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Resistance to artemisinin-based combination therapies (ACTs) threat-
ens the global control of Plasmodium falciparum malaria. ACTs com-
bine artemisinin-derived compounds with partner drugs to enable
multiple mechanisms of clearance. Although ACTs remain widely
effective in sub-Saharan Africa, long-standing circulation of para-
site alleles associated with reduced partner drug susceptibility
may contribute to the development of clinical resistance. We fitted
a hierarchical Bayesian spatial model to data from over 500 mo-
lecular surveys to predict the prevalence and frequency of four key
markers in transporter genes (pfcrt 76T and pfmdr1 86Y, 184F, and
1246Y) in first-level administrative divisions in sub-Saharan Africa
from the uptake of ACTs (2004 to 2009) to their widespread usage
(2010 to 2018). Our models estimated that the pfcrt 76T mutation
decreased in prevalence in 90% of regions; the pfmdr1 N86 and
D1246 wild-type genotypes increased in prevalence in 96% and 82%
of regions, respectively; and there was no significant directional se-
lection at the pfmdr1 Y184F locus. Rainfall seasonality was the stron-
gest predictor of the prevalence of wild-type genotypes, with other
covariates, including first-line drug policy and transmission intensity
more weakly associated. We lastly identified regions of high priority
for enhanced surveillance that could signify decreased susceptibility
to the local first-line ACT. Our results can be used to infer the degree
of molecular resistance and magnitude of wild-type reversion in re-
gions without survey data to inform therapeutic policy decisions.
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Artemisinin-based combination therapies (ACTs) are recom-
mended as the first-line treatment for uncomplicated Plas-

modium falciparum malaria worldwide (1). ACTs combine potent
artemisinin-derived compounds and partner drugs with longer
half-lives, allowing for dual mechanisms of action and prolonged
antiparasitic action. Of the ACTs currently recommended by the
World Health Organization, artemether-lumefantrine (AL) and
artesunate-amodiaquine (AS-AQ) are the most commonly adop-
ted first-line ACTs in sub-Saharan Africa (1). While efficacy re-
mains high, recent reports of mutations associated with reduced
artemisinin sensitivity in Rwanda and long-standing circulation of
alleles associated with bidirectional impacts on partner drug sus-
ceptibility raise concern that ACT resistance may arise and spread
in sub-Saharan Africa (2–4).
Molecular markers are single nucleotide polymorphisms (SNPs),

deletions, or copy number variations in the parasite genome that
are associated with reduced susceptibility to antimalarial drugs.
SNPs along two key transporter genes, P. falciparum chloroquine
resistance transporter (pfcrt) and P. falciparummultidrug resistance
1 (pfmdr1), were first discovered to confer resistance to antima-
larial drugs in the 1990s, primarily pfcrt 76T to chloroquine, and
have since been implicated in impacting susceptibility to AL and
AS-AQ (5). Notably, the partner drugs lumefantrine and AQ exert
opposing selective pressures: parasites with genotype pfmdr1 86Y,
Y184, 1246Y, and pfcrt 76T have reduced susceptibility to AQ,
while pfmdr1 N86, 184F, D1246, and pfcrt K76 confer reduced
susceptibility to lumefantrine (5–7). While data are strongest for

partner drugs, artemisinins may also directly exert a selective
pressure at pfmdr1 and other loci (8, 9).
In southeast Asia, partner drug resistance arose rapidly in the

wake of, and in some regions independently of, artemisinin re-
sistance (10). In sub-Saharan Africa, it has been suggested that
partner drug failure is expected to result in greater increases in
malaria morbidity than would be observed from artemisinin re-
sistance alone (4). The population prevalence of markers in pfcrt
and pfmdr1 can indicate the level of clinical resistance or toler-
ance to the partner drugs AQ and lumefantrine (11). When used
as a surveillance tool, molecular marker data can rapidly provide
data to support modifications of local partner drugs and to sustain
artemisinin-based treatment and prevention options. Despite
broad consensus to scale up molecular surveillance for antimalarial
resistance, few studies have proposed systematically designed ap-
proaches such as where sentinel sites should be located or how often
sampling should be conducted (12, 13).
We previously developed a database of studies assessing preva-

