Skip to main content
. 2021 Jul 8;23(7):874. doi: 10.3390/e23070874
Algorithm 1 GA
  • Input: the parameters M, N, δ, ϑ1, ϑ2 and ϑ3

  • Begin

  • S1: encode and initialize M individuals xi(t) randomly, 0<iM, iterative times t = 1;

  • S2: compute f(i), 0<iM, update  pg(t), if it satisfies (t > N or precision δ), then go to step S4; otherwise, go to step S3;

  • S3: execute so, co and mo operations to generate new solutions according to ϑ1, ϑ2 and ϑ3, iterative times t = t + 1; go to step S2;

  • S4: output the optimized results.

  • End