Free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are
cell metabolic products that participate in a variety of cellular events in the airway. These
molecules usually have at least one unpaired electron, so they easily react with various
substances in the body that are directly exposed to the external atmosphere [44,45]. In the
respiratory tract, the function of NO is involved in both the type 1 and type 2 immune
responses. In this sense, NO is a key molecule in the Th1/Th2 balance that regulates the
evolution of many clinically important diseases. These delicate and complicated effects
of NO are dependent on the level and duration of NO production. In general, type 1
inflammation is triggered by low amounts of NO, whereas type 2 cell proliferation is
accompanied by the production of IgE and a recruitment of eosinophils that can be induced
by higher NO concentrations [23,24,46,47].

Recent advances in the understanding of the important roles of regulatory T cells
(Tregs) have revealed a potential new strategy for the control and modulation of mucosal
immune responses. NO derived from iNOS and eNOS affects the differentiation of helper
T cells and the effector functions of T lymphocytes, and NO is a potential target for thera-
peutic manipulation [48,49]. The function of T cell-mediated immunity can be regulated
by endogenous NO at various concentrations that is generated by iNOS-expressing sur-
rounding cells. Allergic inflammatory diseases are characterized by an increased release of
NO and a disruption of Treg cell-mediated tolerance [47,50]. In asthmatic children with
AR, the ratio of effector T cells (Th1, Th2, and Th17) to regulatory cells (Treg + Breg) was
positively correlated with their FeNO levels but negatively correlated with their forced
expiratory volume in 1 s (FEV1) values [51]. In this sense, a functional impairment of Tregs
also contributes to the pathogenesis of airway diseases, and NO might have potential roles
in the regulation of chronic inflammatory responses through its interaction with Tregs.
Future investigations of these topics associated with sinonasal autoimmune and allergic
diseases can be expected to yield useful information.

3. Monitoring of NO in the Human Sinonasal Pathways
3.1. Paranasal Sinuses as a Physiological NO Reservoir

As initially shown by Lundberg et al. [52], the normal human nasal cavity and
paranasal sinuses are the major source of NO detected in the respiratory tract. Those
authors observed continuous high NO levels up to 3000–25,000 ppb in the maxillary
sinuses that contributed to the NO level detected in the nasal airway. Airway ciliated
epithelial cells are considered the sites of the highest NOS activity in human airways [6].
Compared to quiet exhalation, a transient acceleration of sinus ventilation produced by
humming phonation increased the NO level in the nasal airflow by 15-fold [53]. Although
several attempts have been made to measure the production of NO by different paranasal
sinuses [54], the relative amount of NO contributed by each paranasal sinus to the human
main nasal airways remains unknown.

Interestingly, NOS isoforms detected in the ciliated epithelia in the paranasal sinuses
are essentially calcium-independent [55], which is a characteristic that is usually related
to iNOS, but the NOS isoforms are constitutively expressed and also resistant to steroid
administration. Taken together, these findings suggest that sinus ciliated cells may serve
vital physiological functions in nonspecific host defense mechanisms against bacterial or
viral infections, and they may help preserve the sterile microenvironment via mucociliary
clearance systems. As mentioned above, it is speculated that ciliated cells may have evolved
to express various surface receptors that detect bacterial metabolites or foreign materials in
order to activate NO-specific defensive pathways [34]. The potent antimicrobial activity of
NO may thus be applied in therapeutic modalities.

3.2. Nasal NO Measurement

The American Thoracic Society (ATS) has suggested using FeNO to monitor the level
of eosinophilic airway inflammation in the lower airways of humans [1,2]. FeNO can
also be used as a predictor of responsiveness to an inhaled corticosteroid (ICS) and to
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evaluate patients’ adherence to anti-inflammatory medications [56,57]. Because of the close
linkage between rhinitis, chronic rhinosinusitis, and asthma, the measurement of NO in the
nasal cavity provides a promising relevant biomarker of unified airway inflammation [58].
Several methods have been proposed for nasal NO measurement. Two methods are
currently recommended in accordance with the ATS/ERS (European Respiratory Society)
guidelines: one is nasal aspiration via one nostril with velum closure, and the other is nasal
exhalation through a facemask with a fixed flow [1,2]. The latter maneuver is thought to
obtain a fraction of endogenous NO with contaminated air passing through the nose with
a relatively high flow rate.

