Zhang et al. BMC Genomics (2021) 22:568
https://doi.org/10.1186/s12864-021-07888-5

BMC Genomics

RESEARCH Open Access

Research on the drought tolerance
mechanism of Pennisetum glaucum (L.) in

Check for
updates

the root during the seedling stage

Ailing Zhang'", Yang Ji*", Min Sun'", Chuang Lin'", Puding Zhou', Juncai Ren®, Dan Luo', Xiaoshan Wang',
Congyu Ma', Xinquan Zhang', Guangyan Feng', Gang Nie' and Linkai Huang'"

Abstract

GO and KEGG enrichment analysis.

drought resistance in other plant species.

Background: Drought is one of the major environmental stresses resulting in a huge reduction in crop growth and
biomass production. Pearl millet (Pennisetum glaucum L) has excellent drought tolerance, and it could be used as a
model plant to study drought resistance. The root is a very crucial part of plant that plays important roles in plant
growth and development, which makes it a focus of research.

Results: In this study, we explored the mechanism of drought tolerance of pearl millet by comparing physiological
and transcriptomic data under normal condition and drought treatment at three time points (1 h, 3h and 7 h) in
the root during the seedling stage. The relative electrical conductivity went up from 1h to 7 h in both control and
drought treatment groups while the content of malondialdehyde decreased. A total of 2004, 1538 and 605
differentially expressed genes were found at 1h, 3h and 7 h respectively and 12 genes showed up-regulation at all
time points. Some of these differentially expressed genes were significantly enriched into ‘metabolic processes’,
'MAPK signaling pathway’ and ‘plant hormone signal transduction’ such as the ABA signal transduction pathway in

Conclusions: Pearl millet was found to have a quick drought response, which may occur before 1 h that
contributes to its tolerance against drought stress. These results can provide a theoretical basis to enhance the
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Introduction

Drought is one of the major environment constraints
that limits agricultural production worldwide and leads
to the lack of adequate moisture that is required for nor-
mal plant growth and development and to complete
their life cycle [1-6]. Drought stress severely affects the
plants by causing substantial reductions in the crop
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growth and biomass accumulation. The main conse-
quences of drought stress in plants are the reduced rate
of cell division and expansion, root proliferation, stem
elongation and leaf size. Drought also disturbs the sto-
matal oscillations, plant water and nutrient relations that
result in declining the crop productivity, and water use
efficiency [7-9]. It has been reported that drought im-
posed negative influence on many crops. For example,
rice (Oryza sativa L.) suffered a drastic yield reduction
range of 18-60% and even more than 70% in some places
due to water deficiency [10-15] while it caused a 10-
50% reduction in wheat (Triticum aestivum L.) [16—18].
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Moreover, the biomass of maize (Zea mays L.) decreased
by 1-76% [19-21] and barley (Hordeum vulgare L.) by
73-87% upon drought stress, respectively [22]. In
addition, the leguminous crops like chickpea (Cicer arie-
tinum Linn.), pigeon pea (Cajanus cajan (Linn.) Millsp.)
and canola (Brassica napus L.) planted on arid lands had
faced severe reduction in their yield because of drought
conditions [23]. These reports indicate that drought
stress can lead to an economic impact which will de-
press the living quality of humans [23]. More signifi-
cantly, many researchers predicted that arid land would
expand globally by the end of this century and was 5.8 x
10° km? (or approximately 10%) larger than that between
1961and 1990 because of increasing concentrations of
greenhouse gases in the atmosphere. In addition, the
major expansion of arid regions will occur over south-
west North America, southern Africa, the northern
fringe of Africa, and Australia, while major expansions
of semiarid regions will occur across southern Africa,
North and South America and the north side of the
Mediterranean [24—26]. Therefore, it is crucial to en-
hance the drought stress tolerance in corps.

