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Abstract: Metaplastic breast carcinoma (MBC) is a heterogeneous group of infrequent triple negative
(TN) invasive carcinomas with poor prognosis. MBCs have a different clinical behavior from other
types of triple negative breast cancer (TNBC), being more resistant to standard chemotherapy.
MBCs are an example of tumors with activation of epithelial–mesenchymal transition (EMT). The
mechanisms involved in EMT could be responsible for the increase in the infiltrative and metastatic
capacity of MBCs and resistance to treatments. In addition, a relationship between EMT and the
immune response has been seen in these tumors. In this sense, MBC differ from other TN tumors
showing a lower number of tumor-infiltrating lymphocytes (TILS) and a higher percentage of tumor
cells expressing programmed death-ligand 1 (PD-L1). A better understanding of the relationship
between the immune system and EMT could provide new therapeutic approaches in MBC.

Keywords: MBC; metaplastic breast carcinoma; EMT; epithelial-mesenchymal transition immune system

1. Introduction

There is a close relationship between the immune system and the development of
cancer. The immune response aims to destroy cancer cells and create a long-term immune
memory. Both the innate immune system and adaptive immunity intervene in this anti-
tumor immune response. In the innate system, Natural Killer (NK) cells are the main
effectors, as a rapid response independent of antigen that is nonspecific and where there is
no intervention of memory cells. However, the adaptive immune system generates a later
and specific response, dependent on antigen, and memory cells are involved, specifically
CD8 + cytotoxic T lymphocytes (CTLs) [1].

In the last few years, a role of the epithelial mesenchymal transition (EMT) process in
the regulation of tumor immune response has been recognized. The relationship between
EMT and the immune system is crossed. On the one hand cells of the innate and adaptive
immune systems, such as macrophages, myeloid-derived suppressor cells (MDSCs), NK,
and Tregs can induce EMT in tumor cells by secreting cytokines, inflammatory factors, and
chemokines [2–4]. On the other hand, the mesenchymal-like tumor cells act on the immune
system in two ways, by immunosuppression and evasion [5–7].
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EMT involves the molecular and phenotypic changes that characterize the conversion
of immobile cancer epithelial cells into mobile mesenchymal cells, with the characteristics
of stem cells [8,9]. Whereas EMT in cancer can appear as a transient process in the inva-
sive front of some tumors as well as during migration that favors the metastatic process,
permanent EMT occurs in a small group of malignant human tumors in different organs.
Although they receive different names depending on their localization, all are characterized
by a biphenotypic appearance including both malignant epithelial (carcinomatous) and
mesenchymal (sarcomatous) components. In some cases, the malignant epithelial compo-
nent can be minimal and limited to the non-invasive (in situ) part of the tumor. The two
more characteristics examples of this group of tumors are uterine carcinosarcoma (Mixed
Mullerian Malignant Tumor) [10] and metaplastic breast (MBC) carcinomas [11].

MBC is a predominantly triple negative (TN) and morphologically heterogeneous
group of invasive carcinomas that display heterologous differentiation of the neoplastic
epithelium towards squamous cells and/or mesenchymal-type elements such as spindle,
chondroid, and osseous cells [12]. Five histological subtypes are recognized in the new
WHO classification of breast tumors: squamous cell carcinoma (SqCC), spindle cell carcino-
mas (SpCC), MBC with heterologous mesenchymal differentiation (MBCHMD), low-grade
adenosquamous carcinoma (LGASC), and fibromatosis-like MBC (FLMBC) [12]. In addi-
tion, mixed MBC (MMBC) is composed of more than one subtype. MBCs can be subdivided
into low-grade and high-grade (HG-MBC) according to their behavior. HG-MBC includes
SqCC, SpCC, and MBCHMD. In this review, we focus on HG-MBC. In addition, although
pure SqCC does not represent a typical example of EMT, we have included this subtype in
this review since most tumors with squamous cell differentiation also carry some degree of
spindle cell or heterologous differentiation.

MBC has specific clinical and pathological features. We reviewed the clinical and
pathological features of 32 MBC series [13–44], with a total of 11,066 tumors. Around 80% of
MBC were TN. In contrast, hormone receptor positivity and HER2 positivity was reported
in 0–13% and 0–10% of the series respectively. Tumors were usually large, with a mean size
of 3.3 cm. In these series, MBC was diagnosed in patients ranging from 47 to 67 years old,
with an average age of around 58 years. In one series, important age differences among
histological subtypes were observed, MBC occurring with chondroid differentiation at a
mean age of 71 years, whereas SpCC and SqCC presented at mean ages of 56 and 48 years
respectively [27]. Most tumors presented in stage II and histological grade 3. About
32% of the tumors had lymph node metastases and 11% visceral metastasis at diagnosis.
Furthermore, lymphovascular invasion was observed in nearly 11% of the tumors.