The existing data regarding the measurements of nasal NO have provided clear
evidence with clinical relevance [59,60]. We examined the local gradients of nasal NO
concentrations by using direct online sampling methods, and we compared the levels in
different areas inside the nasal cavity [61]. We found that most of the healthy participants
showed higher nasal NO levels in the middle meatus (MM) area than in the inferior
turbinate (IT) area (mean, 94.8 vs. 48.1 ppb). These results indicate that the maxillary and
anterior ethmoid sinuses are the dominant sources of nasal NO detected in the MM area,
and they emphasize the role of the paranasal sinuses as a physiological NO reservoir. In
this sense, it should be noted that there is a great difference in the background NO output
between the upper airways and the lower airways. In the upper airways, there is a higher
NO background, and thus an increase in NO (e.g., in allergic rhinitis) tends to be obscured,
whereas a decrease in NO (e.g., in primary ciliary dyskinesia or CRS with nasal polyps) is
usually more easily detected [54,61,62].

4. Allergic Rhinitis
4.1. Anatomy and Embryology of the Nose and Paranasal Sinuses

The regions that are affected mainly in AR and those affected mainly in CRS are
different in view of the anatomy of the nose and embryological development. Allergic
inflammation manifests itself in the inferior turbinate mucosa and is rarely accompanied by
nasal polyp formation, whereas the presence of nasal polyps is a hallmark in CRS patients,
with polyps mainly in the maxillary and ethmoid sinuses with the compromised ostio-
meatal complex (OMC). During embryonic-stage development, the lateral nasal wall is
almost completed by 24 weeks’ gestation. By this time, the middle turbinate has developed
and ossified from the ethmoid bone, and the inferior turbinate has emerged from different
origins, i.e., the maxilla and the lateral cartilaginous capsule. Based on the initial mucosal
thickening, turbinate development appears to be a primary process, and meatal ingrowth
occurs secondarily [63].

In the nasal airways of healthy humans, NO is produced mainly in the paranasal
sinuses; the nasal cavity generates a relatively small amount of NO. The NO levels in the
sinus cavity have shown a range of a thousand parts per billion in proportion to the large
surface areas. The NO level decreases by approximately one-half in the nasal cavity in
a gradient manner [8,64,65]. The role of nasal NO in AR patients has been a matter of
debate due to its dual origin, with contributions from both the paranasal sinuses and the
turbinate mucosa. The presence of ongoing type 2 inflammation leads to a high production
of NO due to the increased expression of iNOS in the inferior turbinate [66–68]. This is
also supported by a report that the nasal NO levels showed a normal distribution (mean
273.5 ppb) in healthy Chinese subjects without sinonasal diseases and were positively
correlated to the subjects’ values of lnFeNO (FeNO log base e) [69].

4.2. Increased iNOS Activities in AR

Allergic rhinitis (AR) is characterized by type 2 inflammation that is due to the
activation of innate ILC2 cells and acquired T-helper 2 cells, which induces the concomitant
release of cytokines including IL-4, -5, and -13 [70]. IgE antibodies are then produced in
the nasal mucosa and regional lymphatic tissues in response to the causal antigen’s entry
into the mucous membrane [71]. The release of these inflammatory factors can upregulate
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the iNOS expression in epithelial cells and mucosal inflammatory cells, leading to higher
NO generation as clearly documented in a series of human studies [5,6,61,67,68,72–74]
(Table 1).

In contrast, previous findings have generally shown no significant difference in eNOS
gene and protein levels between AR patients and control subjects [66,68]. In accordance
with the differential activities of NOS isoforms in the turbinate mucosa, our investigation
demonstrated that high nasal NO levels were directly detected on the surface of the inferior
turbinate in symptomatic AR patients [68]. The method had the advantage of avoiding the
impact of the sizable contribution of NO from the paranasal sinuses [61]. In such an allergic
inflammatory microenvironment, pro-inflammatory cytokines and oxidative stress might
upregulate the production of iNOS-derived NO through the activation of transcription
factors [75]. Excessive amounts of NO can react with ROS to generate peroxynitrite
(ONOO−), which can cause oxidative damage to biomacromolecules (lipids, proteins, and
DNA), leading to the deposition of cytotoxic substances [61,74,76].

A large amount of a cytotoxic substance such as ONOO− can easily penetrate into cells’
membranes and induce nitrosylation (NT) via tyrosine and cysteine residues. Nitrotyrosine
causes oxidative damage to biological macromolecules, especially lipids, proteins, and
DNA [77]. We analyzed the concentrations of the inflammatory mediators related to
NO metabolism extracted from nasal brushing cells of the inferior turbinate mucosa [61];
elevated levels of NT from oxidized NO metabolites and eosinophilic cationic proteins
(ECPs) were concomitantly detected in the inferior turbinate mucosa of allergic patients
associated with elevated nasal NO.

