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Abstract: Collective intelligence, an emergent phenomenon in which a composite system of multiple
interacting agents performs at levels greater than the sum of its parts, has long compelled research
efforts in social and behavioral sciences. To date, however, formal models of collective intelligence
have lacked a plausible mathematical description of the relationship between local-scale interac-
tions between autonomous sub-system components (individuals) and global-scale behavior of the
composite system (the collective). In this paper we use the Active Inference Formulation (AIF), a
framework for explaining the behavior of any non-equilibrium steady state system at any scale, to
posit a minimal agent-based model that simulates the relationship between local individual-level
interaction and collective intelligence. We explore the effects of providing baseline AIF agents (Model
1) with specific cognitive capabilities: Theory of Mind (Model 2), Goal Alignment (Model 3), and
Theory of Mind with Goal Alignment (Model 4). These stepwise transitions in sophistication of
cognitive ability are motivated by the types of advancements plausibly required for an AIF agent to
persist and flourish in an environment populated by other highly autonomous AIF agents, and have
also recently been shown to map naturally to canonical steps in human cognitive ability. Illustrative
results show that stepwise cognitive transitions increase system performance by providing comple-
mentary mechanisms for alignment between agents’ local and global optima. Alignment emerges
endogenously from the dynamics of interacting AIF agents themselves, rather than being imposed
exogenously by incentives to agents’ behaviors (contra existing computational models of collective
intelligence) or top-down priors for collective behavior (contra existing multiscale simulations of
AIF). These results shed light on the types of generic information-theoretic patterns conducive to
collective intelligence in human and other complex adaptive systems.

Keywords: collective intelligence; free energy principle; active inference; agent-based model; complex
adaptive systems; multiscale systems; computational model

1. Introduction

Human collectives are examples of a specific subclass of complex adaptive system,
the sub-system components of which—individual humans—are themselves highly au-
tonomous complex adaptive systems. Consider that, subjectively, we perceive ourselves
to be autonomous individuals at the same time that we actively participate in collectives.
Families, organizations, sports teams, and polities exert agency over our individual be-
havior [1,2] and are even capable, under certain conditions, of intelligence that cannot be
explained by aggregation of individual intelligence [3,4]. To date, however, formal models
of collective intelligence have lacked a plausible mathematical description of the functional
relationship between individual and collective behavior.

In this paper, we use the Active Inference Framework (AIF) to develop a clearer un-
derstanding of the relationship between patterns of individual interaction and collective
intelligence in systems composed of highly autonomous subsystems, or “agents”. We
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adopt a definition of collective intelligence established within organizational psychology,
as groups of individuals capable of acting collectively in ways that seem intelligent and
that cannot be explained by individual intelligence [5] (p.3). As we outline below, collective
intelligence can be operationalized under AIF as a composite system’s ability to minimize
free energy or perform approximate Bayesian inference at the collective level. To demon-
strate the formal relationship between local-scale agent interaction and collective behavior,
we develop a computational model that simulates the behavior of two autonomous agents
in state space. In contrast to typical agent-based models, in which agents behave according
to more rudimentary decision-making algorithms (e.g., from game theory; see [6]), we
model our agents as self-organizing systems whose actions are themselves dictated by the
directive of free energy minimization relative to the “local” degrees of freedom accessible
to them, including those that specify their embedding in the larger system [7–9]. We
demonstrate that AIF may be particularly useful for elucidating mechanisms and dynamics
of systems composed of highly autonomous interacting agents, of which human collectives
are a prominent instance. But the universality of our formal computational approach makes
our model relevant to collective intelligence in any composite system.

1.1. Motivation: The “Missing Link” between Individual-Level and System-Level Accounts of
Human Collective Intelligence

Existing formal accounts of collective intelligence are predicated on composite systems
whose sub-system components are subject to vastly fewer degrees of freedom than individ-
uals in human collectives. Unlike ants in a colony or neurons in a brain, which appear to
rely on comparatively rudimentary autoregulatory mechanisms to sustain participation
in collective ensembles [10,11], human agents participate in collectives by leveraging an
array of phylogenetic (evolutionarily) and ontogenetic (developmental) mechanisms and
socio-culturally constructed regularities or affordances (e.g., language) [12–14]. Human
agents’ cognitive abilities and sociocultural niches create avenues for active participation
in functional collective behavior (e.g., the pursuit of shared goals), as well as avenues to
shirk global constraints in the pursuit of local (individual) goals. Mathematical models for
collective intelligence of this subclass of system must not only seek to account for richer
complexity of agent behavior at each scale of the system (particularly at the individual
level), but also the relationship between local scale interaction between individual agents
and global scale behavior of the collective.

Existing research of human collective intelligence is limited precisely by a lack of
alignment between these two scales of analysis. On the one hand, accounts of local-scale
interactions from behavioral science and psychology tend to construe individual humans
as goal-directed individuals endowed with discrete cognitive mechanisms (specifically
social perceptiveness or Theory of Mind and shared intentionality; see [15,16]) that allow
individuals to establish and maintain adaptive connections with other individuals in
service of shared goals [3–5,17–19] (Riedl and colleagues [19] report a recent analysis
of 1356 groups that found social perceptiveness and group interaction processes to be
strong predictors of collective intelligence measured by a psychometric test.). Researchers
conjecture that these mechanisms allow collectives to derive and utilize more performance-
relevant information from the environment than could be derived by an aggregation
of the same individuals acting without such connections (for example, by facilitating
an adaptive, system-wide balance between cognitive efficiency and diversity; see [4]).
Empirical substantiation of such claims has proven difficult, however. Most investigations
rely heavily on laboratory-derived summaries or “snapshots” of individual and collective
behavior that flatten the complexity of local scale interactions [20] and make it difficult to
examine causal relationships between individual scale mechanisms and collective behavior
as they typically unfold in real world settings [21,22].

Accounts of global-scale (collective) behavior, by contrast, tend to adopt system-based
(rather than agent-based) perspectives that render collectives as random dynamical systems
in phase space, or equivalent formulations [23–26]. Only rarely deployed to assess the
construct of human collective intelligence specifically (e.g., [27]), these approaches have
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been fruitful for identifying gross properties of phase-space dynamics (such as synchrony,
metastability, or symmetry breaking) that correlate with collective intelligence or collective
performance, more generally construed [28–32]. However, on their own, such analyses
are limited in their ability to generate testable predictions for multiscale behavior, such
as how global-scale dynamics (rendered in phase-space) translate to specific local-scale
interactions between individuals (in state-space), or how local-scale interactions between
individuals translate to evolution and change in collective global-scale dynamics [26].

In sum, the substantive differences between these two analytical perspectives (individ-
ual and collective) on collective intelligence in human systems make it difficult to develop
a formal description of how local-scale interactions between autonomous individual agents
relate to global-scale collective behavior and vice versa. Most urgent for the development
of a formal model of collective intelligence in this subclass of system, therefore, is a com-
mon mathematical framework capable of operating between individual-level cognitive
mechanisms and system-level dynamics of the collective [4].

1.2. The Free Energy Principle and an Active Inference Formulation of Collective Intelligence

FEP has recently emerged as a candidate for this type of common mathematical
framework for multiscale behavioral processes [33–35]. FEP is a mathematical formulation
of how adaptive systems resist a natural tendency to disorder [33,36]. FEP states that any
non-equilibrium steady state system self organizes as such by minimizing variational free
energy in its exchanges with the environment [37]. The key trick of FEP is that the principle
of free energy minimization can be neatly translated into an agent-based process theory,
AIF, of approximate Bayesian inference [38] and applied to any self-organizing biological
system at any scale [39]. The upshot is that, in theory, any AIF agent at one spatio-temporal
scale could be simultaneously composed of nested AIF agents at the scale below, and a
constituent of a larger AIF agent at the scale above it [40–42]. In effect, AIF allows you to
pick a composite system or agent A that you want to understand, and it will be generally
true both that: A is an approximate, global minimizer of free energy at the scale at which
that agent reliably persists; and A is composed of subsystems {A_i} that are approximate,
local minimizers of free energy (which is composed of the remainder of A). Thus, under
AIF, collective intelligence can conceivably be modelled as a case of individual AIF agents
that interact within—or indeed, interact to produce—a superordinate AIF agent at the scale
of the collective [9,43]. In this way, AIF provides a framework within which a multiscale
model of collective intelligence could be developed. The aim of this paper is to propose a
provisional AIF model of collective intelligence that can depict the relationship between
local-scale interactions and collective behavior.

An AIF model of collective intelligence begins with the depiction of a minimal AIF
agent. Specifically, an AIF agent denotes any set of states enclosed by a “Markov blanket”—
a statistical partition between a system’s internal states and external states [44]—that infers
beliefs about the causes of (hidden) external states by developing a probabilistic generative
model of external states [37]. A Markov blanket is composed of sensory states and active
states that mediate the relationship between a system’s internal states and external states:
external states (ψ) act on sensory states (s), which influence, but are not influenced by
internal states (b). Internal states couple back through active states (a), which influence but
are not influenced by external states. Through conjugated repertoires of perception and
action, the agent embodies and refines (learns) a generative model of its environment [45]
and the environment embodies and refines its model of the agent (akin to a circular process
of environmental niche construction; see [12]).