lence of partner drug resistance–associated markers in sub-Saharan
Africa, supplementing an existing database by the Worldwide
Antimalarial Resistance Network (14, 15). That work revealed
important gaps in the geographic coverage of surveillance. We hy-
pothesized that the geographic landscape of mutations associated
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with partner drug resistance exhibit spatial patterns that can be
mapped and leveraged to determine sites needing additional sur-
veillance. In this study, we use a hierarchical Bayesian spatial
method to map the geographical distribution of key molecular
markers in pfcrt and pfmdr1 in sub-Saharan Africa since the uptake
of ACTs and analyze potential demographic and environmental
determinants of resistance landscapes. We also identify potential
regions for enhanced surveillance based on the magnitude and
direction of changes in genotypes over time, suggesting areas that
may pose an increased risk of artemisinin emergence or spread
(16). Our work will assist in strategic surveillance efforts to sustain
first-line ACT partner drug efficacy in sub-Saharan Africa and
inform future surveillance as new antimalarials are deployed and
additional molecular markers are identified.

Results
Geographic Distribution of Mutant Genotypes. We generated maps
of marker prevalence and uncertainty interpolated across the
malaria-endemic subcontinent from 2004 to 2009 and from 2010
to 2018 (Fig. 1). The mutations at pfcrt 76T and pfmdr1 86Y were
extensively prevalent in 2004 to 2009 and much more sparsely
present in 2010 to 2018 (Table 1), with pfmdr1 86Y prevalent
only in the Gulf of Guinea region. The pfmdr1 1246Y genotype
exhibited the highest degree of prevalence in central and east Africa,
as well as Côte d’Ivoire and South Africa, compared to all other
regions from 2004 to 2009, but low prevalence across the continent
in the latter time period. Meanwhile, pfmdr1 184F exhibited more
randomness over time and space than the other markers, concen-
trated in the northwest from 2004 to 2009 and the northeast from
2010 to 2018 (Table 1). Pfcrt 76T estimates displayed the highest
levels of uncertainty compared to other markers in the later time
period, with isolated hotspots of uncertainty on the mainland and
high uncertainty in Madagascar. Because of the similarity in re-
gional trends and contributions of covariates between frequency
and prevalence estimates (SI Appendix, Figs. S4 and S5) and
superior prevalence data coverage, additional analyses involved
prevalence estimates only.

Temporal Reversion to Wild-Type Genotypes. The mean estimated
prevalence of mutant genotypes decreased significantly from
2004 to 2009 to 2010 to 2018 for pfmdr1 86Y and 1246Y and pfcrt
76T [P(μp2004−2009 > μp2010−2018|data) =1.0 for all three markers (SI Ap-
pendix, Fig. S6)], with the greatest magnitude of change for pfmdr1
86Y (Table 1). West and southern Africa exhibited the smallest
estimated changes in prevalence of all four markers. There were
noticeable exceptions to wild-type reversion: For example, pfcrt
76T prevalence increased, according to our predictions, in parts
of Niger, Nigeria, Djibouti, and Madagascar, although such areas
tended to exhibit higher uncertainty. The distribution of pfmdr1
184F changed markedly over the two time periods, yet we found
no evidence of directional selection toward the wild-type pfmdr1
Y184, suggesting more random and less spatially explicit patterns of
selection [P(μp2004−2009 > μp2010−2018|data) = 0.51]. The magnitude and di-
rection of temporal changes for each administrative division can
be visualized in SI Appendix, Fig. S6. The prevalence of pfcrt 76T
was positively correlated with pfmdr1 86Y, which, in turn, was
associated with pfmdr1 Y184 and pfmdr1 1246Y. Correlations
between changes in prevalence for each pair of markers can be
found in SI Appendix, Fig. S7.