Pearl millet (Pennisetum glaucum (L.) R. Br.), as the
sixth most important economical cereal crops after
rice, wheat, maize, barley and sorghum (Sorghum bi-
color (L.) Moench) in the world [27-34], is cultivated
on ~ 27 million hectares worldwide as a staple food
crop in arid and semi-arid regions of sub-Saharan Af-
rica, India and South Asia where grain yields average
900 kg/ha [35, 36]. This crop feeds more than 90 mil-
lion farmers that live in poverty and is highly nutri-
tious (8—19% protein), high in fiber (1.2 g/100g), low
in starch, and has higher concentrations of micronu-
trients (iron and zinc) than wheat, rice, sorghum and
maize [36]. Its planting on the dryland often results
in the excellent drought resistance of pearl millet
while simultaneously, it is tolerant to heat, salinity
and deficiencies in soil nutrient [35, 37, 38]. Studying
the mechanisms of drought resistance in pearl millet
and mining the key genes related to drought toler-
ance are very important for pearl millet to acclimatize
in severe water deficit environment in the future,
which can decrease economic losses, particularly for
those areas where pearl millet is used as a main
staple food. In addition, it is also beneficial as a
source of genetic improvement to raise drought toler-
ance of other crops.

The root is one of the most important tissues of plants
for water uptake and transport and very sensitive to
water deficiency [39]. In addition, a main challenge in
developing drought-resistant plants is elucidating how
roots can better meet the increased evapotranspiration
demands of canopy with lower soil water availability,
which indicates that studying drought tolerance in root
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is an important goal. Alternatively, plant establishment
at the seedling stage decides its quality for later growth
[40]. A transcriptomic analysis under next generation se-
quencing (NGS) is an efficient approach for exploring
gene expression profiling. In addition, RNA-Seq based
on NGS has been utilized as a comprehensive high-
throughput approach to reveal the variation in gene ex-
pression, regulatory networks, and some technology de-
velopments in various species [41-46]. In this study,
RNA-Seq was performed to detect the seedling stage
pattern of expression of roots at early phases, such as
the seedling stage, with three time points (1h, 3h and 7
h) after drought stress. Currently, three studies have in-
vestigated drought resistance in pearl millet using tran-
scriptomic methods [41, 47, 48]. However, none of them
conducted an examination of varied gene expression
under drought stress over a time course, which is signifi-
cant because at different times, there may be variations
in the expression of gene patterns.

In this study, we analyzed genes that were differentially
expressed after drought treatment at different time
points (1h, 3h and 7h) in the roots of pearl millet at
seedling stage. By analyzing these transcriptome data, we
aimed to reveal the early dynamic molecular regulation
of pearl millet subjected to drought stress and elucidate
the key genes that are responsible for the drought toler-
ance. This is also important for the drought tolerance of
other crops. To the best of our knowledge, there is no
information about the early dynamic mechanisms of
drought response in pearl millet roots.

Materials and methods

Plant growth and water treatment

A cultivar of pearl millet ‘Tifleaf 3’ (provided by Beijing
Mammoth Seed Company) was used in this experiment.
Twenty plastic pots (10*15 cm) were filled with half silica
sand where 0.2 g seeds (about 240 seeds) were spread on
the silica sand for each pot. The materials were sub-
jected to grow in the growth chamber which was set a
day (14 h)/night (10h) and temperature regime of 26/
22°C. In the first 3 days, these materials were watered
with distilled water and most of them (about 85%)
sprouted on the third day. From the fourth day, they
were watered with Hoagland nutrient solution (0.5x).
After 13days of growth (most of plants with three
leaves), the Hoagland solution of 10 pots was changed as
20% PEG (polyethylene glycol 6000) solution (dissolve
PEG in Hoagland solution) which could simulate
drought stress [49]. Root samples with similar growth
vigour of plants were collected randomly after 1, 3 and
7h after treatment containing treatment groups and
control groups. With 3 biological replicates each and
were frozen immediately in liquid nitrogen and stored at
- 80 °C for further experiment.
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Physiological index measurement

Measurement of the relative electrical conductivity (REC)

0.1 g of pear]l millet root tissue was taken and wrapped
with gauze, then it was put in a 50 mL centrifuge tube
containing 20 mL of deionized water. After 12 h, the first
electrical conductivity was recorded as S1. Next, the cen-
trifuge tube was put into boiling water for 15min,
cooled at room temperature with tap water, and used to
measure second electrical conductivity recorded as S2.
Calculation of the relative electrical conductivity of the
root was using the following formula:

REC = S1/S2

Measurement of malondialdehyde content (MDA)