Referring to the prognosis, this was analyzed in 15 of the 32 reviewed series [20–25,29,
33,35–39,41,44]. Most of them compared survival of MBC with survival of other types of
breast cancer (BC). In general, the prognosis was significantly worse in patients with MBC
than in patients with other types of BC including non-metaplastic TNBC. The 5-years and
3-years OS in MBCs ranged from 50% to 89% and 66% to 76.6%, with an average of 67.7% and
72.3% respectively.

Conventional therapeutic approaches in MBCs include surgery, chemotherapy, and
radiotherapy. However, the clinical response to systemic therapies is limited due to partial
resistance of MBC to conventional chemotherapy. For this reason, despite there being some
new approaches such as mTOR inhibitors, check-point inhibitors, or PARP inhibitors, new
targeted therapies based on specific molecular features or immunomodulation are required.

2. Epithelial-Mesenchymal Transition in Metaplastic Breast Cancer
2.1. Cadherins and Cadherin Switching

Epithelial cells exhibit adherens junctions, apico-basal polarity, and limited migratory
potential. During EMT, epithelial cells progressively miss their cell identity and morphol-
ogy and increasingly acquire mesenchymal characteristics [45,46]. One of the first events
in the EMT process is cadherin switching, by which epithelial cells lose the expression of
E-cadherin and express other mesenchymal cadherins.
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Proteins of the cadherin family are crucial mediators of cell–cell adhesion and mod-
ulation of cadherin expression is closely related to EMT [47]. Cadherins possess diverse
structures and functions and any alteration on its structure or function can lead to breast
malignancy [48].

The type I cadherins are the best characterized subgroup of cadherins and include
epithelial (E)-, neural (N)-and placental (P)-cadherin (CDH1, CDH2, and CDH3, respec-
tively) [49]. Their correct function and stability require the interaction with members
of the catenin protein family, α-, β- and γ-catenin, through their cytoplasmic tails and
p120-catenin at their transmembrane region [50,51].

E-cadherin, the prototypical member of the type-1 classical cadherins, is a key mediator
of cell–cell adhesions in epithelial tissues, while reduced or loss of E-cadherin expression
by inactivating mutations, promoter methylation or transcription regulation, can induce
invasive and metastatic behavior in many epithelial tumors [52]. Although loss of E-
cadherin is a hallmark of EMT, in BC this alteration typically occurs in lobular cancer, both
in situ and invasive, a tumor type that does not have other typical characteristics of EMT,
indicating that E-cadherin loss is necessary but not sufficient to develop a complete EMT
program. In invasive ductal BC, the level of E-cadherin expression is related with the grade
of differentiation [53].

In normal human tissues, the expression of P-cadherin partially overlaps with the
expression of E-cadherin. P-cadherin expression is typical of regenerative epithelial lay-
ers, mostly basal, whereas CDH1 is mainly expressed in suprabasal layers and simple
epithelia [54,55]. In fact, several studies have clarified that the expression of P-cadherin is
crucial for the maintenance of normal mammary epithelial architecture [56,57]. In cancer,
the function of P-cadherin is clearly context dependent. In melanoma, P-cadherin behaves
like a tumor suppressor gene, in which there is a progressive loss of normal E-cadherin
and P-cadherin expression from melanocytes, followed by an increase in N-cadherin ex-
pression in melanoma [58,59]. However, in other tumors, especially in BC, P-cadherin has
been associated with an increase in cell invasion and tumor aggressiveness and is a factor
that indicates a worse prognosis. Furthermore, many studies have shown that aberrant
expression of P-cadherin is characteristic of TNBC [60,61].

N-cadherin, contrary to previous cadherins, normally functions in non-epithelial tissue
and is considered to be a mesenchymal cadherin. In epithelial cells, aberrant N-cadherin
expression contributes to weak adherents junction and promotes motility, invasion, and
metastasis. In these cells, N-cadherin interacts with the FGF-receptor (FGFR), activating
the MAPK/ERK cascade. N-cadherin overexpression in BC is correlated with invasiveness
as a result of N-cadherin-mediated interactions between cancer and stromal cells and is
also characteristic of TNBC [62].