Contributions of Covariates to Genotypic Variability. Seasonality was
consistently the strongest variable associated with the presence of
wild-type alleles pfcrt K76, pfmdr1 N86, and pfmdr1 D1246 and of
the mutant allele pfmdr1 184F (Fig. 2 and SI Appendix, Fig. S4) in
both time periods. From 2004 to 2009, transmission intensity of
P. falciparum was associated with prevalence of markers pfcrt
K76 and pfmdr1 N86, 184F, and D1246, while the transmission

intensity of Plasmodium vivax was associated with pfcrt 76T. From
2010 to 2018, city accessibility and first-line drug policy were cor-
related with the prevalence of pfcrt K76, pfmdr1 N86, pfmdr1
D1246, and pfmdr1 184F alleles, with AS-AQ and both/other drug
regimens generally associated with the presence of opposing alleles
compared to AL (Fig. 2).
We also estimated the impacts of covariates on the magnitude

and direction of changes in marker prevalence over time (SI Ap-
pendix, Fig. S8). Areas with higher rainfall seasonality exhibited
smaller changes in prevalence over time for all four markers after
controlling for first-line drug policy and other variables. First-line
drug policy was associated with the magnitude of change of most
markers, although with much greater bounds of uncertainty: Com-
pared to AL, AS-AQ was associated with a greater magnitude of
change toward mutant genotypes pfcrt 76T and pfmdr1 86Y, and
the use of multiple or other first-line therapies was associated
with smaller changes toward wild-type genotypes pfmdr1 Y184
and pfmdr1 D1246. When stratifying the results by first-line drug
regimen, trends were more difficult to parse out (SI Appendix,
Table S2 and Fig. S9).

Regions for Enhanced Surveillance. We identified numerous re-
gions that could be prioritized for enhanced surveillance (Fig. 3)
based on the relative strength and direction of change in preva-
lence over time and the degree of uncertainty in model predictions.
Higher-priority regions were located in parts of the Central Af-
rican Republic, Ethiopia, Tanzania, Gabon, Equatorial Guinea,
Sierra Leone, Nigeria, Togo, and Mali. A specific set of adminis-
trative divisions demonstrated the highest posterior probability of
selection (surveillance prioritization) across all model iterations,
suggesting greater certainty in the relative strength of directional
selection over time (SI Appendix, Fig. S10). These administrative
divisions include Luapula Province, Zambia; Litoral Province,
Equatorial Guinea; Southern Nations, Nationalities, and Peo-
ple’s Region, Ethiopia; Pointe-Noire Department, Republic of
the Congo; and Edo State, Nigeria, with Pointe-Noire having the
highest probability of selection for enhanced surveillance com-
pared to any other region. These results may be partly reflective
of higher sampling density in these subregions.

Discussion
Our study demonstrates the striking change in prevalence of key
partner drug susceptibility–associated molecular markers in sub-
Saharan Africa since the introduction of ACTs and provides an
attempt to identify focal regions to monitor for decreased part-
ner drug susceptibility. We found a strong wild-type resurgence
of pfcrt K76, likely reflecting selection due to the combined impacts
of the uptake of AL and withdrawal of chloroquine monotherapy,
as evidenced by many studies at smaller spatial scales or in im-
ported parasites (17, 18). We also developed spatially smoothed
maps demonstrating wild-type selection of pfmdr1 N86 and D1246
across the continent, supporting a study by Okell et al. (19) that
also found evidence of widespread wild-type reversion of these
markers. Together, our results suggest that surveillance can be more
effective if not only coordinated at a national scale but also taking
into account regional spatial dependencies.
We identified intriguing areas of remaining pfcrt 76T and pfmdr1

86Y genotype presence, particularly in Madagascar, Ethiopia, the
Gulf of Guinea, and parts of West Africa. One potential reason for
the persistence in Madagascar and Ethiopia may be related to
the usage of chloroquine to treat P. vivax where the species remains
endemic (1, 20). In the Gulf of Guinea, a region where seasonal
malaria chemoprevention (SMC) with AQ and sulfadoxine-
pyrimethamine (SP) is used in children and higher rates of AS-
AQ are used for treatment than in many other parts of Africa, the
added pressure of AQ may explain the higher prevalence of these
alleles (1). However, because the widespread administration of
SMC began in the latter half of the second time interval, SMC was
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not included as a covariate. In all of these regions, the continued
use of chloroquine to treat P. falciparum may also drive mutation
persistence, but rigorous data on consumption of chloroquine are
not available at this scale (21–23).
We also assessed the contribution of socioecological factors