The diagnostic values of nasal NO in allergic rhinitis were reported in various patient
populations [35,58,60,73,78–80]. Because the measurement of nasal NO is noninvasive, easy
to perform, and economical, it has become a popular and valuable test for the diagnosis of
AR even in children [81]. However, the measurement of nasal NO can be influenced by
multiple external factors, including the ambient conditions, the time of day, the subject’s
past physical activity, the breathing method, and the analyzer models used [5,82,83].
Further analysis is also required to validate the role of nasal NO and FeNO measurements as
objective parameters for the diagnosis of AR independent of other confounding parameters
such as nasal airway resistance (NAR). The differences in nasal NO levels among AR
patients, asymptomatic atopic subjects, and healthy controls were examined in a large
sample of Chinese adults [84], and these levels were observed to be higher in the AR patient
group than the other groups. The nasal NO values were related to the FeNO levels, total
nasal resistance, and nasal volume within 0–7 cm measured by acoustic rhinometry.

Another study evaluated factors that may affect nasal NO in the diagnosis of AR [79].
The study’s findings revealed that the nasal obstruction score, the ECP levels in nasal
secretion, and NAR were independently associated with increased nasal NO levels. Our
recent investigation also demonstrated that increased levels of nasal NO in AR patients
were independent of the nasal airway patency and sensitive enough for a receiver operating
characteristic (ROC) curve analysis, with the optimal cut-off point of 38.5 ppb being set to
discriminate the AR patients from the healthy subjects [78]. It appears that nasal NO and
NAR measurement are two distinctly independent modalities, with the former being more
suitable for the diagnosis of AR [85].

The role of allergic inflammation in increased nasal NO levels in AR patients can
be examined from another point of view, i.e., comparisons of AR patients with individ-
uals who have vasomotor rhinitis (VMR). We detected no elevation in nasal NO levels
in symptomatic VMR patients compared with control subjects, which reflects the fact
that different mechanisms underlie the diseases of AR and VMR [74]. Apart from the
allergic responses, it is also noteworthy that VMR arises from an imbalance of autonomic
input into the nasal mucosa and enhanced parasympathetic responses, which results in
increased plasma excretion and glandular secretion [86,87]. Histological damage to the
surface epithelium of VMR patients has been reported along with impaired mucociliary
clearance without antigen-specific allergic inflammation [88,89]. It therefore appears that
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different pathological mechanisms of neurogenic inflammation in VMR and IgE-mediated
inflammation in AR are likely to be responsible for the different nasal NO levels [90].

Table 1. Studies focusing on the expression and distribution of NOS isoforms and concomitant NO production in allergic
rhinitis (AR).

Authors, Year
[Ref. No.]

Disease
(Sample Area) Principal Results

Kawamoto et al.
1998 [66] Perennial AR (IT)

eNOS localization in epithelial and endothelial cells.
Increased iNOS staining of epithelial and inflammatory cells in AR patients’ in
inferior turbinates.

Kawamoto et al.
1999 [67] HD mite AR (IT) iNOS expression of nasal epithelial cells was elevated in the AR group.

No difference in iNOS expression after antigen provocation

Takeno et al.
2001 [68] Perennial AR (IT)

DAF-2 DA imaging showed that epithelial ciliated cells produced a larger
amount of NO than nonepithelial inflammatory cells.
Preincubation with L-NAME resulted in a 40% decrease in NO production.

Yusel et al.
2008 [73] Seasonal AR (IT)

iNOS immunoreactivity was higher both in seasonal AR patients and in
BA patients.
No difference in eNOS immunoreactivity was observed between the groups.

Takeno et al.
2012 [74]

Perennial and seasonal AR,
vasomotor rhinitis (IT)

Nasal FeNO levels were higher in perennial AR than in normal subjects or
VMR patients, and positive correlations existed between nasal symptom scores
and FeNO levels.
SAR patients showed increased nasal FeNO levels during the pollen
dispersion season.

Takeno et al.
2014 [61] Perennial AR (IT, MM)

AR patients showed higher nasal FeNO and nasal NO levels in the IT area.
No significant difference in the MM area was observed among the groups.
AR patients showed higher ECP and NT levels in nasal brushing cells.

Takeno et al.
2017 [78] Perennial AR (IT)

AR patients showed higher nasal FeNO levels.
The optimal cut-off point of the nasal FeNO level was 38.5 ppb for
AR diagnosis.
No significant correlation was found between nasal FeNO and NAR values.

Hou et al.
2018 [79] Pollen symptomatic AR (IT)

Increased nasal NO levels were associated with nasal obstruction and NAR.
Nasal NO and ECP in secretion were positively correlated in patients with
mild-to-moderate nasal obstruction.

Takahara et al.
2019 [65] Perennial AR (IT, MM)

Nasal NO levels in the IT area in AR patients decreased 2 months after
INS treatment.
No difference in nasal NO levels in the MM area was observed.