Cadherin-11 is a type II cadherin. It mediates cell-to-cell homophilic interactions
and is mainly expressed on mesenchymal cells, it is essential for tissue migration and
organization during embryogenesis [63,64]. In highly malignant forms of breast and
prostate cancer, cadherin-11 expression increases migration and invasion of tumor cells [65].
The expression of cadherin-11 may be well correlated with the invasive phenotype in BC
cells and may serve as a molecular marker for the more aggressive, invasive subset of
tumors [66]. Moreover, cadherin 11 expression has been correlated to the basal B group
of BC [67].

Lien et al. [68] and Sarrió et al. [67] first reported EMT in MBC and demonstrated by
immunohistochemistry loss of E-cadherin expression in the metaplastic mesenchymal com-
ponent (spindle cells and chondroid and osseous differentiation), a finding subsequently
reported in other studies [27,33]. In contrast E-cadherin was retained in the epithelial
component. In addition, since most MBC are TNBC, P-cadherin expression was also fre-
quent in the epithelial component. Both, E- and P-cadherin are expressed in the squamous
component of MBC, indicating the preservation of the epithelial phenotype.

In contrast to E- and P-cadherin, N-cadherin and cadherin-11, which were not ex-
pressed in the epithelial component of MBC, were expressed in the mesenchymal compo-
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nent in a high percentage of tumors. This process of cadherin switching was accompanied
by altered expression of catenins. As a result of the loss of E-cadherin, α-, β- and γ-catenin
tend to be also lost, whereas accumulation of p120-catenin occurs in the cytoplasm. Cytoso-
lic p120-catenin controls tumor growth and survival through the regulation of Rho GTPase
and integrin survival [69]. In some tumors, β-catenin that is not bound to membranous
E-cadherin can be transferred to the nucleus where it can activate Wnt target genes, such
as c-MYC or CCND1 [70].

2.2. Epithelial and Mesenchymal Markers

Several immunohistochemical and transcriptomic studies have shown that in MBCs
there is down-regulation of epithelial markers [27,67,71–73] and up-regulation of mes-
enchymal markers [27,67,68,72–75], as a manifestation of EMT. See Figure 1.
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Figure 1. Epithelial and mesenchymal markers whose expression is decreased or increased during
epithelial mesenchymal transition.

Downregulated epithelial markers in MBC belong to different families, such as ker-
atins (181), claudins, occludins, and others. McQuerry et al. [73] demonstrated that CD24,
keratinocyte-related genes such as CALML5 and KRT81, and the late cornified envelope
genes, LCE1F, LCE3D, and LCE3E, were down-regulated in MBC but were expressed in
most TNBC samples. Piscuoglio et al. [27] showed that MBCs with spindle cell differentia-
tion show distinct transcriptomic profiles compared to squamous and chondroid MBCs.
Mainly, spindle cell subtype carried down-regulated genes related to EMT and decreased
expression of genes such as CDH1 and EPCAM in this subgroup. They also revealed
decreased expression of tight junction related genes in this subgroup, including CLDN3,
CLDN8, CGN, MYH11, and MYH14.

During the transition to a mesenchymal phenotype, the cytokeratin network anchored
to the desmosomes of the epithelial cells is destroyed and the cytoskeleton is reorganized
due to the increased expression of mesenchymal proteins such as vimentin [76]. The
transition to a mesenchymal state facilitates cell motility and the formation of new mem-
brane protrusions. Finally, it results in extra cellular matrix degradation, cell migration,
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and invasive behavior. Moreover, trans-differentiation to specific mesenchymal tissues,
such as cartilage or bone may occur. Accordingly, MCBs overexpressed mesenchymal
genes functionally related to cytoskeletal remodeling, extracellular matrix synthesis and
remodeling, cell adhesion, motility, and migration, as well as genes associated with skele-
tal development and/or chondro-ossification (SPARC, MMPs, VIM, etc) [27,67,68,73]. In
addition, MBC have markedly elevated CD44/CD24 and CD29/CD24 ratios and ALDH- 1
expression, which are characteristic of stemness [72,74,75]. See Figure 2.
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2.3. Epithelial-Mesenchymal Transition—Transcriptional Factors