The content of malondialdehyde (MDA) was determined
by the thiobarbituric acid method [50]. The crude en-
zyme solution was extracted by taking about 0.1g of
pearl millet root tissue and adding 1.5 mL of phosphate
buffer for homogenization in an ice bath. Then, the mix-
ture was centrifuged at 12000 g at 4°C for 15 min and
the supernatant was the crude enzyme solution. The
protein content of the crude enzyme solution was calcu-
lated through the protein standard curve. Next, 1 mL re-
action solution (including 20% trichloroacetic acid and
0.5% thiobarbituric acid) was added into 0.5 mL crude
enzyme solution and the mixture was put in 95 °C water
bath for 15 min. After cooling, the centrifuge tube was
centrifuged at 12000 g at 25°C for 10 min. Finally, the
absorbance of supernatant was measured at 532 nm and
600 nm, respectively, and recorded as A532 and A600,
then AA = A532-A600. The content of MDA was calcu-
lated by using the following formula:

MDA concentration : C(mmol/L) = AA/(1 x ¢)
MDA content (mmol/mg) = C x V x 102/Cpr

Note: Among them, I: 96-well plate optical path, 0.5
cm; e extinction coefficient 155 mM ™' ecm™'; C: MDA
concentration (mmol/L); V: total volume of extracted
crude enzyme solution (mL); Cpr: material protein con-
tent (mg).

RNA-seq and data analysis

RNeasy Plant Mini Kit was used to extract RNA of sam-
ples and the quality of RNA was examined by RNA gel
electrophoresis. A NanoDrop spectrophotometer (Cali-
fornia, USA) was used to detect the purity of RNA, and
a Qubit RNA assay kit in a Qubit 2.0 fluorometer system
(California, USA) was used to determine the concentra-
tion of RNA. The library was constructed by the NEB-
Next® UltraTM Directional RNA Library Prep Kit for
[lumina® (California, USA). The mRNA was enriched by
The NEBNextPoly (A) mRNA Magnetic Isolation
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Module while Fragmentation Buffer was used to break
mRNA into short segments. A strand of cDNA was syn-
thesized with random hexamer primers and the second
strand was synthesized by adding buffer, DNA polymer-
ase I and dNTPs. Both strands of cDNA were purified
by AMPure XP beads, which was repaired at the end. A
tail was added and sequenced. Then, fragment size was
selected by AMPure XP beads. At last, the final cDNA
library was gained by PCR enrichment. Qubit 2.0 was
used for preliminary quantification and Agilent 2100
was used to test the inserted fragments of the library
[29]. Furthermore, Illumina Hi-Seq 2000 was used for
sequencing. We established a total of 18 RNA-Seq
libraries.

Identification of gene expression level of each sample
was carried out by using the Kallisto software [51]. The
clean data produced by Illumina sequencing were
mapped to Pacbio sequencing data (SRR11816223) of
pearl

millet [29], and the read count of each gene was
gained from the mapping results [52]. The read count
value of each gene was converted to the FPKM value
(Fragments per Kilobase Million).

Differential expression analysis of two groups (control
and drought treatment groups at each time points) was
performed by using software and the DESeq2 [53] and
genes with an adjusted P-value < 0.05 and |log, (FC)| =1
found by DESeq2 were assigned as differentially
expressed. Gene Ontology (GO) enrichment analysis of
differentially expressed genes (DEGs) obtained was im-
plemented by the GOseq R package. Besides, GO terms
with corrected P-value less than 0.05 were thought
enriched significantly. Finally, the KOBAS 3.0 was used
to test the statistical enrichment of DEGs in KEGG
pathways [29].

A weighted gene co-expression network analysis
(WGCNA) was carried out by the WGCNA package in
R (v3.3.0) (https://horvath.genetics.ucla.edu/html/
CoexpressionNetwork/Rpackages/WGCNA/).

Results and discussion

Measurement of REC and the content of MDA

The pearl millet root samples were collected after
treatments to measure the relative electrical conduct-
ivity (REC) and the content of malondialdehyde
(MDA). As time increased, the REC went up in both
CK and drought stress groups (Fig. 1). After a short
period of exposure to drought, the REC of the roots
was higher than when it was grown in normal condi-
tions and expressed a significant difference at 3h. In
contrast, the content of MDA declined from Oh to 3
h in the CK group, after that it was slightly increased.
Moreover, the content of MDA at an early stage (1h)
of drought treatment was significantly higher than
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that in the CK group and then quickly decreased at
3h and 7 h.