Having established the notion of an AIF agent, the next step in developing an AIF
model of collective intelligence is to consider the existence of multiple nested AIF agents
across individual and collective scales of organization. Existing multiscale treatments
of AIF provide a clear account of “downward reaching” causation, whereby superordi-
nate AIF agents like brains or multicellular organisms systematically determine [46] the
behavior of subordinate AIF agents (neurons or cells), limiting their behavioral degrees
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of freedom [9,40,47,48]. Consistent with this account of downward-reaching causation,
existing toy models that simulate the emergence of collective behavior under AIF do so
by simply using the statistical constraints from one scale to drive behavior at another,
e.g., by explicitly endowing AIF agents with a genetic prior for functional specialization
within a superordinate system [9] or by constructing a scenario in which the emergence of
a superordinate agent at the global scale is predestined by limiting an agent’s model of the
environment to sensory evidence generated by a counterpart agent [7,8].

While perhaps useful for depicting the behavior of cells within multicellular organ-
isms [9] or exact behavioral synchronization between two or more agents [7,8], these
existing AIF models are less well-suited to explain collective intelligence in human systems,
for two reasons. First, humans are relatively autonomous individual agents whose statisti-
cal boundaries for self-evidencing appear to be transient, distributed, and multiple [49–52].
Therefore, human collective intelligence cannot be explained simply by the way in which
global-level system regularities constrain individual interaction from the “top-down”.
Second, the behavior of the collective in these toy models reflects the instructions or con-
straints supplied exogenously by the “designer” of the system, not a causal consequence
of individual agents’ autonomous problem-solving enabled by AIF. In this sense, extant
models of AIF for collectives bear a closer resemblance to Searle’s [53] “Chinese Room
Argument” than to what we would recognize as emergent collective intelligence.

In sum, currently missing from AIF models of composite systems are specifications
for how a system’s emergent global-level cognitive capabilities causally relate to individual
agents’ emergent cognitive capabilities, and how local-scale interactions between individual
AIF agents give rise, endogenously, to a superordinate AIF agent that exhibits (collective)
intelligence [43]. Specifically, existing approaches lack a description of the key cognitive
mechanisms of AIF agents that might provide a functional “missing link” for collective
intelligence. In this paper, we initiate this line of inquiry by exploring whether some basic
information-theoretic capabilities of individual AIF agents, motivated by analogies with
human social capabilities, create opportunities for collective intelligence at the global scale.

1.3. Our Approach

To operationalize AIF in a way that is useful for investigating this question, we begin
by examining what minimal features of autonomous individual AIF agents are required
to achieve collective intelligence, operationalized as active inference at the level of the
global-scale system. We conjecture that very generic information theoretic patterns of an
environment in which individual AIF agents exploit other AIF agents as affordances of free
energy minimization should support the emergence of collective intelligence. Importantly,
we expect that these patterns emerge under very general assumptions and from the dynam-
ics of AIF itself—without the need for exogenously imposed fitness or incentive structures
on local-scale behavior, contra extant computational models of collective intelligence (that
rely on cost or utility functions; e.g., [54,55]) or other common approaches to reinforcement
learning (that rely on exogenous parameters of the Bellman equation; see [56,57]).

To justify our modelling approach, we draw upon recent research that systematically
maps the complex adaptive learning process of AIF agents to empirical social scientific
evidence for cognitive mechanisms that support adaptive human social behavior. In line
with this research, we posit a series of stepwise progressions or “hops” in the individual
cognitive ability of any AIF agent in an environment populated by other self-similar
AIF agents. These hops represent evolutionarily plausible “adaptive priors” [42] (p.109)
that would likely guide action-perception cycles of AIF agents in a collective toward
unsurprising states:

• Baseline AIF—AIF agents, to persist as such, will minimize immediate free energy
by accurately sensing and acting on salient affordances of the environment. This will
require a general ability for “perceptiveness” of the (physical) environment.

• Folk Psychology—AIF agents in an environment populated by other AIF agents
would fare better by minimizing free energy not only relative to their physical en-
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vironment, but also to the “social environment” composed of their peers [13]. The
most parsimonious way for AIF agents to derive information from other agents would
be to (i) assume that other agents are self-similar, or are “creatures like me” [58],
and (ii) differentiate other-generated information by calculating how it diverges from
self-generated information (akin to a process of “alterity” or self-other distinction).
This ability aligns with the notion of a “folk psychological theory of society”, in which
humans deploy a combination of phylogenetic and ontogenetic modules to process
social information [59,60].

• Theory of Mind—AIF agents that develop “social perceptiveness” or an ability to
accurately infer beliefs and intentions of other agents will likely outperform agents
with less social perceptiveness. Social perceptiveness, also commonly known in cogni-
tive psychology as “Theory of Mind”, would minimally require cognitive architecture
for encoding the internal belief states of other agents as a source of self-inference (for
game-theoretical simulations of this proposal, see [61,62]). As discussed above, exper-
imental evidence suggests that social perceptiveness or Theory of Mind (measured
using the “Reading the Mind in the Eyes” test; see [63]) is a significant predictor of
human collective intelligence in a range of in-person and on-line collaborative tasks [4].

• Goal Alignment—It is possible to imagine scenarios in which the effectiveness of
Theory of Mind would be limited, such as situations of high informational uncertainty
(in which other agents hold multiple or unclear goals), or in environments populated
by more agents than would be computationally tractable for a single AIF agent to
actively theorize [64]. AIF agents capable of transitioning from merely encoding
internal belief states of other AIF agents to recognizing shared goals and actively
aligning goals with other AIF agents would likely enjoy considerable coordination
benefits and (computational) efficiencies [16,65] that would also likely translate to
collective-level performance [55,66].

• Shared Norms—Acquisition of capacities to engage directly with the reified signal of
sharedness (a.k.a., “norms”) between agents as a stand-in for (or in addition to) bottom-
up discovery of mutually viable shared goals would also likely confer efficiencies to
individuals and collectives [12]. Humans appear unique in their ability to leverage
densely packaged socio-cultural installed affordances to cue regimes of perception
and action that establish and stabilize adaptive collective behavior without the need
for energetically expensive parsing of bottom-up sensory signals (a process recently
described as “Thinking through Other Minds”; see [14]).

The clear resonance between generic information-theoretic patterns of basic AIF agents
and empirical evidence of human social behavior is remarkable, and gives credence to
the extension of seemingly human-specific notions such as “alterity”, “shared goals”,
“alignment”, “intention”, and “meaning” to a wider spectrum of bio-cognitive agents [67].
In effect, the universality of FEP—a principle that can be applied to any biological sys-
tem at any scale—makes it possible to strip-down the complex and emergent behavioral
phenomenon of collective intelligence to basic operating mechanisms, and to clearly in-
spect how local-scale capabilities of individual AIF agents might enable global-scale state
optimization of a composite system.

In the following section we use AIF to model the relationship between a selection
of these hops in cognitive ability and collective intelligence. We construct a simple 1D
search task based on [68], in which two AIF agents interact as they pursue individual
and shared goals. We endow AIF agents with two key cognitive abilities—Theory of
Mind and Goal Alignment—and vary these abilities systematically in four simulations that
follow a 2 × 2 (Theory of Mind × Goal Alignment) progression: Model 1 (Baseline AIF,
no social interaction), Model 2 (Theory of Mind without Goal Alignment), Model 3 (Goal
Alignment without Theory of Mind), and Model 4 (Theory of Mind with Goal Alignment).
We use a measure of free energy to operationalize performance at the local (individual) and
global (collective) scales of the system [69]. While our goals in this paper are exploratory
(these models and simulations are designed to be generative, not to test hypotheses), we
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do generally expect that increases in sophistication of cognitive abilities at the level of
individual agents will correspond with an increase in local- and global-scale performance.
Indeed, illustrative results of model simulations (Section 3) show that each hop in cognitive
ability improves global system performance, particularly in cases of alignment between
local and global optima.