Many transcriptional repressors of E-cadherin have been identified. The main ones
include SNAIL family zinc finger transcription factors (SNAIL1 and SNAIL2), the zinc finger
E-box binding homeobox proteins (ZEB1 and ZEB2), and the TWIST family basic helix–loop–
helix transcription factors (TWIST1 and TWIST2) [77]. SNAIL1/SNAIL2 and ZEB1/ZEB2
downregulate the expression of a number of target genes by binding to E-box DNA
sequences through their carboxy-terminal zinc-finger domains [78–82]. TWIST1/TWIST2
bind as dimers and recognize cis-regulatory elements, called hexanucleotide sequence
E-boxes, to function as transcriptional factors (TFs) [83].

The expression of EMT-TFs can be overlapping, and they can form networks, yet
their functions are usually distinct. They can induce both common and specific genetic
programs, suggesting a differential role of the factors in EMT [84]. Thus, for example Snail1
and Zeb1 are mutually required for EMT induction while continuous Snail1 and Snail2
expression, but not Zeb1, is needed for maintenance of the mesenchymal phenotype in
some in vitro models [85].

All EMT-TFs play an important role in the modulation of cadherin expression. All
of them downregulate E-cadherin and upregulate N-cadherin [47]. In addition, these
TFs also coincide in the downregulation or upregulation of other proteins. For example,
SNAIL1/SNAIL2, ZEB1/ZEB2 downregulate plakophilin but upregulate MMPs. SNAIL1/
SNAIL2 downregulate claudins, occluding, desmoplakin, cytokeratins, and plakophilin and
upregulate fibronectin and several collagens. Additionally, ZEB1/ZEB2 downregulate ZO1
and TWIST1 upregulates α5integrin. These TFs are also regulated by common signaling
pathways. For example, SNAIL1/SNAIL2 and ZEB1/ZEB2 are regulated by TGFβ-smad3
and Wnt/β-catenin pathways. In addition, SNAIL1/SNAIL2 are also modulated by NOTCH,
PI3K-AKT, NF-kβ, EGF and FGF pathways [46,78,79,86–100].
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Several series analyzed the expression of different EMT-TFs in MBC [33,72,101–105].
Transcriptomic studies reported that the TFs that are most frequently overexpressed in the
sarcomatous component of MBC are SNAI1, SNAI2, ZEB1, and TWIST1 [72,74,101–103,106,107].
In addition, by immunohistochemistry, Zhou et al. [106] demonstrated nuclear accumulation of
Slug and Twist in 78.6% and 93% of the SpCC and 100% of the matrix-producing carcinomas. In
contrast, Oon et al. [101] found TWIST overexpression in 57.1% of the MBCs tumors, however,
in their study, SqCC was the most frequent (42.9%) metaplastic component. In the study of
Nassar et al. [107], 100% of MBC, including all histological subtypes, expressed SNAIL. Finally,
ZEB1 overexpression was detected in 41% of MBCs in the study by Zhang et al. [74]. In this
series, all the ZEB1 positive tumors exhibited mesenchymal differentiation towards spindle
(86%), chondroid (83%), or osseous (100%) elements. The glandular and squamous areas were
negative for ZEB1 expression in all cases.

2.4. miRNAs

EMT is regulated by different miRNAs through their interaction with EMT-TFs and
direct modulation of gene expression. Several in vitro and in vivo studies have suggested
a core miRNA signature associated with EMT [85]. The miR-200 family (miR-200f), which
members include miR-200a, miR-200b, miR-200c, miR-141, and miR-429, is the principal
component of this signature. The miR-200 members share many of their targets, due to
the high sequence homology between them in their seed region. Their overexpression
leads to increased E-cadherin expression, the maintenance of the epithelial phenotype,
and the inhibition of EMT [108]. The miR-200f plays a major role in regulating epithelial
plasticity, mainly through its involvement in double-negative feedback loops with the
EMT-TFs ZEB1, ZEB2, SNAI1, and SNAI2, ultimately influencing the expression E-cadherin
and other genes [102,109,110].

There are few studies analyzing miRNA expression in MBC. Gregory et al. [109]
and Díaz-Martín et al. [85] reported reduced expression of miR-200f members in MBC
when compared to other histological types of BC. In addition, Sánchez-Cid et al. [111]
demonstrated a decreased in miR-200f members expression in the sarcomatous component
of MBC when compared to the epithelial component.

miR-200f members can be regulated not only by EMT-TFs but also at the transcriptional
level by promoter hypermethylation. Specifically in MBC, Castilla et al. [102] reported, miR-
141 promoter hypermethylation as a mechanism of gene silencing. In vitro studies have
demonstrated the miR-200f methylation is, at least partially mediated by the acquisition of
EMT features in these tumors.