Under environmental drought stress, reactive oxy-
gen species (ROS) levels increased dramatically, which
resulted in severe oxidative damage to DNA, proteins
and lipids (Apel and Hirt, 2004). These reactive oxy-
gen species, (such as O~ 2. and H,0,, directly attack
membrane lipids and increase the peroxidation of
lipid [54]. The REC [55] and the content of MDA are
considered to be indicators of oxidative damage and
MDA is thought to be a marker for membrane lipid
peroxidation [56]. A decrease in membrane stability
demonstrates the level of lipid peroxidation that is
caused by ROS. Moreover, lipid peroxidation can in-
dicate the prevalence of free radical reactions in tis-
sues [9]. Many species such as cucumber (Cucumis
sativus L.) [55], tobacco (Nicotiana tabacum 1.) [57],
wheat [58] and Phillyrea angustifolia L. [59] etc.
showed a significant increase in MDA and relative
electrical conductivity under drought stress. In our re-
search, the content of MDA showed a significant rise
at 1h that indicates that there might be a substantial
production of ROS in a short time after drought
treatment that damages proteins and lipids. However,
the content of MDA in drought stress group de-
creased at 3h and 7h. This could be due to many
proteins like antioxidase in pearl millet were gener-
ated so that the ROS were converted to harmless
compounds. Therefore, the root showed a decline in
MDA content at later period. Superoxide dismutase
(SOD) [60] and catalase (CAT) [61] were reported to
play major roles in the defense against toxic ROS,
and they were found to increase in the early phase of
drought and decrease as the drought worsens [62].
So, SOD and CAT in pearl millet may respond
quickly to drought signals. Simultaneously, the REC
rose gradually from Oh to 7h no matter in CK or
treatment groups. However, no significant difference

between the CK and drought stress became apparent
at 7h, which also suggests that there could be some
compounds that were produced to alleviate this
situation.

Data analysis of RNA-Seq

A total of 18 qualified cDNA libraries were separately
constructed and used for RNA-Seq. The quality of RNA-
Seq was decided based on the quality of sequencing and
the correlations of biological replicates. In this study, the
Q20 or Q30 exceeded 93% and the percentage of GC
was greater than 53%. There are two sets of data that
had low correlation with the other two biological repli-
cates in the correlation analysis, we discarded them in
other subsequent analysis. Furthermore, the FPKM
values of 16 samples were assessed by Pearson correl-
ation (R2) and Principal component analysis (PCA)
(Supplemental Figure 1), which indicated that the quality
of sequencing was high. Overall, the data of RNA-Seq is
reliable and can be used to perform the additional
analysis.

Analysis of DEGs among drought stress and control
conditions

To determine the DEGs involved in response to
drought stress, three comparisons (total DEGs of
three time points, up-regulated DEGs of three time
points and down-regulated DEGs of three time
points) were performed with a threshold of |log,
(FC)| =21 and P value <0.05 (Fig. 2). There were 2004
(1364 up-regulated and 640 down-regulated), 1538
(676 up-regulated and 862 down-regulated) and 605
(449 up-regulated and 156 down-regulated) genes that
showed different levels of expression after 1h, 3h
and 7 h drought treatment respectively (Fig. 2a, Sup-
plemental Table 1). In addition, an upset [63] Venn
analysis was performed for all the DEGs (Fig. 2b), up-
regulated DEGs (Fig. 2c¢) and down-regulated DEGs
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Table 1 Description and expression of 12 up-regulated genes at all three time points

ID Description

i6_HQ_LWC_c101/f3p0/7152 unclear

i2_HQ_LWC c28624/f2p1/2038 diacylglycerol kinase
i2_HQ_LWC_c118250/f16p0/2100 NADP-dependent malic enzyme
i2_LQ_LWC c41668/f1p22/1915 amino acid transporter
i2_LQ_LWC_c131175/f1p1/2564 phenylalanine/tyrosine ammonia-lyase-like
i2_LQ_LWC_c13097/f1p0/2421 plant cysteine oxidase 2-like
i2_LQ_LWC c34188/f1p2/2518 unclear

i1_HQ_LWC_c21568/f5p0/1463 alcohol dehydrogenase (adh1C gene)
i3_HQ_LWC ¢32007/f19p0/3190 zinc finger CCCH domain-containing protein
i2_HQ_LWC_c122894/f9p1/2290 unclear

i1_HQ_LWC c16500/f2p0/1894 unclear

i2_LQ_LWC_c81803/f1p19/2350 ATP-dependent zinc metalloprotease FtsH 2

12 DEGs in table 1 are up-regulated at all three time points
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(Fig. 2d). Twelve DEGs showed up-regulation at all
three time points (Table 1). Alternatively, 1655, 1189
and 389 genes were differentially expressed specific-
ally at 1h, 3h and 7h of drought stress respectively
(Fig. 2b). The number of DEGs decreased as the time
of drought was extended.

