Skip to main content
. 2021 Jul 8;23(7):874. doi: 10.3390/e23070874
Algorithm 10 GWO
  • Input: the parameters M, N, δ

  • Begin

  • S1: initialize M individuals xi(t) randomly, 0<iM, iterative times t = 1;

  • S2: compute f(i), 0<iM, rank the solutions and find the current top three best wolves: xα(t), xβ(t) and xδ(t); if it satisfies (t > N or precision δ), then go to step S4; otherwise, go to step S3;

  • S3: update the solution of each individual via Equation (42), update coefficients a, A and C, iterative times t = t + 1; go to step S2;

  • S4: output the optimized results.

  • End