Although not specifically studied in MBC, other miRNAs have been linked with EMT
and the development of stem-cell properties in TNBC. Thus, miR-10b, miR-21, miR-29,
miR-9, miR-221/222, and miR-373 tend to be overexpressed, whereas miR-145, miR-203,
and miR-205 [112,113] tend to be hypo-expressed in these tumors.

2.5. Genetic Alterations

Several oncogenic pathways cooperate in the initiation and progression of EMT via
cytoskeleton reorganization and activation of E-Cadherin repressors. The main path-
ways are TGF-β, canonical WNT, and NOTCH. Other signal transduction pathways im-
plicated in EMT induction are, among others, Hippo-YAP/TAZ, TP53, and PI3K/AKT
signaling pathways.

In a review of 14 series of MBCs [13,15–18,26–28,30–32,42,44,114], with a total of
539 tumors, we observed that the genes most frequently mutated were TP53 and several
genes of the PI3K pathway, such as PIK3CA, and of the WNT pathway, such as APC (see
Figure 3). The most frequent mutations in the TP53 and PIK3CA genes are represented
in Figures 4 and 5. Regarding copy number variations (CNVs), the genes most affected
were CDKN2A/B with loss in 18.7% and 19% of the cases respectively, and CNDD3 that
was amplified in 15% of the cases (see Figure 3). Interestingly, genetic alterations in TGF-β
and Hippo pathways were infrequent, suggesting indirect modulation of these pathways
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through genetic alterations in others. For example, in the study of Díaz-Martín et al. [85],
practically 100% of MBCs with histological evidence of EMT toward spindle cell or heterol-
ogous sarcomatous differentiation showed overexpression of the Hippo effector TAZ, in
spite of the lack of genetic alterations in this pathway.
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2.6. Therapy Response in MBC

As mentioned above, conventional therapeutic approaches in MBC include surgery,
chemotherapy, and radiation therapy. Surgery continues to be the standard therapy, in
most case series, while the most used surgical approach is mastectomy, which is due to
the large size of the tumor at the time of presentation. However, if the tumor is small,
conservative surgery and radiotherapy can be performed without affecting disease-free
survival or overall survival, since T-stage seems to be the most significant prognostic
factor [115–118]. The current clinical evidence on the effect of radiotherapy in improving
outcomes in patients with MBC is limited, the studies that exist are retrospective, but
RT should continue to be an integral component of the multidisciplinary management
of patients with MBC undergoing both breast-conserving surgery and mastectomy [117].
At the time of presentation, MBC are usually in an advanced stage, so chemotherapy,
both neoadjuvant and adjuvant, is especially important, although the results are usually
poor. There is no established regimen, some of the administered regimens are based on
doxorubicin and ifosfamide as neoadjuvant treatment or based on anthracycline and taxane
as adjuvant treatment [115,117,119].

The poor prognosis and poor response to neoadjuvant therapy of MBC suggested
chemoresistance associated to EMT. Several in vitro studies have demonstrated that resis-
tance to anthracyclines and taxanes—the two types of drugs usually used in TNBC—is, at
least in part, mediated by EMT. Indeed, both SNAIL and TWIST1 can induce resistance to
doxorubicin via upregulation of P-glycoprotein. Similarly, SNAIL-mediated upregulation
of PARP1 in human MDA-MB-231 BC cells also contributes to doxorubicin resistance.
ZEB1, by stimulating an AKT/GSK3B/β -catenin pathway, also facilitated resistance to
doxorubicin [120]. Similarly, acquired resistance to taxanes in human breast tumors and
established cell lines is associated with the appearance of EMT phenotypes secondary to
activation of a TWIST1/AKT2 signaling axis or to NOTCH-dependent upregulation of Snail
or Slug [120].

Few targeted therapies have been used in patients with MBC. The high frequency of
alterations in the PI3K/AKT/mTOR pathway makes MBC a good candidate for treatment
with mTOR inhibitors. Actually, treatment with mTOR inhibitors has been more successful
in MBC than in other types of TNBC [121,122]. The combination therapy of everolimus,
an mTOR inhibitor, plus cisplatin, which interferes with DNA function, has recently been
shown to be effective in the neoadjuvant setting in three patients with MBC, who achieved
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RCB-I at the surgery [123]. MBCs in a patient with BRCA2 germline mutation developed a
complete pathological response after treatment with a PARP inhibitor [124].