The number of DEGs decreased from 1 h to 7 h, which
had the same trend with the content of MDA under
drought stress. This indicates that on exposure to
drought stress a large number of ROS were produced
and pear]l millet immediately showed responses due to
high drought resistance capability. Many genes were
expressed, which resulted in the production of many
proteins, such as enzymes respond to the sudden shock,
and after that, the cells returned to a relatively balanced
level. It could be a signal for plants that they were in a
normal condition so in a short time, it was not essential
to express many genes but just grew normally. This
phenomenon also appeared in maize [64]. Both drought
tolerant cultivar and drought sensitive cultivar maize
faced drought stress at the seedling stage, and the num-
ber of DEGs in primary roots at 12 h was less than that
at Oh.

In our research, 12 genes exhibited up-regulation at all
three time points, which could illustrate that they play
some important roles in response to drought stress. A
search of the annotation and sequence alignment re-
sulted in a preliminary understanding of these up-
regulated genes shown as Table 1 (The expression level
of these genes was shown in Supplemental Figure 3). For
these up-regulated genes, four of their functions were
unclear, but the expression of i6_HQ_LWC c101/f3p0/
7152, i2 LQ_LWC _¢34188/f1p2/2518 and i2_ HQ_LWC_
¢122894/f9p1/2290 under drought treatment were 20-
fold higher than those under normal conditions. Thus, it
is essential to determine the function of these genes.
Among other up-regulated genes, some genes were asso-
ciated to show responses under environment stresses
such as CCCH-type zinc fingers, zinc metalloprotease
FtsH proteins, and alcohol dehydrogenase (ADH1 gene).
CCCH-type zinc finger proteins are one group of zinc
finger families, which typically contain 1-6 CCCH-type
tandem zinc-binding motifs [65]. Many studies have sug-
gested that the presence of CCCH is thought to be re-
lated to drought tolerance. For example, overexpression
PdC3H17 could confer tolerance to drought stress in
Populus L. [66]. The CCCH family member OsC3H47
was verified to promote drought tolerance and decrease
ABA sensitivity in rice (Oryza sativa) [67]. In addition,
the ABA pathway is a very important drought response
pathway. Thus, CCCH may mediate the ABA pathway
to render pearl millet more resistant to drought. There-
fore, it could be one of reason why pearl millet is so tol-
erant to drought environment. The FtsH protein,

Page 6 of 14

+

encodes a Zn **- and ATP-dependent metalloprotease.
It has been reported that FtsH is also related to stress
adaptation [68, 69], but most of them were related to
bacterial resistant. In our research, this gene was signifi-
cantly up-regulated by approximately 20 times more
than that in the CK group (Supplemental Figure 3). This
suggests that research on this gene may lead to explore
new insights in drought tolerance. Alcohol dehydrogen-
ase is a key enzyme that can catalyze the reduction of
acetaldehyde to ethanol using NADH as a reductant. In
Arabidopsis thaliana, ADH1 confers both abiotic and bi-
otic stress resistance [70]. These up-regulated genes
should be targets of additional study because they may
play an important role in the drought resistance of pearl
millet.

GO and KEGG enrichment analysis

A GO enrichment analysis of the DEGs at three time
points was performed. Most of the DEGs in each time
point were different than those in other time points, but
the top five GO terms of three categories that they
enriched were nearly identical (Supplemental Figure 2,
Supplemental Tables 2, 3 and 4). In the ‘Biological
process’ category, larger genes enriched in ‘metabolic
process’, ‘cellular process’, ‘single-organism process’,
‘localization’ and ‘biological regulation’ (Supplemental
Figure 2a). Fewer genes were enriched in ‘Cellular com-
ponent’ than those in ‘Biological process’ and ‘Molecular
function’ and the top five number of genes in the 3h
and 7h treatments were related to ‘membrane’, ‘cell’,
‘cell part’, ‘membrane part’ and ‘macromolecular com-
plex’, while for 1h, there is no ‘macromolecular com-
plex’ but ‘organelle’ (Supplemental Figure 2b). In the
‘Molecular function’ category, most of DEGs were
enriched in ‘catalytic activity’, ‘binding’ and ‘transporter
activity’ (Supplemental Figure 2c). At 1h and 7 h after
drought treatment, it was apparent that there were more
up-regulated genes than down-regulated genes in each
category and the situation was totally opposite to DEGs
at 3 h after drought stress.