2. Materials and Methods
2.1. Paradigm and Set-Up

Our AIF model builds upon the work of McGregor and colleagues, who develop
a minimal AIF agent that behaves in a discrete one-dimensional time world [68]. In
this set-up, a single agent senses a chemical concentration in the environment and acts
on the environment by moving one of two ways until it arrives at its desired state, the
position in which it believes the chemical concentration to be highest, denoting a food
source. We adapt this paradigm by modelling two AIF agents (Agent A and Agent B)
that occupy the same world and interact according to parameters described below (see
Figure 1). The McGregor et al. paradigm and AIF model is attractive for its computational
implementability and tractability as a simple AIF agent with minimum viable complexity. It
is also accessible and reproducible; whereas most existing agent-based implementations of
AIF are implemented in MATLAB, using the SPM codebase (e.g., [57]), an implementation
of the McGregor et al. AIF model is widely available in the open-source programming
language Python, using only standard open source numerical computing libraries [70]. For
a comprehensive mathematical guide to FEP and a simple agent-based model implementing
perception and action under AIF, see [36].
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Figure 1. A minimal collective system of two AIF agents (adapted from McGregor et al.). We
implement two agents (Agent A and Agent B) that have one common target position (Shared Target)
and one individual target position (A’s Target; B’s Target). All targets are encoded with equal
desirability. This figure is notional: our simulation environment contains 60 cells instead of the
12 depicted here. Note: we randomize the location of the shared target while preserving relative
distances to unshared targets to ensure that the agents’ behavior is not an artefact of its location in
the sensory environment.

We extend the work of McGregor and colleagues to allow for interactions not only
between an agent and the “physical” environment, but also between an agent and its
“social” environment (i.e., its partner). Accordingly, we make minor simplifications to
the McGregor et al. model that are intended to reduce the number of independent pa-
rameters and make interpretation of phenomena more straightforward (alterations to the
McGregor et al. model are noted throughout).

2.2. Conceptual Outline of AIF Model

Our model consists of two agents. Descriptively, one can think of these as simple
automata, each inhabiting a discrete “cell” in a one-dimensional circular environment
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where there are predefined targets (food sources). As agents aren’t endowed with a frame
of reference, an agent’s main cognitive challenge is to situate itself in the environment (i.e.,
to infer its own position). Both agents have the following capabilities:

• Physical capabilities:

• “Chemical sensors” able to pick up a 1-bit chemical signal from the food source
at each time step;

• “Actuators” that allow agents to “move” one cell at each time step;
• “Position and motion sensors” that allow agents to detect each other’s position

and motion.

• Cognitive capabilities:

• Beliefs about their own current position; we construe this as a “self-actualization
loop” or Sense->Understand->Act cycle: (1) sense environment; (2) optimize
belief distribution relative to sensory inputs (by minimizing free energy given
by an adequate generative model); and (3) act to reduce FE relative to desired
beliefs, under the same generative model.

• Desires (also described as “desired beliefs”) about their own position relative to
their prescribed target positions;

• Ability to select the actions that will best “satisfy” their desires;
• “Theory of Mind”: they possess beliefs about their partner’s position, knowledge

of their partner’s desires, and therefore, the ability to imagine the actions that
their partners are expected to take. We implement this as a “partner-actualization
loop” that is formally identical to the self-actualization loop above;

• “Goal Alignment”: the ability to alter their own desires to make them more
compatible with their partner’s.

2.3. Model Preliminaries

Throughout, we use the following shorthand:

• qsuperscript , so f tmax
(
bsuperscript) for any superscript index, where so f tmax(b)i ,

ebi−max(b)

Σ ebi−max(b) . This converts a belief represented as a vector in RN to the equivalent
probability distribution over [0..N-1]; the max(b) offset is for numerical stability. We
choose to convert back by bi = ln qi − ln (max(q)), to enforce bi ≤ 0.

• Beliefs are also implicitly constrained to bi ≥ −10, for numerical stability. This means
bi ∈ B = [−10, 0].

• ϕ , ψpartner when necessary, to disambiguate between it and ψown.
• (v+x)i , vi+x to denote shifting a vector.
• Θα(q) , α q + 1−α

N to denote “re-ranging” a probability distribution, squishing its
range from [0,1] to [ 1−α

N , α + 1−α
N ].

• All arithmetic in the space of positions (ψ or ∆) and actions (a) is considered to be
mod N.

2.4. State Space

These capabilities are implemented as follows. Each agent Ai is represented by a tuple
Ai = (ψi, si, bi, ai). In what follows we’ll omit the indices except where there is a relevant
difference between agents. These tuples form the relevant state space (see Figure 2):

• ψ ∈ [0..N-1] is the agent’s external state, its position in a circular environment with
period N. Crucially, the agent doesn’t have direct access to its external state, but only to
limited information about the environment afforded through the sensory state below.

• s = (sown ∈ {0, 1}, ∆ ∈ [0..N-1], app ∈ {−1, 0, 1}) is the agent’s sensory state. sown is a
one-bit sensory input from the environment; ∆ is the perceived difference between the
agent’s own position and its partner’s; app is the partner’s last action.

• b = (bown ∈ BN, b*own ∈ BN, bpartner ∈ BN, b*partner ∈ BN) is the agent’s internal or
“belief” state. bown and b*own are, respectively, its actual and desired beliefs about
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its own position; equivalently, bpartner and b*partner are its actual and desired beliefs
about its partner’s position.

• a = (aown ∈ {−1, 0, 1}, apartner ∈ {−1, 0, 1}) is the partner’s action state: aown is its own
action; apartner is the action it expects from the partner.

Entropy 2021, 23, x FOR PEER REVIEW 8 of 29 
 

 

• s = (sown ∈ {0, 1}, Δ ∈ [0..N-1], app ∈ {−1, 0, 1}) is the agent’s sensory state. sown is a one-
bit sensory input from the environment; Δ is the perceived difference between the 
agent’s own position and its partner’s; app is the partner’s last action. 

• b = (bown ∈ ۰N, b*own ∈ ۰N, bpartner ∈ ۰N, b*partner ∈ ۰N) is the agent’s internal or “belief” 
state. bown and b*own are, respectively, its actual and desired beliefs about its own po-
sition; equivalently, bpartner and b*partner are its actual and desired beliefs about its part-
ner’s position. 

• a = (aown ∈ {−1, 0, 1}, apartner ∈ {−1, 0, 1}) is the partner’s action state: aown is its own action; 
apartner is the action it expects from the partner. 

 
Figure 2. AIF agent based on McGregor et al. [68]. A Markov blanket defines conditional independ-
encies between a set of internal belief states (b) and a set of environment states (߰) with target en-
coding or “desires” (b*). 

2.5. Agent Evolution 
These states evolve according to a discrete-time free energy minimization procedure, 

extended from McGregor et al. (Figure 3). At each time step, each agent selects the action 
that will minimize the free energy relative to its target encoding (achieved by explicit com-
putation of F for each of the 3 possible actions), and then updates its beliefs to best match 
the current sensory state (achieved by gradient descent on b’). 

Figure 2. AIF agent based on McGregor et al. [68]. A Markov blanket defines conditional indepen-
dencies between a set of internal belief states (b) and a set of environment states (ψ) with target
encoding or “desires” (b*).

2.5. Agent Evolution

These states evolve according to a discrete-time free energy minimization procedure,
extended from McGregor et al. (Figure 3). At each time step, each agent selects the action
that will minimize the free energy relative to its target encoding (achieved by explicit
computation of F for each of the 3 possible actions), and then updates its beliefs to best
match the current sensory state (achieved by gradient descent on b’).

2.6. Sensory Model

Let us recapitulate McGregor et al’s definition of the free energy for a single-agent model:

F
(
b′, b, s, a

)
= DKL

(
q(ψ′|b′

)
‖ p(ψ′, s|b, a)) (1)

where q(b) = softmax(b) is the “variational (probability) density” encoded by b, and p(ψ′, s|b,
a) is the “generative (probability) density” representing the agent’s mental model of the
world [37]. DKL is the Kullback–Leibler (KL) divergence or relative entropy between the
variational and generative densities [71].

To respect the causal relationships prescribed by the Markov blanket (see Figure 2),
the generative density may be decomposed as:

p(ψ′, s|b, a) = P(ψ′|s, b, a,ψ)•P(s|b, a,ψ)•P(ψ|b, a) (2)

where the three terms within the summation are arbitrary functions of their variables. In
the single-agent model, where the only source of information is the environment, we follow
McGregor’s model, in a slightly simplified form:

1. P(ψ′ | s, b, a, ψ) = δ(ψ′, ψ + a): the agent’s actions are always assumed to have the
intended effect, δ being the discrete Kronecker delta.

2. P(s | ψ) = ks(1− k)1−s e−ω |ψ−ψmid |: the agent assumes the probability of s = 1 (sen-
soria triggered) is higher for regions near the “center” of the environment. This is
identical to the real “physical” probability of chemical signals, meaning the agent’s
generative distribution is correct.

3. P(ψ | b, a) = q(b), in agreement with the definition of b as encoding the belief
distribution over ψ.



Entropy 2021, 23, 830 9 of 27Entropy 2021, 23, x FOR PEER REVIEW 9 of 29 
 

 

 
Figure 3. Pseudo code for agent evolution (adapted from [68]). Note that the loop is run for both 
agents in lockstep, but each agent selects actions and optimizes beliefs individually. 