Different inhibitors directed at EMT have been tested in BC, in high-throughput
screening, preclinical trials, and clinical trials. These treatments could hypothetically
impact on both tumor growth and chemo resistance. However, in spite of very promising
results of anti-TGF-β therapy in cancer models, outcomes observed in many cancer clinical
trials failed to recapitulate the preclinical data [125]. Similarly, the performance of anti-
NOTCH therapies, such as gamma secretase inhibitors, in clinical trials generally has not
reflected their encouraging results in preclinical studies [126].

3. Immune Response and Immune Therapy in MBC

In vitro studies have demonstrated differences in the immune response in tumors
according to EMT status. Thus, tumors derived from mammary carcinomas with an
epithelial phenotype express high levels of MHC-I, low levels of programmed cell death
ligand-1 (PD-L1) and contained within their stroma CD8 + T cells and M1 macrophages
(anti-tumor). In contrast, tumors arising from carcinoma cell lines with a mesenchymal
phenotype and exhibiting EMT markers expressed low levels of MHC-I, high levels of
PD-L1, and contained within their stromal regulatory T cells, M2 macrophages (tumor),
and exhausted CD8 + T cells (see Figure 6). Furthermore, mesenchymal carcinoma cells
within a tumor retained the ability to protect their epithelial counterparts from immune
attack. Finally, epithelial tumors were more susceptible to elimination by immunotherapy
than the corresponding mesenchymal tumors [127].
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Dongre et al. [128] demonstrated that mesenchymal carcinoma cells exert immunosup-
pressive effects by modulating the tumor microenvironment (TME). These cells secreted
immunosuppressive factors, such as CD73, CSF1, or SPP1, which reduced the number
and function of CD8 + T-cells [128]. Hsieh et al. [129] demonstrated that the EMT-TF Snail
directly activates the transcription of MIR21 to produce miR-21-abundant tumor-derived
exosomes. The miR-21-containing exosomes were engulfed by CD14+ human monocytes,
suppressing the expression of M1 markers and increasing that of M2 markers [129]. In ad-
dition, in vivo studies demonstrated that in TNBC, cancers cells secreted pro-inflammatory
cytokines that promoted conversion of monocytes to macrophage cells which, in turn,
stimulated EMT, proliferation, chemoresistance, and motility in cancer cells [130].

In addition to inducing immunosuppression, EMT can also promote immune evasion
by increasing the expression of checkpoints. For example, Noman et al. [131] showed that
ZEB1 overexpression in BC cells not only promoted EMT, but also, through modulation of
miR-200, was able to induce PD-L1 expression in tumor cells. Overexpression of SNAI1 or
ZEB1 in epithelial MCF7 cells activated EMT and up-regulated CD47. CD47 expressing
cells were less efficiently phagocytized by macrophages [132].

Several studies have evaluated the expression of PD-L1 in MBCs. Although there
were methodological and result differences among the series, all of them demonstrated
that a high percentage of MBC (30 to 70%) expressed PD-L1 in tumor cells. In addition,
most studies also observed higher expression of PD-L1 [13,30,133–137] in MBC than in
other types of TNBCs. [30,133,135]. In contrast, no significant difference in the expression
of PD-L1 in stromal cells was found among different types of tumors [133,135,137] (see
Table 1). Additionally, no differences in PD-L1 expression in tumor cells were observed
among different subtypes of MBC [135,138]. Lien et al. [138] reported an increase of PD-L1
expression in immune cells of MBC with squamous differentiation.

Table 1. Programmed cell death ligand-1 (PD-L1) expression in tumor cells and tumor microenvironment of metaplastic
breast cancer, in some cases comparing data with other BCs.