NOS: nitric oxide synthase; AR: allergic rhinitis; BA: bronchial asthma; HD: house dust; IT: inferior turbinate; CBF: ciliary beat frequency;
DAF2-DA: 4,5-diaminofluorescein diacetate; L-NAME: NG-nitro-L-arginine methyl ester; FeNO: fractional concentrations of exhaled NO;
VMR: vasomotor rhinitis; NT: nitrotyrosine; MM: middle meatus; ECP: eosinophil cationic protein; NAR: nasal airway resistance; INS:
intranasal steroid.

4.3. Nasal NO as a Therapeutic Parameter

FeNO is a well-established biomarker for type 2 inflammation in bronchial asthma
(BA) [1,2], and the FeNO level decreases in response to medical interventions such as
treatment with ICS or anti-IL-4/IL-13R antibodies [91,92]. The diagnostic value of nasal
NO in patients with BA as a comorbidity has also been investigated in studies based on
the “one airway/one disease” theory [93]. The use of FeNO in determining the likelihood
of steroid responsiveness is strongly recommended for individuals with BA [3]. Most of
the relevant investigations have also demonstrated a reduction in the nasal NO levels of
symptomatic AR patients upon treatment with intranasal steroids [65,94–98].

Independent positive associations between perennial allergen sensitization and higher
nasal NO levels were observed at both baseline and follow-up periods [92]. In addition,
negative associations existed between the daily use of a nasal steroid or ICS and the nasal
NO levels during follow-up periods. However, whether nasal NO measurements are useful
and reliable enough to monitor the diagnosis and severity of AR and the clinical course
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remains an open question [35,73,96]. The low reliability of nasal NO measurements is
caused by several factors, including the high variability in nasal NO values, anatomical
variations in the nose structure, the presence of the nasal cycle, and the comorbidity of
sinus disease [97,98].

We recently reported the effects of an INS (fluticasone furoate [FF]) on nasal NO
levels in a specific area around the inferior turbinate in untreated AR patients [65]: the
nasal NO levels in that area showed a marked reduction after 2 months of ICS treatment,
corresponding to an improvement of the patients’ subjective symptoms. However, no
significant difference in nasal NO levels was observed in the middle meatus area between
the control and AR groups during the study period. These results underscore that the
paranasal sinuses are another major contributor to the production of NO in subjects with
OMC patency including AR [99].

5. Chronic Rhinosinusitis
5.1. CRS Phenotypes and NO Production

Chronic rhinosinusitis (CRS) is persistent inflammation of the nasal and sinus mucosa
lasting ≥12 weeks, accompanied by two or more nose-related symptoms such as nasal
blockage and nasal discharge [100,101]. As with many other chronic diseases, the clinical
entity of CRS is considered a disease with heterogeneity. Recent advances in medical
devices have enabled the phenotype classification of CRS based on the presence/absence
of nasal polyps (NP) revealed by endoscopic imaging (CRSwNP vs. CRSsNP), radiological
findings, and the presence of comorbid or systemic illness including BA [100,102–108].

The establishment of a classification system for CRS endotypes has been attempted,
involving histological features such as eosinophilia and specific molecular biomarkers.
The combined analysis of the CRS phenotype and endotype could provide insights into
treatment responses and pathobiology. Classification based on the level of sinonasal NO
production and related enzymes has been a matter of debate, with continuing efforts. The
measurement of nasal NO and NOS activities can provide a foundation for new and specific
interventions targeting molecular pathways that underlie endotype-specific inflammation
in CRS [5,109–111].

Patients with CRS usually show pathological features of extensive mucosal dysregula-
tion induced by chronic inflammation. The mucosal damage combined with obstruction
of the OMC in these patients contributes to decreased nasal NO levels derived from im-
paired ciliary activities [104,112]. However, it is not yet known whether the low NO levels
detected in CRS are the result of a reduced production of NO by the paranasal sinuses or
instead reflect a reduced ability of NO to diffuse in the nasal cavity due to an obstruction
of the sinus ostia [8,65].

Most of the existing research has consistently demonstrated a reduction in nasal
NO levels in CRS patients, which suggests that nasal NO may be a potential clinical
biomarker of sinus inflammation [109,110,113–116] (Table 2). Negative correlations have
been observed between nasal NO levels and the severity of sinus infection, as indicated
by computed tomography (CT) scores or nasal polyp scores [59,112,115–117]. Ambrosino
et al. recently performed a systematic review to investigate the possible link between the
nasal NO concentration and CRS phenotypes, and they reported that CRSwNP patients
showed significantly lower nasal NO values compared to those of both healthy controls and
CRSsNP patients, based on 23 selected articles [118]. Interestingly, the observed difference
in nasal NO levels was related to the flow rate of the nasal aspiration, with the difference
between cases and control subjects being more prominent when higher aspiration flows
were used.