2.6. Sensory Model 
Let us recapitulate McGregor et al’s definition of the free energy for a single-agent 

model: ܨ(ܾᇱ, ܾ, ,ݏ ܽ) = (ψᇱ|ܾᇱ)ݍ)ܦ ∥ ,ψᇱ) ,ܾ|ݏ ܽ)) (1) 

where q(b) = softmax(b) is the “variational (probability) density” encoded by b, and p(ψ’, s 
| b, a) is the “generative (probability) density” representing the agent’s mental model of 
the world [37]. ܦ is the Kullback–Leibler (KL) divergence or relative entropy between 
the variational and generative densities [71].  

To respect the causal relationships prescribed by the Markov blanket (see Figure 2), 
the generative density may be decomposed as: (ψᇱ, ,ܾ|ݏ ܽ) = P(ψᇱ|ݏ, ܾ, ܽ, ψ) • P(s|b, a, ψ) • P(ψ|b, a) (2)

where the three terms within the summation are arbitrary functions of their variables. In 
the single-agent model, where the only source of information is the environment, we fol-
low McGregor’s model, in a slightly simplified form: 
,ݏ | ′߰)ܲ .1 ܾ, ܽ, ߰)  = ,′߰)ߜ ߰ + ܽ): the agent’s actions are always assumed to have the 

intended effect, ߜbeing the discrete Kronecker delta. 
(߰ | ݏ)ܲ .2  = ݇௦(1 − ݇)ଵି௦ ݁ିఠ |టିట|: the agent assumes the probability of s = 1 (sen-

soria triggered) is higher for regions near the “center” of the environment. This is 
identical to the real “physical” probability of chemical signals, meaning the agent’s 
generative distribution is correct. 

3. ܲ(߰ | ܾ, ܽ) = -in agreement with the definition of b as encoding the belief distri ,(ܾ)ݍ
bution over ψ. 
From list item 1 directly above, this generative density can also be read as a simple 

Bayesian updating plus a change of indexes to reflect the effects of the action: (߰′, ,ܾ | ݏ ܽ)  = − ′߰ | ݏ)ܲ ܽ) ܲ(߰′ − ܽ | ܾ) or even more simply, టᇱ௦௧ = టᇱି௦  .టᇱି 

Figure 3. Pseudo code for agent evolution (adapted from [68]). Note that the loop is run for both agents in lockstep, but
each agent selects actions and optimizes beliefs individually.

From list item 1 directly above, this generative density can also be read as a simple
Bayesian updating plus a change of indexes to reflect the effects of the action: p(ψ′, s|b, a) =
P(s|ψ′ − a) P(ψ′ − a|b) or even more simply, pposterior

ψ′ = ps
ψ′−a pprior

ψ′−a.
In our model, both agents implement their own copies of the generative density above

(we leave it to the reader to add “�own” indices where appropriate). The parameter k, de-
noting the maximum sensory probability, is assumed agent-specific; we naturally identify it
with an agent’s “perceptiveness”. ω and ψ0, on the other hand, are environmental parameters.

2.7. Partner Model

In addition to the sensory model, we will define a new generative density imple-
menting the agent’s inference of its partner’s behavior, or “Theory of Mind” (ToM; see
Figure 6b). An agent with a sensory and partner model will adopt the following form:

p(φ′, ∆, app|b, a) = P(φ′|apartner,φ)•P(∆|b,φ)•P(app|b, apartner,φ)•P(φ|b) (3)

The first three terms on the right-hand side correspond to mechanistic models of the
evolution of the variables φ’, ∆, app, whereas the last one, P(φ|b) = qpartner

φ , defines the
“prior” and is analogous to q(b) in the sensory model. To fully specify this density, we
define these models as follows:

1. P(φ′|apartner, φ) = δ
(
φ′, φ+ apartner) describes the expected results of the partner’s

observed action upon its inferred position. The Kronecker delta implies that the
partner’s actions are always effective, matching item #1 from Section 2.6.

2. P(∆|b, φ) = P(ψ = φ+ ∆|b,φ) = qown
φ+∆ : the agent (correctly) believes that ∆ is a

deterministic function of the two positions, and therefore the probability of observing
a given ∆, given the partner’s position φ, is equal to the probability the agent ascribes
to itself being in the corresponding position ψ = φ+ ∆.
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3. P(app|b, apartner,φ) = P(apartner|φ− app, b∗partner) : the agent determines its belief
in the partner’s previous action by “backtracking” to its previous state φ− app, and
leveraging the following model of the partner’s next action:

P(apartner = 0|φ, b∗partner) = ξ 1
max(q∗partner)

q∗partner
φ

P(apartner = ±| φ, b∗partner) =
{

1− P(apartner = 0|φ, b∗partner)
} 1

p∗partner
φ−1 +p∗partner

φ+1
q∗partner
φ−apartner

(4)

This equation seems complex but its output and mechanical interpretation are quite
simple (see Figure 4). To justify it, note that the agent must produce probabilities of the
partner’s actions without knowing their actual internal states at that time, but only their
targets q∗partner. To do so, the agent assumes that the partner will act mechanistically
according to those desires, i.e., the higher a partner’s desire for its current location, the
more likely it is to stay put. To eliminate spurious dependence on absolute values of
q∗partner, we set P

(
apartner = 0

)
to be proportional to q∗partner/max

(
q∗partner). The constant

of proportionality ξ corresponds to the maximum probability of the partner standing still,
when q∗partner achieves its global maxima. This leaves the remaining probability mass to
be allocated across the other actions (±1), which we do by assuming the probability of
moving in a given direction is proportional to the desires in the adjacent locations. For the
purpose of this study, ξ is held constant at 0.9.
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Figure 4. Illustrative plot of P(apartner|φ, b∗partner) for each possible value of apartner and φ, when
q∗partner follows a normal distribution centered on φ = 15. At the valleys where q∗partner is lowest
and its gradient is small, the partner doesn’t quite have strong incentives to go in any particular
direction, and so is assigned roughly equal probabilities for the three actions. At the slopes, the action
corresponding to the upward slope is more strongly expected. At peak q∗partner, P

(
apartner = 0

)
= ξ

and the probabilities of the two other actions are equal.

The combination of these three models results in a generative density has the same
form as the original generative density from the baseline sensory model, pposterior

φ′ =

p∆,app

φ′−apartner pprior
φ′−apartner . This is consistent with our modeling decision to make the “other-

evidencing loop” functionally identical to the “self-actualization loop”, as discussed above
(Section 2.2).

As before, each agent implements its own copy of the partner model. ξ is assumed
equal for both agents; they have the same capability to interpret the partner’s actions.

2.8. Agent-Level Free Energy

We are finally ready to define the free energy for our individual-level model. For
each agent:

F = DKL

(
q′ own ‖ pown Θα

(
ppartner
+∆′

))
+ DKL

(
q′ partner ‖ ppartner Θα2

(
pown
−∆′
))

(5)
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where:

1. pown
ψ′ = P(sown | ψ′− aown) qown

ψ′−aown is the sensory model (outlined above in Section 2.6).

2. ppartner
φ′

= qown
φ′−apartner+∆ P(apartner | φ′ − apartner − app, b?partner) qpartner

φ′−apartner is the part-
ner model (outlined above in Section 2.7).

3. The “reranging” function, Θα, serves to moderate the influence of the partner model
on the agent’s own beliefs, and vice-versa. α is an agent-specific parameter, which, as
we will see in Section 2.9, is identified with each agent’s degree of “alterity”.

4. The right-hand side of each KL divergence (i.e., the products of generative densities)
is implicitly constrained to

[
e−10, 1

]
, to ensure the resulting beliefs remain within

their range B. This is interpreted as preventing overconfidence and is implemented
as a simple maximum.

We interpret Equation (4) as follows: The agent’s sensory and partner models jointly
constrain its beliefs both about its own position and its partner’s position. Thus, at each
step, the agent: (a) refines its beliefs about both positions, in order to best fit the evidence
provided by all of its inputs (i.e., its “chemical” sensor for the physical environment and
“position and motion” sensor for its partner); and (b) selects the “best” next pair of actions
(for self and partner), i.e., that which minimizes the “difference” (the KL divergence)
between its present beliefs and the desired beliefs (For reasons of numerical stability, we
follow McGregor et al. in implementing (b) before (a): The agent chooses the next actions
based on current beliefs, then updates beliefs for the next time-step, based on the expected
effects of those actions [68] (pp. 6–7)).

2.9. Theory of Mind

In this section we motivate the parameterization of an agent’s Theory of Mind ability
with α, or simply, its degree of alterity.

Note that when considered as a discrete-time dynamical system evolution, the pro-
cess of refining beliefs about own and partner positions in the environment (step (a) in
Section 2.8 above) potentially involves multiple recursive dependencies: the updated varia-
tional densities q′ own and q′ partner both depend on the previous qown (via both pown and
ppartner), as well as on the previous qpartner (via ppartner). This is by design: the dependen-
cies ensure that q′ own and q′ partner are consistent with each other, as well as with their
counterparts across time steps. However, too much of a good thing can be a problem. If
left unconstrained, q′ own and q′ partner can easily evolve towards spurious fixed points
(Kronecker deltas), which can be interpreted as overfitting on prematurely established
priors (In this case, it could be possible to observe scenarios such as “the blind leading
the blind” in which a weak agent fixates on the movement trajectory of a strong agent
who is overconfident about its final destination.). On the other hand, if q′ own were to
depend only on qown, it would eliminate the spurious fixed points: without the crossed
dependence, the first term of the partner model (Section 2.7) only has fixed points at
(q′ own = δ(ψ′, argmax(q? own)), aown = 0), meaning that the agent has achieved a local
desire optimum. Effectively, this “shuts down” the agent’s ability to use the partner’s infor-
mation to shape its own beliefs, or its theory of mind, making it equivalent to MacGregor’s
original model.