Simultaneously, the DEGs in each time point were also
analyzed for their KEGG function (Fig. 3). At 1h, the
DEGs were significantly enriched into ‘MAPK signaling
pathway — plant, ‘Plant hormone signal transduction’
and ‘Galactose metabolism’ pathways (Fig. 3a, Supple-
mental Table 5). At 3h after drought treatment, the
DEGs were significantly enriched into 13 pathways and
they were ‘Taurine and hypotaurine metabolism’, ‘Cyst-
eine and methionine metabolism’, ‘Glycolysis / Gluco-
neogenesis’, ‘Nitrogen metabolism’, ‘Alanine, aspartate
and glutamate metabolism’, ‘Biosynthesis of secondary
metabolites’, ‘Pentose phosphate pathway’, ‘Metabolic
pathways’, ‘Glutathione metabolism’, “Tyrosine metabol-
ism’, ‘Arginine biosynthesis’ and ‘Fatty acid degradation’
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(Fig. 3b, Supplemental Table 6), which has much more
variation than those at in 1 h. There were just two path-
ways (‘Taurine and hypotaurine metabolism ‘and ‘Bio-
synthesis of amino acids’) in which the DEGs were
significantly enriched after 7h drought stress (Fig. 3c,
Supplemental Table 7).

Plants can manage drought stress through the manipu-
lation of some key physiological processes, such as res-
piration and antioxidant and hormonal metabolism [71].
In the enrichment analysis of GO term on ‘Biological
process’, most of the DEGs were significantly enriched
into metabolic processes. Respiration is a highly crucial
metabolic process, which plays necessary roles in
drought response. The rate of respiration is regulated by

processes that use the respiratory products such as ATP,
NADH and TCA cycle intermediates, which contribute
to plant growth. Under drought stress, these processes
will be affected and lead to a decline in the rate of res-
piration. Alternatively, higher respiration may arise be-
cause of oxidative phosphorylation, reducing the
generation of ROS and preventing the accumulation of
reductants. In addition, the activation of energy-
intensive processes and increased respiratory rates, such
as osmolyte synthesis and antioxidant metabolism, occur
under drought conditions [72, 73]. Under drought treat-
ment, ROS are generated owing to the metabolic per-
turbation of cells, and these molecules cause cell damage
and death [74-76]. A very important adaptive
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mechanism will involve their effective scavenging. When
these harmful substances produced in excessive amount,
the antioxidant substrates such as carotenoids, and as-
corbate, as well as a-tocopherol and antioxidant en-
zymes, such as SOD, CAT, APX and glutathione
reductase, exist in cell organelles and the cytoplasm and
play a crucial role in detoxifying these reactive species
[77]. These important antioxidant enzymes are produced
by some metabolic processes, so that when the plant suf-
fers a shock of drought stress, an enormous number of
metabolically related genes need to be expressed at a
high level to respond to drought, particularly in drought
tolerance species such as pearl millet. Furthermore,
many DEGs were enriched into ‘membrane’ in ‘Cellular
component’. This could be because ROS will attack the
membranes of cells, and plants try to express related
genes to repair them. Transcription factors (TFs) are
also very important and play crucial role during this
process. TFs act as switches and trigger the expression
of an enormous number of stress-response genes that
contribute to the stress phenotype [78]. To date, many
TFs have been identified that are related to drought re-
sistance and are members of the to bHLH, bZIP, HD-
ZIP, AP2/ERF, MYB, EAR, NAC, NF-Y and ZPT2 fam-
ilies [71]. These TFs can bind with some specific sites or
target genes and then regulate them. In our research,
there were a large number of DEGs clustered into ‘bind-
ing’, which could be owing to the need of binding events
between TFs and their important targets.

When subjected to drought stress, signal transduction
in plants is very common. Mitogen-activated protein ki-
nases (MAPK) phosphorylate proteins, which constitutes
one of the main mechanisms of signal transduction in
plants. Located in the cytoplasm, they consist of three
types of enzymes (MAPK, MAPKK and MAPKKK) that
form a signaling cascade from the stress sensor located on
the plasma membrane to the regulation of gene expres-
sion in the nucleus. Transferring the MAPK to the nu-
cleus  activates  transcription  factors  through
phosphorylation [71, 79]. In our study, a large number of
genes were located in the ‘MAPK signaling pathway-
plant’ of KEGG enrichment analysis at 1 h and 3 h. This
result showed that pearl millet positively responded to
drought environment by enhancing signal transduction.
At same time, we can find that few DEGs were enriched
in ‘MAPK signaling pathway-plant’ at 7 h. This could be
because as we discussed earlier, after drought shock, enor-
mous numbers of genes were highly expressed and gener-
ated proteins to maintain the balance of cells by a series
of biochemical reactions so that there was no need for so
many genes to be expressed at a relative steady state.