The pathology of nasal polyps is characterized by tissue remodeling, epithelial dys-
function, the activation of innate and adaptive inflammatory responses, and fibrin de-
position [21,70,105]. A possible relationship between the formation of nasal polyps and
lower NO levels detected in the sinus cavity has been proposed based on the increased
amounts of fibrin deposition and prolonged wound healing processes [112]. During wound
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healing processes of the respiratory mucosa, the deposition of fibrin matrix is replaced by
collagen produced by fibroblasts. The biological actions of NO have been demonstrated to
be crucial in the wound healing process and tissue regeneration [119,120]. Several lines
of evidence indicate that NO induces the expression of collagen in human fibroblasts,
and NO-releasing materials are currently being used in a scaffold in wound-repairing
beds [121,122]. Decreased NO levels may thus cause a downregulation of tissue collagen
production that leads to prolonged wound healing.

Whether decreased levels of nasal NO in CRS are affected by the presence of comorbid
AR is another matter of debate [123]. The nasal NO levels in atopic CRS patients were
higher than those in nonatopic CRS patients, which indicated that nasal NO could partly
reflect the allergic status of the nasal cavity [116]. Another report from the same group
further evaluated the impact of sinus inflammation, as detected by CT images on nasal NO
levels in AR and non-AR patients; the AR patients without sinus opacity showed higher
nasal NO levels (mean, 1180 ppb) compared to the total AR population (mean, 939 ppb),
and the non-AR patients with sinus opacity showed the lowest nasal NO levels (mean,
522 ppb) [90]. It is likely that nasal NO could be used to discriminate AR patients who
have sinus inflammation with substantial reliability. However, a longitudinal follow-up of
a relatively large cohort of BA subjects identified no significant differences in the changes
in nasal NO levels in relation to CRS symptoms [92].

5.2. NOS Activities in Eosinophilic Chronic Rhinosinusitis

Eosinophilic chronic rhinosinusitis (ECRS) is a refractory and intractable type of CR-
SwNP. It is histologically defined as >70 residual eosinophils/high-power field (HPF) in
nasal polyp tissue [105]. A clinical scoring system named the JESREC (Japanese Epidemio-
logical Survey of Refractory Eosinophilic Chronic Rhinosinusitis) score was established in
2015 for the diagnosis of ECRS based on clinical examination results, i.e., bilateral sinus
disease, nasal polyps, CT findings, and peripheral eosinophil counts [124,125]. Several
attempts have been made to measure the FeNO or nasal NO levels as a marker for assess-
ing the severity and prognosis factors of ECRS [109,110,112,126]. ECRS patients generally
showed higher FeNO levels as a result of a larger proportion of comorbid BA [110,112].
A positive correlation was revealed between FeNO and eosinophilic markers, including
blood eosinophil counts, tissue eosinophils in nasal polyps, and JESREC scores [127].

Another study reported that preoperative high levels of FeNO with tissue eosinophilia
in nasal polyps (≥70/HPF) were a useful biomarker for predicting the development of
asthma symptoms after endoscopic sinus surgery (ESS) [126]. We have demonstrated
that, compared to non-ECRS patients, the persistence of eosinophilic inflammation in the
ethmoid sinus mucosa of ECRS patients induced a concomitant upregulation of iNOS
mRNA, as well as IL-5 mRNA [110]. There was no significant difference in nNOS, eNOS, or
TGF-β mRNA levels between the groups. Positive iNOS immunoreactivity was localized
mainly in ciliated epithelial cells and associated inflammatory cells with an accompanying
deposition of oxidized NO metabolites. Intense nitrotyrosine (NT) staining was colocalized
with eosinophil accumulation, and the ECRS patients showed higher rates of NT-positive
cells, in line with previous reports [128,129]. We also observed a similar tendency in the
local cytokine profiles surrounding the frontal sinus in ECRS patients [111]. The occlusion
or stenosis of the frontal ostium with an accumulation of eosinophilic mucin is often
inevitable in ECRS patients with compromising clinical problems [130]. It is likely that in
ECRS patients, the formation of NT is related to the autotoxic NO mechanism, which is
similar to the case with bronchial asthma and substantiates the theory of unified airways.