Thus, there would appear to be no universal “best” value for an agent’s Theory of
Mind; an appropriate level of Theory of Mind would depend on a trade-off between the
risk of overfitting and that of discarding valid evidence from the partner. The appropriate
level of Theory of Mind would also depend on the agent’s other capabilities (in this case,
its perceptiveness, k).

This motivates the operationalization of α as a parameter for the intensity to which
Theory of Mind shapes the agent’s beliefs. α can be understood simply as an agent’s degree
of alterity, or propensity to see the “other” as an agent like itself. In simulations with values
of α close to 0, we expect the partner’s behavior to be dominated by its own “chemical”
sensory input. Increasing α, we expect to see an agent’s behavior being more heavily
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influenced by inputs from its partner, driving qown to become sharper as soon as qpartner

does so. Past a certain threshold, this could spill over into premature overfitting.
Finally, note the α2 in the second term of agent-level free energy (Equation (4)). This

represents the notion that the agent is using “second-order theory of mind” or thinking
about what its partner might be thinking about it (First-order ToM involves thinking about
what some-one else is thinking or feeling; second-order ToM involves thinking about what
someone is thinking or feeling about what someone else is thinking or feeling [72]). Here,
pown comes in as “my model of my partner’s model of my behavior”. It seems appropriate
for the agent to believe the partner to possess the same level of alterity as itself; we then
represent this as applying the rearranging function (the “squishing” of the probability
distribution) twice, Θα • Θα = Θα2 .

2.10. Goal Alignment

In this section we motivate the parameterization of the degree of goal alignment
between agents.

Recall that b? own is an arbitrary (exogenous) real vector; the implied desire distribution
can have multiple maxima, leading to a generally challenging optimization task for the
agent. Theory of Mind can help, but it can also make matters worse: if b? partner also has
multiple peaks, the partner’s behavior can easily become ambiguous, i.e., it could appear
coherent with multiple distinct positions. This ambiguity can easily lead the agent astray.

This problem is reduced if the agents can align goals with each other, that is, avoid
pursuing targets that are not shared between them. We implement this as:

b? own ← b? shared + (1− γ)b? own
private (6)

b? partner ← b? shared + (1− γ)b? partner
private (7)

where γ is a parameter representing the degree of alignment between this specific agent
pair, and we assume each agent has knowledge of what goals are shared vs private to itself
or its partner. That is, with γ = 0, the agent is equally interested in its private goals and
in the shared ones (and assumes the same for the partner); with γ = 0, the agent is solely
interested in the shared goals (and assumes the same for the partner).

This operation may seem quite artificial, especially as it implies a “leap of faith” on
the part of the agent to effectively change its expectations about the partner’s behavior
(Equation (6)). However, if we accept this assumption, we see that the task is made easier:
in the general case, alignment reduces the agent-specific goal ambiguity, leading to better
ability to focus and less positional ambiguity coming from the partner. Of course, one
can construct examples where alignment does not help or even hurts; for instance, if both
agents share all of their peaks, alignment not only will not help reduce ambiguity, but it
can make the peaks sharper and hard to find. And as we will see, in the context of the
system-level model, alignment becomes a natural capability.

In the present paper, for simplicity, we assume agents’ shared goals are assigned
exogenously. In light of the system-level model (Section 2.11), however, it is easy to see
that such shared goals have a natural connection with the global optimum states. In this
context, one can expect shared goals to emerge endogenously from the agents’ interaction
with their social environment over the “long run”. This will be explored in future work.

2.11. System-Level Free Energy

Up until now, we have restricted ourselves to discussing our model at the level of
individual agents and their local-scale interactions. We now take a higher vantage point
and consider the implications of these local-scale interactions for global-scale system
performance. We posit an ensemble of M identical copies of the two-agent subsystem
above (i.e., 2M), each in its own independent environment, also assumed to be identical
except for the position of the food source (see Figure 5).



Entropy 2021, 23, 830 13 of 27

Entropy 2021, 23, x FOR PEER REVIEW 13 of 29 
 

 

This problem is reduced if the agents can align goals with each other, that is, avoid 
pursuing targets that are not shared between them. We implement this as: ܾ⋆ ௪ ← ܾ⋆ ௦ௗ + (1 − ௩௧⋆ ௪ܾ(ߛ  (6)ܾ⋆ ௧ ← ܾ⋆ ௦ௗ + (1 − ௩௧⋆ ௧ (7)ܾ(ߛ
where ߛ is a parameter representing the degree of alignment between this specific agent 
pair, and we assume each agent has knowledge of what goals are shared vs private to 
itself or its partner. That is, with ߛ = 0, the agent is equally interested in its private goals 
and in the shared ones (and assumes the same for the partner); with ߛ = 0, the agent is 
solely interested in the shared goals (and assumes the same for the partner). 

This operation may seem quite artificial, especially as it implies a “leap of faith” on 
the part of the agent to effectively change its expectations about the partner’s behavior 
(Equation (6)). However, if we accept this assumption, we see that the task is made easier: 
in the general case, alignment reduces the agent-specific goal ambiguity, leading to better 
ability to focus and less positional ambiguity coming from the partner. Of course, one can 
construct examples where alignment does not help or even hurts; for instance, if both 
agents share all of their peaks, alignment not only will not help reduce ambiguity, but it 
can make the peaks sharper and hard to find. And as we will see, in the context of the 
system-level model, alignment becomes a natural capability.  

In the present paper, for simplicity, we assume agents’ shared goals are assigned ex-
ogenously. In light of the system-level model (Section 2.11), however, it is easy to see that 
such shared goals have a natural connection with the global optimum states. In this con-
text, one can expect shared goals to emerge endogenously from the agents’ interaction 
with their social environment over the “long run”. This will be explored in future work.  

2.11. System-Level Free Energy 
Up until now, we have restricted ourselves to discussing our model at the level of 

individual agents and their local-scale interactions. We now take a higher vantage point 
and consider the implications of these local-scale interactions for global-scale system per-
formance. We posit an ensemble of M identical copies of the two-agent subsystem above 
(i.e., 2M), each in its own independent environment, also assumed to be identical except 
for the position of the food source (see Figure 5). 

 
(a) 

Entropy 2021, 23, x FOR PEER REVIEW 14 of 29 
 

 

 
(b) 

Figure 5. (a) M identical copies of the two-agent subsystem. (b) The M two-agent systems as internal 
states of a larger system, interacting with a global environment through the food sources (reinter-
preted as sensory states) and some active mechanism (the dotted arrow lines for aᄿ denote that this 
active mechanism is not defined in this paper). 

From this vantage point, each of the 2M agents is now a “point particle”, described 
only by its position ψi. The tuple ܾஊ = (ψ) ∈[ଵ..ଶெ] is then the set of internal states of the 
system as a whole. 

We will now assume that this set of internal states interacts with a global environ-
ment ψஊ ∈ [0. . ܰ − 1] . We reinterpret the “food sources” as sensory states: ஊݏ =(ψ) ∈[ଵ..ଶெ], where each ψ  is assumed to correlate with ψஊ through some sensory mech-
anism. We further assume the system is capable to act back on the environment through 
some active mechanism ܽஊ. This provides us with a complete system-level Markov blan-
ket (Figure 5b), for which we can define a system-level free energy as ܨஊ = (ψஊᇲ|ܾஊᇲ)ݍ)ܦ ∥ ,ஊ(ψஊᇲ ,ஊ|ܽஊݏ ܾஊ)) (8) 
where ݍ(ψஊ|ܾஊ) = ଵଶெ  #{ψ | ψ  = ψஊ} , the system’s “variational density”, is 
simply the empirical distribution of the various agents’ positions. 

In this paper, we will not cover the “active” part of active inference at the global 
level—namely, the system action ܽஊ remains undefined. We will instead consider a single 
system-level inference step, corresponding to fixed values of ψஊ, sஊ. As we can see from the 
formulation above, this corresponds to optimizing ψ given ψ —that is, to the aggregate 
behavior of the 2M agents’ over an entire run of the model at the individual level.  

This in turn motivates defining the system’s generative density as ஊ(ψஊᇲ, sஊ|ܽஊ, ܾஊ) ∝ Σ(ψ݇−} ݔ݁ − ψ )ଶ}: given a set of internal states (agent positions), 
the system “expects” it to have been produced by the agents moving towards the corre-
sponding sensory states (food source). Thus, to the extent that the agents perform their 
local active inference tasks well, the system performs approximate Bayesian inference 
over this generative density, and we can evaluate the degree to which this inference is 
effective, by evaluating whether, and how quickly, ܨஊ is minimized. We return to the 
topic of system-level (active) inference in the discussion. 