MBC TNBC Others Significant
Difference

Kalaw et al. [135]
(Antibody clone E1L3N) n = 145 n = 79
PD-L1% in tumor ≥5% 73% ~18% Yes

PD-L1% in immune cells ≥5% 63% 63% No

Morgan et al. [133]
(Antibody clone SP263) n = 27 n = 119
PD-L1% in tumor ≥ 1% 29.6% 10.1% Yes

PD-L1% in immune cells ≥ 1% 59.3% 73.1% No

Stephen et al. [137] (Antibody clone E1L3N) n = 12 n = 18
PD-L1% in immune cells ≥5% 41.5% 38% No

Joneja et al. [30]
(Antibody clone SP142) n = 72 n = 218
PD-L1% in tumor ≥5% 46% 6–9% Yes

PD-L1% in immune cells ≥5% 43%

Lien et al. [138]
(Antibody clone SP142) n = 82
PD-L1% in tumor ≥1% 17%

PD-L1% in immune cells ≥1% 47.5%

Chao et al. [134]
(Antibody clone SP142) n = 60
PD-L1% in tumor ≥ 1% 50%

PD-L1% in immune cells ≥ 1% 60%

Vranic et al. [13]
(Antibody clone SP142) n = 23
PD-L1% in tumor ≥ 1% 30.4%

PD-L1% in immune cells ≥ 1% 8.7%

Dill et al. [136]
(Antibody clone SP142) n = 5
PD-L1% in tumor ≥ 1% 40%

PD-L1% in immune cells ≥5% 80%
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The amount of stromal tumor infiltrating lymphocytes is a prognostic and predictive
marker in BC. Abundant tumor-infiltrating lymphocytes (TILs) predict good prognosis
and chemotherapy response in both HER2-positive and TNBCs. TILs have been evaluated
in different series of MBCs. Kalaw et al. [135] reported that the MBCs showed a significant
reduction in the proportion of TILS compared to TNBC, and Morgan et al. [133] demon-
strated reduction of CD8 expression on immune cells in MBC samples in comparison to
TNBC samples. On the other hand, MBCs were enriched for TILs expressing FOXP3 [135].

It has been suggested that there are differences in the immune microenvironments
among MBCs subtypes. Thus, in the study by Joneja et al. [30], although total TILs were
not enumerated, it was noted that TILs vary greatly within the MBC cohort by histologic
examination. Chao et al. [134] found sqCC MBC exhibiting most TILs of all the MBC
subtypes. Similarly, Lien et al. [138] reported that sqCC exhibited the highest positivity
rate of TILs, while matrix-producing carcinoma had the lowest. Kalaw et al. [135] did
not observe significant association between TILs and morphological subtypes of MBCs
but observed that PD-L1 positive TILs were enriched in squamous cell carcinomas. Since
squamous cell carcinoma is composed of epithelial tumor cells, whereas mesenchymal
tumor cells predominate in MBCs, these observations suggested a role of EMT factors in
controlling the abundance of TILs.

There is controversy regarding the association between TILS and longer disease-free
survival in MBCs. Chao et al. [134] and Chien et al. [138] found a relationship between a
greater number of TILS and longer disease-free survival, but Kalaw et al. [135] found that
TILs content did not significantly impact BC-specific survival in their MBC cohort. The
latter authors observed that an increased amount of FOXP3 positive intra-tumoral TILs
was associated with an adverse prognostic outcome [135].

Referring to tumor mutational burden (TMB), Tray et al. [17] observed that the majority
of MBC had a low TMB in a study with a total of 192 cases of MBCs, with a median of
2.7 mutations/Mb (range 0–39.6). Only 2% of tumors showed a high TMB (score 15 or
greater). TILs were more frequently observed in high versus low TMB MBC, although the
difference was not significant.

On summarizing all these data, it was evident that the immune response in MBCs
differed from other TNBCs. The high proportion of PD-L1 expression make this tumor type
a good candidate for immunotherapy with checkpoint inhibitors. There are case reports
demonstrating complete response of MBCs to pembrolizumab and durvalumab [139].
In addition, there are ongoing clinical trials in which MBCs can be treated with check-
point inhibitors. For example, an MBC cohort (Arm 36) is included in the DART study
(NCT02834013) that evaluates dual anti-CTLA-4 (ipilimumab) and anti-PD-1 (nivolumab)
blockade [140]. Additionally, the therapy with atezolizumab for TNBC (including MBC)
containing 1% PD-L1 positive immune cells in the tumor biopsy has been approved, based
on the IMpassion130 clinical trial (NCT02425891) [13].

4. Conclusions

Considering the poor response of MBC to conventional chemotherapy, new targeted
therapies are needed. Whereas therapies directed to the PI3K/AKT/mTOR have obtained
promising results, new approaches such as EMT or immune response modulation, should
be attempted in MBC.
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