On the other hand, it remains controversial whether a link exists between nasal NO
levels and the severity of ECRS, due (probably) to the multifunctional roles of NO [118].
A recent study reported that nasal NO levels determined by subtracting the nasal FeNO
level from the oral FeNO level were significantly lower in the CRS group (both ECRS and
non-ECRS) than in the control group, with the ECRS group’s difference being more promi-
nent [112]. The nasal NO levels in the CRS patients were negatively correlated with the



Int. J. Mol. Sci. 2021, 22, 7561 10 of 18

degrees of blood and tissue eosinophilia. In a study of a Chinese population, eosinophilic
CRSwNP patients also showed lower nasal NO levels than noneosinophilic CRSwNP
patients and healthy subjects [123]. In contrast, according to a survey in Denmark, a high
level of FeNO was more prevalent in CRSwNP patients compared to controls irrespective of
asthma status. Those authors also reported that the nasal NO level was lower in CRSwNP
patients compared to controls [131]. These results indicate relative independence between
nasal NO and FeNO levels, and they suggest that the physiologically NO-rich nasal airflow
is unlikely to affect the orally exhaled air. The results also imply possible mechanisms in
which eosinophilic inflammation in ECRS appears either to modulate NOS activities or to
inhibit NO diffusion toward the nasal cavity. This theory is also supported by accumulated
evidence that type 2-polarized inflammation favors an upregulation of NO production in
human airway epithelial cells [23,47].

Although nasal NO has not been established as a useful clinical measure of sinonasal
disease [59,132], there is some evidence that the medical or surgical treatment of CRS is
associated with changes in nasal NO levels [105,109,133,134]. We prospectively examined
the effect of different therapeutic modalities on nasal NO levels in ECRS patients, and we
observed that the mean nasal NO levels in the ESS surgical group gradually increased from
the baseline (59.3 ppb) to 62.3 ppb at 1 month and to 93.6 ppb at 6 months [109]. Interest-
ingly, the mean oral FeNO levels in this group decreased after surgery, thus suggesting
that treatment may result in a recovery of normal NO production by the ciliated sinus
epithelium and a cessation of the lower airway inflammation.

One of the nonnegligible problems regarding the use of nasal NO as a potential
biomarker for therapeutic assessment is how to identify the source of the nasal NO pro-
duction responsible for the changes. The treatment of CRS may restore both the iNOS
expression of the sinus ciliated cells and the ability of NO to pass through the paranasal
sinus ostia. This is particularly important in cases with a unilateral or a limited area of sinus
disease. The communicating air flow through the nasopharynx obscures the focused area in
the sinonasal tracts. For example, changes in the nasal NO levels of patients with unilateral
sinus disease (USD) during the peri-operative period failed to serve as a reliable assessment
of disease severity and quality of life (QOL) status [133]. Unlike bilateral CRS patients, the
nasal NO levels of the USD patients did not correlate with disease severity. However, the
nasal NO levels on both sides were significantly elevated 6 months after ESS in all groups
except the fungus group. The patients with fungal sinusitis in that study showed the lowest
preoperative nasal NO levels with reliable sensitivity (79.0%) and specificity (87.2%) for
a preoperative diagnosis. This is supported by a report that some commensal fungi such
as C. albicans inhibited iNOS activities in macrophages and blocked NO production in a
dose-dependent manner [135]. It is clear that further research is required to elucidate how
the post-surgery recovery process of sinus ciliary epithelial cells is functionally related to
increased levels of NO production with morphological integrity.

5.3. NOS-Arginase Isoform Balance in CRS

The low nasal NO levels that are commonly observed in CRS patients are attributable
mainly to the regulatory mechanisms of the expression and activities of the three NOS iso-
forms. However, there are other rate-limiting factors in cellular NO production, including
the availability of intracellular arginine (which is the substrate for NOS) and the activities
of arginino-succinate lyase (which converts citrulline back to arginine). This enzyme also
plays important roles not only to help synthesize intracellular arginine but also to utilize
extracellular arginine for NOS-dependent NO synthesis [7]. In addition, L-arginine is also
utilized by arginase (ARG), which is commonly known as the final enzyme in the urea
cycle, to form urea and ornithine. Different arginase isoforms, i.e., arginase-1 (ARG1) and
arginase-2 (ARG2), have been identified [136]. ARG1 is constitutively expressed (mainly in
the liver), whereas ARG2 catalyzes the same reaction but differs in its tissue specificity and
subcellular location.
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The mechanisms regulating the expressions of ARG1 and ARG2 genes have been
proposed to be involved in the induction of airway responsiveness by limiting substrate
availability [137,138]. However, controversy remains regarding the clinical significance
of arginase activity, which predicts NO deficiency in inflammatory airway diseases. In a
study of the relationships among the expressions of NO-related enzymes (i.e., iNOS2 and
ARG2), asthma severity, FeNO, and eosinophilic inflammation, the index of iNOS to ARG2
mRNA was reported to be a valuable marker to differentiate severe from milder asthma,
despite a tendency for ARG2 mRNA levels to decrease with asthma severity [76].