2.12. Simulations 
We have thus defined this system at two altitudes, enabling us to perform simula-

tions at the agent level and analyze their implied performance at the system level (as 
measured by system-level free energy). We can now use this framework to analyze the 

Figure 5. (a) M identical copies of the two-agent subsystem. (b) The M two-agent systems as internal states of a larger
system, interacting with a global environment through the food sources (reinterpreted as sensory states) and some active
mechanism (the dotted arrow lines for aΣ denote that this active mechanism is not defined in this paper).

From this vantage point, each of the 2M agents is now a “point particle”, described
only by its position ψi. The tuple bΣ =

(
ψi
)

i∈[1..2M] is then the set of internal states of the
system as a whole.

We will now assume that this set of internal states interacts with a global environment
ψΣ ∈ [0..N − 1]. We reinterpret the “food sources” as sensory states: sΣ =

(
ψi
)

i∈[1..2M],

where each ψi
0 is assumed to correlate with ψΣ through some sensory mechanism. We

further assume the system is capable to act back on the environment through some active
mechanism aΣ. This provides us with a complete system-level Markov blanket (Figure 5b),
for which we can define a system-level free energy as

FΣ = DKL(qempirical(ψΣ′ |bΣ′) ‖ pΣ(ψΣ′ , sΣ|aΣ, bΣ)) (8)

where qempirical(ψΣ|bΣ) = 1
2M #

{
ψi|ψi = ψΣ

}
, the system’s “variational density”, is simply

the empirical distribution of the various agents’ positions.
In this paper, we will not cover the “active” part of active inference at the global

level—namely, the system action aΣ remains undefined. We will instead consider a single
system-level inference step, corresponding to fixed values of ψΣ, sΣ. As we can see from the
formulation above, this corresponds to optimizing ψi given ψi

0—that is, to the aggregate
behavior of the 2M agents’ over an entire run of the model at the individual level.

This in turn motivates defining the system’s generative density as pΣ(ψΣ′ , sΣ|aΣ, bΣ) ∝

exp
{
−kΣ

(
ψi −ψi

0

)2
}

: given a set of internal states (agent positions), the system “expects”

it to have been produced by the agents moving towards the corresponding sensory states
(food source). Thus, to the extent that the agents perform their local active inference tasks
well, the system performs approximate Bayesian inference over this generative density,
and we can evaluate the degree to which this inference is effective, by evaluating whether,
and how quickly, FΣ is minimized. We return to the topic of system-level (active) inference
in the discussion.



Entropy 2021, 23, 830 14 of 27

2.12. Simulations

We have thus defined this system at two altitudes, enabling us to perform simulations
at the agent level and analyze their implied performance at the system level (as measured
by system-level free energy). We can now use this framework to analyze the extent to which
the two novel agent-level cognitive capabilities we introduced (“Theory of Mind” and
“Goal Alignment”) increase the system’s ability to perform approximate inference at local
and global scales. To explore the effects of agent-level cognitive capabilities on collective
performance, we create four experimental conditions according to a 2 × 2 (Theory of Mind
× Goal Alignment) matrix: Model 1 (Baseline), Model 2 (Theory of Mind), Model 3 (Goal
Alignment), and Model 4 (Theory of Mind and Goal Alignment; see Table 1).

Table 1. 2 × 2 (Theory of Mind × Goal Alignment) permutations of our model.

-Theory of Mind +Theory of Mind

-Goal Alignment Model 1 (Baseline) Model 2 (Theory of Mind, No
Goal Alignment)

+Goal Alignment Model 3 (Goal Alignment,
No ToM)

Model 4 (Theory of Mind ×
Goal Alignment)

Throughout, we use the same two agents, Agent A and Agent B. To establish mean-
ingful variation in agent performance at the individual-scale, we parameterize an agent’s
perceptiveness to the physical environment (i.e., to the reliability of the information derived
from its “chemical sensors”), by assigning one agent with “strong” perceptiveness (Agent
A—Strong;) and the other agent with “weak” perceptiveness (Agent B—Weak).

We assign each agent with two targets, one shared (Shared Target) and one unshared
(individual target or Target A and Target B). Accordingly, we assume each agent’s desire
distributions have both a shared peak (corresponding to a Shared Target) and an unshared
peak (corresponding to Target A or Target B). Throughout, we measure both the collective
performance (system-level free energy), as well as individual performance (distance from
their closest target). In addition, we also capture their end-state desire distribution.

We implement simulations in Python (V3.7) using Google Colab (V1.0.0). As noted
above, our implementation draws upon and extends an existing AIF model implementation
developed in Python (V2.7) by van Shaik [70]. To ensure that the agent behavior is not an
artefact of their specific location in the environment, we run 180 runs for each simulation
for each experimental condition by randomizing their starting locations throughout the
environment. The environment size was held constant at 60 cells. To ensure that the agent
behavior is not an artefact of initial conditions, we perform 180 runs for each simulation for
each experimental condition by uniformly distributing their starting locations throughout
the environment (three times per location), while preserving the distance between starting
locations and target. This uniform distribution of initial conditions across the environment
also corresponds to the “worst-case scenario” in terms of system-level specification of
sensory inputs for a two-agent system, discussed in Section 2.11.

2.13. Model Parameters

Our four models were created by setting physical perceptiveness for the strong and
weak agent and varying their ability to exhibit social perceptiveness and align goals. The
parameter settings are summarized at the individual agent level as follows (see Figure 6
and Table 2):

• Model 1 contains a self-actualization loop driven by physical perceptiveness. Physical
perceptiveness (individual skill parameter; range [0.01, 0.99]) is varied such that Agent
A is endowed with strong perceptiveness (0.99) and Agent B is endowed with weak
perceptiveness (0.05).

• Model 2 is made up of a self-actualization loop and a partner-actualization loop (in-
stantiating ToM). The other-actualization loop is implemented by setting the value
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of alterity (ToM or social perceptiveness parameter; range [0.01, 0.99]) as 0.20 for the
weak agent and 0 for the strong agent. This parameterization helps the weak agent
use social information to navigate the physical environment. These two loops imple-
ment a single (non-separable) free energy functional: The weak agent’s inferences
from their stronger partner’s behavior serve to refine its beliefs about its position in
the environment.

• Model 3 entails a self-actualization loop (but no partner-actualization loop) as well as
enforces the pursuit of a common goal (set alignment = 1) by fully suppressing their
unshared goals (alignment parameter; range [0,1]). In this simplified implementation,
we assume that goal alignment is a relational/dyadic property such that both partners
exhibit the same level of alignment towards each other. This is akin to partners fully
exploring each other’s targets and agreeing to pursue their common goal. Setting
alignment lower than 1 will increase the relative weighting of unshared goals and
cause them to compete with their shared goals.

• Model 4 includes both cognitive features: self- and partner-actualization loops for
the weak agent (instantiating ToM; alterity = 0.2) and complete goal alignment be-
tween agents.
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Table 2. Parameterization of agent abilities Models 1–4.

Model 1
Baseline

Model 2
Theory of Mind

Model 3
Goal Alignment

Model 4
ToM x Goal Alignment

Parameter Agent A Agent B Agent A Agent B Agent A Agent B Agent A Agent B

Physical
perceptiveness

(0.01, 0.99)
0.99 0.05 0.99 0.05 0.99 0.05 0.99 0.05

Alterity, α
(0.01, 0.99) 0.00 0.00 0.00 0.20 * 0.00 0.00 0.00 0.20 *

Goal Alignment,
γ (0, 1) 0 0 0 0 1 1 1 1

* Alternative results for simulations with alterity set at α = 0.5 exhibit a similar pattern of results for Model 2 and Model 4.

3. Results
3.1. Illustration of Agent-Level Behavior

In Figure 7, we show typical results from a single run of a single two-agent subsystem
(Model 4: ToM with Goal Alignment) to illustrate qualitatively how the two cognitive
capabilities introduced enable agent-level performance. In this example, Goal Alignment
enters the picture at the outset; although each agent has two targets, they both only ever
pursue their shared target.
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Figure 7. Results from a single run of Model 4 over 200 epochs. Agents’ Shared Target position is set at location 15. Actual
agent positions are illustrated as single dots for each epoch on the top graph, colored white when s = 1 and gray when s = 0.
The background of the top graphs plots the agents’ belief distribution of their own position, from dark blue (0) to bright
yellow (1). The bottom graphs plot the agents’ belief distribution of their partner’s position, on the same scale.