Phytohormones are central factors that sense and sig-
nal various environmental conditions, such as drought
stress [80]. When exposed to water deficits, ABA
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synthesized in the roots and translocated to leaves,
where it led to stomatal closure that enabled the adapta-
tion of plants to drought condition [81]. Previously pub-
lished literature [82—84] indicates that the biosynthesis
of ABA is strongly associated to drought stress response.
Cytokinins are a type of negative regulatory factor for
root growth and branching. The root-specific degrad-
ation of cytokinins could contribute to primary root
growth and branching, which are induced by drought
stress, andincrease drought tolerance in Arabidopsis
[85]. Jasmonic acid (JA) and its metabolites, collectively
known as jasmonates, originate from lipid oxidation
pathways. Jasmonate signaling is associated with stress
responses, including defense responses against biotic
stressors, such as pathogens and insects, and also re-
sponses to abiotic stresses [80]..

Weighted gene co-expression network analysis

The co-expression network of candidate DEGs was con-
structed using weighted gene co-expression network
analysis (WGCNA). According to pairwise correlations
and gene expression trends among all the samples, co-
expression networks were constructed using a normal-
ized FPKM value after RNA-Seq of all the DEGs from
all samples using the WGCNA R package. The DEGs
were clustered into 13 modules (lightgreen, green, pur-
ple, brown, blue, tan, grey60, black, magenta, yellow,
pink, cyan and lightcyan) with high correlation values
(Fig. 4b) and DEGS that could not gather into modules
were abandoned. Notably, the MEblue (0.99), MEblack
(0.85), as well as the MEmagenta (0.78) and MEpurple
(0.72) and brown (0.74) modules, were highly correlated
with drought at 1h, 3h and 7 h, respectively. In addition,
sample clustering was also performed through their gene
expression (Fig. 4a).

Furthermore, the DEGs in three modules that had
the highest correlation with drought in each time
point after drought treatment were analyzed using
KEGG pathway analysis (Fig. 4). The number of
DEGs in the module (MEblue) that had the highest
correlation to drought stress for 1h was 388, and
they were significantly enriched into ‘Glycolysis / Glu-
coneogenesis’, ‘Biosynthesis of secondary metabolites’,
‘Carotenoid biosynthesis’, ‘Glutathione metabolism’,
‘Fructose and mannose metabolism’, ‘Biosynthesis of
amino acids’, ‘Plant hormone signal transduction’ and
‘alpha-Linolenic acid metabolism’ pathways (Fig. 4b)
and the DEGs that correlated with 3h’ of drought
stress (80) significantly clustered into only one path-
way (‘Galactose metabolism’) (Fig. 4c). ‘Circadian
rhythm — plant’ and ‘Flavonoid biosynthesis’ were two
pathways, in which the DEGs related to 7h’ water
deficit (113) enriched into significantly (Fig. 4d).
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As is shown in Fig. 4, some DEGs related to 1h of
drought stress (MEblue) were significantly clustered into
‘Plant hormone signal transduction’ and ‘MAPK signal-
ing pathway-plant’ pathways, while not shown at 3 h and
7 h. Both pathways were identified as related to stress re-
sponses [78-80]. These results suggest that after 1h of
drought stress, or even earlier than 1h, some important
genes began to play roles in drought tolerance in the
roots of pearl millet through a series of biochemical re-
actions. This process provides a certain degree of effect
for cells to maintain homeostasis in a short period of
time, which is consistent with the results of entire study.

ABA signaling pathway
Nineteen genes were found to participate in the ABA
signaling pathway in response to drought stress. Eleven

PP2C-type protein phosphatases (PP2C) genes were dif-
ferentially expressed under drought stress in pearl millet
at 1h, while there was only one that did not differ be-
tween the CK and drought stress group, increased under
drought stress at 3 h and was restored to the same level
as that in CK at 7h. At 3h, 4 out of 11 genes were still
over expressed under drought compared with those of
the CK. However, all 12 of these genes went down to
the level of CK at 7 h. Besides, two SnRK2-type protein
kinases (SnRK2s) displayed an up-regulated expression
in the ABA signal transduction pathway at 3h under a
water deficit environment but were the same as CK at 1
h and 7 h (Fig. 5).