In patients with perennial AR, increased expressions of both ARG1 and ARG2 were
observed in the inferior turbinate mucosa, suggesting a possible role for the L-arginine–
ornithine pathway in the upper airways through competition for the common substrate [139].
One of our studies was the first to shed light on alterations in NO production caused by
changes in the NOS-ARG balance in different CRS phenotypes [140]; as illustrated in
Figure 2, increased ARG2 activities in CRSsNP patients were associated with significantly
lower levels of nasal NO. In contrast, patients with CRSwNP showed significant iNOS
mRNA upregulation with concomitant higher levels of FeNO and nasal NO. Our findings
and those of other groups suggest that increased ARG2 activity reduces the synthesis of
NO in the sinus mucosa of CRSsNP patients and stimulates type 1 (non-eosinophilic) in-
flammation [141]. The highest level of ARG2 expression was observed in the nonasthmatic
and non-AR CRSsNP patients. The pathology of CRSsNP features cellular infiltrations
of neutrophils, macrophages, and lymphocytes dominated by type 1 inflammatory cy-
tokines [100,101,105]. It is speculated that moderate expression levels of ARG2 partially
inhibit the production of NO so that it can no longer maintain its protective roles but
allow an accumulation of NO in a range that is sufficient to promote type 2 inflammatory
responses [141].
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Table 2. Studies focusing on the expression and distribution of NOS isoforms and concomitant NO production in chronic
rhinosinusitis (CRS).

Authors, Year
[Ref. No.]

Disease
(Sample Area) Principal Results

Chen et al.
2000 [28] CRS (cultured ethmoid cells)

iNOS expression was augmented by TNF-α and attenuated by
dexamethasone, whereas eNOS expression remained unchanged.
TNF-α modulated CBF activities through NO production.

Kim et al.
2001 [29] Normal mucosa (sphenoid sinus)

CBF increased after treatment with L-arginine and was inhibited by
L-NAME.
Both positive iNOS and eNOS immunostaining were observed in the
ciliated cells.

Noda et al.
2012 [109] ECRS (ethmoid mucosa, NP)

The surgical group showed higher nasal FeNO and lower oral FeNO
levels 6 months after ESS, whereas the medical group remained
unchanged.
Up-regulation and positive immunoreactivity of iNOS was observed in
both epithelial cells and submucosal inflammatory cells.

Takeno et al.
2013 [110]

ECRS and non-ECRS (ethmoid
mucosa, NP)

ECRS patients showed higher oral FeNO levels and non-ECRS patients
showed lower nasal FeNO levels.
Positive correlations existed between blood eosinophils and FeNO
levels in ECRS patients.
Intense NT immunoreactivity was colocalized with eosinophil
accumulation and higher NT-positive cells in ECRS patients.

Taruya et al.
2015 [140]

CRSsNP and CRSwNP (ethmoid
mucosa, NP)

CRSsNP patients showed increased arginase-2 activities associated
with lower nasal FeNO levels.
CRSwNP patients showed iNOS upregulation with concomitant higher
FeNO levels.

Kubota et al.
2017 [111]

ECRS and non-ECRS (frontal
recess mucosa)

ECRS patients showed increased IL-5 and IL-6 mRNA levels in the
frontal recess.
No difference was observed in TGF-2 and iNOS levels.

Yoshida et al.
2019 [112] ECRS and non-ECRS (NP)

Nasal NO levels were decreased in ECRS patients and negatively
correlated with eosinophil levels and CT scores
Nasal NO levels remained unchanged after ESS.
Reduction in t-PA levels by Th2 cytokines may inhibit iNOS expression.

Vlad et al.
2019 [141]

CRS with BA or AR
(Eth)

Arginase 2 expression was higher in CRS patients than controls,
especially in nonallergic and nonasthmatic CRSsNP patients.
No correlation existed between arginase 2 and IL-13 expression.

AR: allergic rhinitis; BA: bronchial asthma; NOS: nitric oxide synthase; CRS: chronic rhinosinusitis; CRSsNP: CRS without NP; CRSwNP:
RS with NP; CBF: ciliary beat frequency; L-NAME: NG-nitro-L-arginine methyl ester; FeNO: fractional concentrations of exhaled NO;
ECRS: eosinophilic chronic rhinosinusitis; NP: nasal polyp; ESS: endoscopic sinus surgery; NT: nitrotyrosine; ECP: eosinophil cationic
protein; t-PA: tissue-plasminogen activator.