The evolution of the two agents’ behavior and beliefs over this run demonstrates the
key features of interplay between sensory and partner inputs, and how ToM moderates
the influence of partner inputs on an agent’s behavior. Using its high perceptiveness, A
identifies its own position around epoch 25–50, and quickly thereafter, directs itself towards
the food position and remains stable there (top left). Meanwhile, for most of the run, B
has no strong sense of its own position, and therefore its movement is highly random and
undirected; at around epoch 150, it finally starts exhibiting a sharper (light blue) belief
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and converging to the target (top right). This is the same moment when B is finally able to
disambiguate A’s behavior (from green to yellow), which, via ToM, enables B’s belief to
become sharper (bottom right). Meanwhile, A can’t make sense of B’s random actions: the
partner distribution it infers is unstable. But because A has ToM = 0, it doesn’t take any of
these misleading cues into account when deciding its own beliefs (bottom left).

3.2. Simulation Results

Model 1 lends face validity to the two-agent simulation setup. Figure 8 (Row 1,
Model 1) demonstrates that, on average, the strong agent (endowed with high physical
perceptiveness) converges to an end-state belief faster more accurately (closer to one of their
individual targets) than the weak agent with severely diminished physical perceptiveness.
This difference in individual performance can be attributed to the stark difference in agents’
ability to form strong beliefs about the location of their target (see Figure 8: Row 2, Model 1).
Agents show no clear preference for either shared or unshared targets (Figure 8: Row 3,
Model 1).
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A’s Target = 15; B’s Target = 45). Row 3: Distribution of targets pursued in 180 runs.

In model 2, the weak agent possesses ‘Theory of Mind’. This allows it to infer infor-
mation about their own location in the environment by observing their partner’s actions.
This is evidenced by the emergence of two-sharp peaks in the weak agent’s end-state belief
distribution (Figure 8: Row 2, Model 2). Consequently, we see an improvement in the
weak agent’s individual performance (the agent converges faster on an end-state belief
faster than in Model 1). Collective performance (Figure 9: System’s free energy) does not
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appear to improve between Model 1 and Model 2. This may be because agents solely
focus on achieving their individual goals (and do not understand any distinction between
individual and system level goals). This is evidenced by the fact that of the 180 simulation
runs each of Model 1 and Model 2, both agents end up pursuing their shared and unshared
targets with roughly equal probability (Figure 8: Row 3, Model 1 and 2).
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In Model 3, when both agents possess an ability for Goal Alignment, but the weak
agent does not have the benefit of Theory of Mind, we see that both agents are biased
towards pursuing the shared system goal (Figure 8: Row 3, Model 3). Accordingly, at
the system level we see naturally higher collective performance—Model 3 clearly has
lower system-level free energy compared to both Model 1 and Model 2 (see Figure 9). At
the individual-level, however, the weak agent performs worse on average than it did in
Model 2 and converges more slowly towards its goals (Figure 8: Row 1, Model 3). It appears
that Goal Alignment helps improve system performance by reducing the ambiguity of
multiple possible targets, but Goal Alignment does not help the weak agent compensate
for low physical perceptiveness.

Finally, as expected, in Model 4, which combines Theory of Mind and Goal Alignment,
we see a clear improvement in both individual and collective performance (Figure 8: Row 1,
Model 4 and Figure 9: Model 4, respectively). The combination of Theory of Mind (for the
weak agent) and Goal Alignment (for both agents) appears to enable the weak agent to
overcome its poor physical perceptiveness and converge on a single unambiguous end-
state belief. This achievement is illustrated by the sharp and overlapping single-peaked
end-state belief structure achieved by both agents in model 4 (Figure 8: Row 2, Model 4)
(We thank the anonymous reviewer for pushing us to consider the reasons why the end-
state belief distribution for the weak agent is more sharply peaked. We didn’t have any
a priori expectation for this particular pattern of result. Our best guess is that this is an
artefact of the weak agent iteratively engaging in ’Theory of Mind’ based-estimation of its
belief-distribution from the strong agent actions. From the perspective of the weak agent,
the strong agent quickly converges near the goal state and spends more time in the vicinity
of the peak. Thus, the weak agent is very likely to accrue higher levels of confidence within
this relatively narrow vicinity. On the other hand, the stronger agent has no ToM and is
only influenced by its direct perception of the environment.). This model suggests that
collective performance is highest when individual agents’ individual states align with the
global system state.



Entropy 2021, 23, 830 20 of 27

4. Discussion

A formal understanding of collective intelligence in complex adaptive systems re-
quires a formal description, within a single multiscale framework, of how the behavior
of a composite system and its subsystem components co-inform each other to produce
behavior that cannot be explained at any single scale of analysis. In this paper we make
a contribution toward this type of formal grasp of collective intelligence, by using AIF to
posit a computational model that connects individual-level constraints and capabilities
of autonomous agents to collective-level behavior. Specifically, we provide an explicit,
fully specified two-scale system where free energy minimization occurs at both scales,
and where the aggregate behavior of agents at the faster/smaller scale can be rigorously
identified with the belief-optimization (a.k.a. “inference”) step at the slower/bigger scale.
We introduce social cognitive capabilities at the agent level (Theory of Mind and Goal
Alignment), which we implement directly through AIF. Further, illustrative results of this
novel approach suggest that such capabilities of individual agents are directly associated
with improvements in the system’s ability to perform approximate Bayesian inference or
minimize variational free energy. Significantly, improvements in global-scale inference are
greatest when local-scale performance optima of individuals align with the system’s global
expected state (e.g., Model 4). Crucially, all of this occurs “bottom-up”, in the sense that our
model does not provide exogenous constraints or incentives for agents to behave in any
specific way; the system-level inference emerges as a product of self-organizing AIF agents
endowed with simple social cognitive mechanisms. The operation of these mechanisms
improves agent-level outcomes by enhancing agents’ ability to minimize free energy in an
environment populated by other agents like it.

Of course, our account does not preclude or dismiss the operation of “top-down”
dynamics, or the use of exogenous incentives or constraints to engineer specific types
of individual and collective behavior. Rather, our approach provides a principled and
mechanistic account of bio-cognitive systems in which “bottom-up” and “top-down” mech-
anisms may meaningfully interplay to inform accounts of behavior such as collective
intelligence [4]. Our results suggest that models such as these may help establish a mecha-
nistic understanding of how collective intelligence evolves and operates in real-life systems,
and provides a plausible lower bound for the kind of agent-level cognitive capabilities that
are required to successfully implement collective intelligence in such systems.

4.1. We Demonstrate AIF as a Viable Mathematical Framework for Modelling Collective
Intelligence as a Multiscale Phenomenon

This work demonstrates the viability of AIF as a mathematical language that can
integrate across scales of a composite bio-cognitive system to predict behavior. Existing
multiscale formulations of AIF [39,40], while more immediately useful for understanding
the behavior of docile subsystem components like cells in a multicellular organism or
neurons in the brain, do not yet offer clear predictions about the behavior of collectives
composed of highly autonomous AIF agents that engage in reciprocal self-evidencing
with each other as well as with the physical (non-social) environment [43]. What’s more,
existing toy simulations of multiscale AIF engineer collective behavior as a predestination—
either as a prior in an agent’s generative model [9], or by default of an environment that
consists solely of other agents [7,8]. We build upon these accounts by using AIF to first
posit the minimal information-theoretical patterns (or “adaptive priors”; see [42]) that
would likely emerge at the level of the individual agent to allow that agent to persist
and flourish in an environment populated by other AIF agents [58]. We then examine
the relationship between these local-scale patterns and collective behavior as a process of
Bayesian inference across multiple scales. Our models show that collective intelligence can
emerge endogenously in a simple goal-directed task from interaction between agents en-
dowed with suitably sophisticated cognitive abilities (and without the need for exogenous
manipulation or incentivization).
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Key to our proposal is the suggestion that collective intelligence can be understood
as a dynamical process of (active) inference at the global-scale of a composite system. We
operationalize self-organization of the collective as a process of free energy minimization
or approximate Bayesian inference based on sensory (but not active) states (for a previ-
ous attempt to operationalize collective behavior as both active and sensory inference,
see [69]). In a series of four models, we demonstrate the responsiveness of this system-level
measure to learning effects over time; the progression of each Model exhibits a pattern
akin to a gradient descent on free energy, evoking the notion that a system that performs
(active) Bayesian inference. Further, stepwise increases in cognitive sophistication at the
individual level show a clear reduction in free energy, particularly between Model 1 (Base-
line) and Model 4 (Theory of Mind x Goal Alignment). These illustrative results suggest
a formal, causal link between behavioral processes across multiple scales of a complex
adaptive system.

Going further, we can imagine an extension of this model where the collective system
interacts with a non-trivial environment, but at a slower time scale, such that a complete
simulation run of all 2M agents corresponds to a single belief optimization step for the
whole system, after which it acts on the environment and receives sensory information
from it (manifested, for example, as changes in the agents’ food sources). In this extended
model (see Figure 10), and if the agent-specific parameters (alterity/Theory of Mind (α),
and Goal Alignment (γ)) could be made endogenous (either via selective mechanisms via
some other learning mechanisms; see [48,73]) we would expect to see the system finding
(non-zero) values of these parameters that optimize its free energy minimization. For
example, it is likely that a system would select for higher values of γ (Goal Alignment)
when both agents’ end-state beliefs and actual target locations mutually cohere, or higher
values of α for agents with weaker perceptiveness. Interestingly, this would show that
degrees of Theory of Mind and Goal Alignment are capabilities that would be selected
for or boosted at these longer time scales, providing empirical support for the heuristic
arguments made for their existence in our model and in human collective intelligence
research more generally [4].