ABA signaling components are implicated in the
regulation of guard cell ion channels [86]. The pyra-
bactin resistance (PYR)-like (PYL) family has been
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found to bind directly to ABA to function as recep-
tors although many other gene families, such as the
regulatory component of ABA receptor (RCAR) fam-
ily, have also been identified as ABA receptors [87—
90]. The PYL/PYR family has also been shown to
connect with the other ABA regulators, such as
PP2C SnRK2 [91] and directly inhibit the phosphat-
ase activity of PP2Cs [92]. In addition, genetic evi-
dence revealed that PP2Cs are negative regulators of
ABA signaling [93-95]. Many studies have proved
several SnRK2-PP2C interactions that clearly func-
tion in ABA signaling [96]. For example, the inter-
action of A-type PP2Cs with OST1 (an SnRK2-type
kinases) contributed to ABA-induced stomatal clos-
ure by controlling the phosphorylation status and ac-
tivity of SLAC1 anion channel in guard cells [97]
and the activation of SnRK2-type kinases (ABA-
dependent) results from the removal of inhibitory ef-
fect of PP2Cs [98]. This can be regulated by the
binding of PYL/RCARs with PP2Cs, leading to the
activation of SnRKs and de-repression of the signal-
ing pathway [89-91, 99]. Overall, in response to
drought or other stresses, the content of ABA in the
plants increased to reach a level high, so that it
bound to the PYL/RCAR-type receptors and im-
proved the interaction between PYL/ RCAR and
PP2Cs, which can activate SnRK2s, and in turn,
interact with and phosphorylate SLAC1 and other
channels that lead to stomatal closure [86, 97]. In
this study, we could not find any PYP/PYL gene that
was differentially expressed between the CK and
drought group. However, thePP2C genes were
expressed more highly under drought conditions.
This could be because the PYP/PYL genes had fin-
ished their role of responding to drought before the
sample collection time point (1h), and they had
returned to a normal status as we described before.
In this situation, these PYP/PYL proteins still exist
in the cell and stimulate the expression of PP2Cs,
which inhibited the SnRK2 (1h). As the time in-
creased to 7h, the level of ABA was decreased to
the release of PYP/PYL. Thus, the expression of
PP2C was suppressed, which caused an improvement
in SnRK2. In this manner, they contributed to the
closure of stomatal and enhanced drought tolerance
of pearl millet.

Based on the results, we concluded that some earl-
ier time points should be examined because even at
1h, pearl millet has shown drought resistance in the
root at transcriptome level, which should be a future
research target. Moreover, some important genes
may only show their regulatory role in drought tol-
erance at an earlier stage (beforel hour).
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Conclusion

In this study, we tested the physiological indexes (REC
and MDA) of root of pearl millet at Oh, 1h, 3h and 7 h.
The levels of REC and MDA tended to increase and de-
crease, respectively, which indicated that pearl millet
showed rapid response to drought stress. Simultan-
eously, according to the analysis of transcriptome, we
found that the number of DEGs decreased from 1h to 7
h, which had a similar trend with the change in content
of MDA. At the same time, we found that among the 12
genes that were up-regulated at the three time points,
some genes were found to be associated with drought
stress responses in other species, such as CCCH, ADH1
and FtsH. These genes may have a strong relationship to
drought tolerance of pearl millet and need to be further
explored. Besides, the DEGs at 1 h were enriched into
‘metabolic processes’, ‘MAPK signaling pathway and
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‘plant hormone signal transduction’, which have been re-
ported to be related to drought response. These results
suggest that pearl millet can return to a steady state after
a short time of drought treatment, because of some
changes in gene expression as well as physiological and
biochemical changes. Furthermore, some genes that par-
ticipate in ABA signal transduction pathways, such as
PP2C and SnRK2 were found to have changes in their
level of exprssion, particularly their differential expres-
sion at 1h and 3h, indicating that pearl millet could
take actions in response to drought stress before 1h,
and the ABA signal transduction pathway played an im-
portant role in drought tolerance in pearl millet. This
study can provide a theoretical basis to enhance drought
resistance in other plants.
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