6. Conclusions

This comprehensive review highlights that investigations of NO, a gaseous and mul-
tifunctional transmitter, remain a source of fruitful research regarding the human nasal
system, including the paranasal sinuses. Multiple roles of NO from both physiological
and inflammatory aspects are based on surrounding pro- or anti-inflammatory conditions,
as well as the local concentrations of NO itself. The diverse backgrounds of the human
nasal cavity and paranasal sinuses with anatomical complexity continue to manifest as
unelucidated subtleties of the roles of nasal NO. The interpretation of the relationship
between upper and lower airway functions based on NO levels is a topic that deserves
further attention.

There is consensus as to the diagnostic value of measuring the nasal NO in AR
patients, and accordingly, such a measurement has become a popular tool for the objective
assessments of the severity of AR and therapeutic efficacy. The classification of CRS
phenotypes based on the level of the production of sinus NO and its metabolites has
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been a matter of debate, and efforts to establish such a classification are ongoing. The
measurement of nasal NO and NOS activities can provide a foundation for new and specific
biomarkers targeting molecular pathways that underlie endotype-specific inflammation.
Focusing on these topics will confirm the significance of the regulatory processes of host
signaling pathways for endogenous NO production. Additional or more extended studies
can be performed to examine the effects of NOS modulators in treating intractable and
refractory diseases in the sinonasal regions.

Funding: Japan Society for the Promotion of Science: 19K09846, Health Labor Sciences Research
grant: H30-Nanchitou (Nan)-Ippan-016.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. American Thoracic Society; European Respiratory Society. ATS/ERS Recommendations for Standardized Procedures for the

Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide, 2005. Am. J. Respir. Crit.
Care Med. 2005, 171, 912–930. [CrossRef]

2. Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R. An
Official ATS Clinical Practice Guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for Clinical Applications. Am. J.
Respir. Crit. Care Med. 2011, 184, 602–615. [CrossRef] [PubMed]

3. Vanhoutte, P.M.; Zhao, Y.; Xu, A.; Leung, S.W. Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the
Endothelium-Derived Vasodilator Mediator. Circ. Res. 2016, 119, 375–396. [CrossRef] [PubMed]

4. Zhu, H.-Y.; Hong, F.-F.; Yang, S.-L. The Roles of Nitric Oxide Synthase/Nitric Oxide Pathway in the Pathology of Vascular
Dementia and Related Therapeutic Approaches. Int. J. Mol. Sci. 2021, 22, 4540. [CrossRef]

5. Maniscalco, M.; Sofia, M.; Pelaia, G. Nitric Oxide in Upper Airways Inflammatory Diseases. Inflamm. Res. 2007, 56, 58–69.
[CrossRef] [PubMed]

6. Barnes, P.J.; Dweik, R.A.; Gelb, A.F.; Gibson, P.; George, S.C.; Grasemann, H.; Pavord, I.D.; Ratjen, F.; Silkoff, P.; Taylor, D.R.; et al.
Exhaled Nitric Oxide in Pulmonary Diseases: A Comprehensive Review. Chest 2010, 138, 682–692. [CrossRef] [PubMed]

7. Ghimire, K.; Altmann, H.M.; Straub, A.C.; Isenberg, J.S. Nitric Oxide: What’s New to NO. Am. J. Physiol. Cell Physiol. 2017, 312,
C254–C262. [CrossRef]

8. Maniscalco, M.; Bianco, A.; Mazzarella, G.; Motta, A. Recent Advances on Nitric Oxide in the Upper Airways. Curr. Med. Chem.
2016, 23, 2736–2745. [CrossRef]

9. Antosova, M.; Mokra, D.; Pepucha, L.; Plevkova, J.; Buday, T.; Sterusky, M.; Bencova, A. Physiology of Nitric Oxide in the
Respiratory System. Physiol. Res. 2017, 66, S159–S172. [CrossRef]

10. Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357,
593–615. [CrossRef]

11. Förstermann, U.; Sessa, W.C. Nitric Oxide Synthases: Regulation and Function. Eur. Heart J. 2012, 33, 829–837. [CrossRef]
12. Lind, M.; Hayes, A.; Caprnda, M.; Petrovic, D.; Rodrigo, L.; Kruzliak, P.; Zulli, A. Inducible Nitric Oxide Synthase: Good or Bad?

Biomed. Pharmacother. 2017, 93, 370–375. [CrossRef] [PubMed]
13. Picón-Pagès, P.; Garcia-Buendia, J.; Muñoz, F.J. Functions and Dysfunctions of Nitric Oxide in Brain. Biochim. Biophys. Acta Mol.

Basis Dis. 2019, 1865, 1949–1967. [CrossRef] [PubMed]
14. Zhu, J.; Song, W.; Li, L.; Fan, X. Endothelial Nitric Oxide Synthase: A Potential Therapeutic Target for Cerebrovascular Diseases.

Mol. Brain 2016, 9, 30. [CrossRef] [PubMed]
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