4.2. AIF Sheds Light on Dynamical Operation of Mechanisms That Underwrite
Collective Intelligence

In this way, AIF offers a paradigm through which to move beyond the methodological
constraints associated with experimental analyses of the relationship between local interac-
tions and collective behavior [21]. Even our very rudimentary 2-Agent AIF model proposed
here offers insight into the dynamic operation and function of individual cognitive mech-
anisms for individual and collective level behavior. In distinct contrast to laboratory
paradigms that usually rely on low-dimensional behavioral “snapshots” or summaries of
behavior to verify linearly causal predictions about individual and collective phenomena,
our computational model can be used to explore the effects of fine-grained, agent- and
collective-level variations in cognitive ability on individual and collective behavior in
real time.

For example, by parameterizing key cognitive abilities (Theory of Mind and Goal
Alignment), our model shows that it is not necessarily a case of “more is better” when
it comes to cognitive mechanisms underlying adaptive social behavior and collective in-
telligence. If an agent’s level of social perceptiveness (Theory of Mind) were too low, it
is likely that agents would miss vital performance-relevant information about the envi-
ronment populated by other agents; if an agent’s Theory of Mind were too high, it may
instead over-index on partner belief states as an affordance for own beliefs (a scenario of
“blind leading the blind”). We show that canonical cognitive abilities such as Theory of
Mind and Goal Alignment can function across multiple scales to stabilize and reduce the
computational uncertainty of an environment made up of other AIF agents, but only when
these abilities are optimally tuned to a “goldilocks” level that is suitable to performance in
that specific environment.
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havior in real time.  

For example, by parameterizing key cognitive abilities (Theory of Mind and Goal 
Alignment), our model shows that it is not necessarily a case of “more is better” when it 
comes to cognitive mechanisms underlying adaptive social behavior and collective intel-
ligence. If an agent’s level of social perceptiveness (Theory of Mind) were too low, it is 
likely that agents would miss vital performance-relevant information about the environ-
ment populated by other agents; if an agent’s Theory of Mind were too high, it may in-
stead over-index on partner belief states as an affordance for own beliefs (a scenario of 

Figure 10. A notional complete two-scale model where agent-specific parameters are endogenized. This would entail
parameters of subsystem components (Theory of Mind and Goal Alignment of each 2-agent system) being jointly optimized
to inform a system action.

The essence of this proposal is captured by empirical research of attentional processes
of human agents that engage in sophisticated joint action [74,75]. For instance, athletes
in novice basketball teams are found to devote more attentional resources to tracking
and monitoring their own teammates, while expert teams spend less time attending to
each other and more time instead attending to the socio-technical task environment [76].
Viewed from the perspective of AIF, in both novice and expert teams alike, agents likely
differentially deploy physical and social perceptiveness at levels that make sense for
pursuing collective performance in a given situation; novices may stand to gain more from
attending to (and therefore learning from) their teammates (recall our Agent B in Model 2
who leverages Theory of Mind to overcome weak physical perceptiveness, for example);
while experts might stand to gain more from down-regulating social perceptiveness and
redirecting limited attentional resources to physical perception of the task or (adversarial)
social environment [77,78].

As evidence in organizational psychology and management suggests, (and outlined in
the introduction), it is likely that social perceptiveness may indeed be an important factor
(among many) that underwrites collective intelligence. But this may be especially the case in
the context of unacquainted teams of “WEIRD” experimental subjects [79] who coordinate
for a limited number of hours in a contrived laboratory setting [3]. If the experimental
task were to be translated to a real-world performance setting (e.g., one involving high-
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stakes or elite performance requirements), or if that same team of experimental subjects
were to persist over time beyond the lab in a randomly fluctuating environment, it is
conceivable that a premium for social perceptiveness may give way to demands for other
types of abilities needed to continue to gain performance-relevant information from the
task environment (e.g., through physical perceptiveness of the task environment). Viewed
from this perspective, the true “special sauce” of collective intelligence (and individual
intelligence, for that matter; see [80]) may turn out not to be one or other discrete or reified
individual or team level ability per se (e.g., social perceptiveness), but instead a collective
ability to nimbly adjust the volumes of multiple parameters to foster specific information-
theoretic patterns conducive to minimizing free energy across multiple scales and over
specific, performance-relevant time periods.

In this spirit, the computational approach we adopt here under AIF affords a dynam-
ical and situational perspective on team performance that may offer important insights
into long-standing and nascent hypotheses concerning the causal mechanisms of collective
intelligence. For instance, our model is well positioned to investigate the long-proposed
(but hitherto unsubstantiated) claim that successful team performance, and by extension,
collective intelligence, depends on balancing a tradeoff between cognitive diversity and
cognitive efficiency [4] (p. 421). Likewise, our approach could help elucidate mechanisms
and dynamics through which memory, attention, and reasoning capabilities become dis-
tributed through a collective, and the conditions in which these “transactive” processes [81]
facilitate emergence of intelligent behavior [77,82,83]. In either case, our model would
simply require specification with the appropriate individual-level cognitive abilities or
priors. For example, to better understand the causal relationship between transactive
knowledge systems and collective intelligence, our model could leverage recent empirical
research that observes a connection between individual agents’ metacognitive abilities
(e.g., perception of others’ skills, focus, and goals), the formation of transactive knowledge
systems, and a collective’s ability to adapt to a changing task environment [83]. On an
important and related note to these opportunities for future research, efforts to simulate
human collective intelligence should strive to develop models composed of two or more
agents to better mimic human-like coordination dynamics [50,84].

4.3. Increases in System Performance Correspond with Alignment between an Agent’s Local and
Global Optima

A key insight from our models, and worthy of further investigation, is that the greatest
improvement in collective intelligence (Model 4; measured by global-scale inference) occurs
when local-scale performance optima of individuals align with the system’s global expected
state. This effect can be understood as individuals jointly implementing approximate
Bayesian inference of the system’s expectations. In effect, our model suggests that multi-
scale alignment between lower- and higher-order states may contribute to the emergence
of collective intelligence.

Alignment between local and global states might sound like an obvious prerequisite
for collective intelligence, particularly for more docile AIF agents such as neurons or cells
(it is near impossible to imagine a scenario in which a neuron or cell could meaningfully
persist without being spatially aligned with a superordinate agent; see [9]). But our model
exemplifies a more subtle form of alignment, based on a loose coupling between scales
through a system’s generative model (Section 2.11), enabling the extension of this idea to
scenarios where the local and global optimizations may be taking place in arbitrarily distinct
and abstract state spaces [49,51]. By now it is well understood in brain and behavioral
sciences that coordinated human behavior relies for its stability and efficacy on an intricate
web of biologically evolved physiological and cognitive mechanisms [85,86], as well as
culturally evolved affordances of language, norms, and institutions [87]. But precisely how
these various mechanisms and affordances—particularly those that are separated across
scales—coordinate in real or evolutionary time to enable human collective phenomena
remains poorly understood [39,73,88].
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Computational models, such as the one we have presented here, that are capable
of formally representing multiscale alignment may help reorganize and clarify causal
relationships between the various hypothesized physiological, cognitive, and cultural
mechanisms hypothesized to underpin human collective behavior [14]. For example,
a computational model such as the one proposed here could conceivably be adapted
to help more systematically test the burgeoning hypothesis that coordination between
basal physiological, metabolic and homeostatic processes at one scale of organization and
linguistically mediated processes of interaction and exchange at another scale determine
fundamental dynamics of individual and collective behavior [88–90].

Future research should aspire to examine causal connections between a fuller range
of meaningful scales of behavior. In the case of human collectives, meaningful scales of
behavior could extend from the basal mechanisms of physiological energy, movement,
and emotional regulation on the micro scale [91,92], to linguistically- (and now digitally-)
mediated social informational systems at the meso scale [93] to global socio-ecological
systems at the macro scale [94–97]. As we have demonstrated here, the key requirement
for the development of such multiscale models under AIF is faithful construction of
the appropriate generative models at each scale. These models provide the mechanistic
“missing links” between AIF and the phenomena to be explained—a task that will require
tremendously innovative and intelligent collective behavior on the part of a diverse range
of agents.

The patterns that crop up again and again in successful space are there because they are
in fundamental accord with characteristics of the human creature. They allow him to
function as a human. They emphasize his essence—he is at once an individual and a
member of a group. They deny neither his individuality nor his inclination to bond into
teams. They let him be what he is.

- DeMarco and Lister [98] (1987, p.90)
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