that may help explain drug resistance heterogeneity, aided by the
additional power in scale of this analysis. Wild-type reversion of
pfcrt K76, pfmdr1 N86, and pfmdr1 D1246 occurred across sub-
Saharan Africa regardless of first-line therapy, yet countries using
AS-AQ or multiple first-line therapies tended to exhibit a smaller
magnitude of reversion overall. Areas with high seasonality strongly
favored wild-type genotypes, but again, the extent of the reversion
to wild type was partially lessened by the use of AQ. Our results
support strong evidence that pfcrt 76T confers a fitness cost to
the parasite and add to a growing body of evidence of a fitness
cost of pfmdr1 86Y and 1246Y (24–26). In the dry season, these
mutations may lose their competitive advantage in the absence of
sustained drug pressure (27, 28). We also found that higher trans-
mission intensity favored pfcrt K76, pfmdr1 N86, and pfmdr1 D1246
in the earlier time period, which may be related to higher rates of
recombination in circulating parasites, increased levels of immunity
in high transmission regions, and heterogeneity in the proportion of

infections that encounter treatments (29–31). Our results ultimately
suggest that environmental and epidemiologic factors may be of
increased importance, in addition to national policy, in delin-
eating factors to consider when conducting surveillance.
The covariates in our models and their relationship to drug

resistance have important caveats. Our results are subject to eco-
logical fallacy due to the large geographic scale of the analysis. In
particular, because of limited data on antimalarial consumption
patterns available across the subcontinent, multiple variables acted
as potential proxies for detailed drug consumption patterns at the
level of the administrative division, including first-line drug policy,
ACT coverage, insecticide-treated bed net (ITN) coverage, and
city accessibility. For example, we found that ITN coverage and
city accessibility were correlated with pfmdr1N86, 184F, and D1246,
but these factors likely acted as proxies for drug quality, access,
and mobility patterns (32). More studies are needed to determine
the explicit association between these covariates, drug consump-
tion patterns, and molecular marker prevalence (21, 22, 32). Our
modeling approach cannot speak to many of the biological aspects
of malaria transmission or mechanisms by which these covariates
impact drug resistance. Future field and experimental studies,

Fig. 1. Maps displaying model estimates and predictions for molecular marker prevalence in first-level administrative divisions from 2004 to 2009 and 2010
to 2018 and respective posterior SDs representing uncertainty.
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perhaps at more focal scales at which biological-level data can be
obtained, are also needed.
Our analyses are also limited by gaps in spatial, temporal, and

genetic coverage of data. To increase the predictive capacity of our
models, we aggregated data into two time units, and our results may
not precisely match localized reports of resistance or trends where
more continuous data are available. To develop the largest pos-
sible dataset, we examined four well-known, commonly assessed
molecular markers, but we were not able to analyze haplotypes or
incorporate more detailed sequencing data. Although copy num-
ber variation in pfmdr1 has been found in parts of Africa, limited
reporting and large heterogeneity in polygenomic infections
made these data challenging to model and interpret (15, 33). Our
framework allows for incorporation of existing markers as well as
novel mutations as they become available and more widely
assessed, such as those conferring phenotypic resistance to
artemisinin in Africa, as was the case in southeast Asia (34).
Finally, systematic acquisition and storage of samples can also
serve as a repository for retrospective studies of newly identi-
fied markers of interest.
A number of previous studies have mapped molecular markers

associated with antimalarial resistance at regional scales. Geospatial

maps were first developed for markers implicated in resistance to
SP, a former first-line P. falciparum treatment, in sub-Saharan
Africa (13, 35–37). Additional studies by Tun et al. (38) and
Grist et al. (39) mapped polymorphisms in pfK13 conferring
artemisinin resistance in southeast Asia. Finally, Okell et al. (19)
analyzed trends in pfmdr1 markers using point prevalence surveys
across sub-Saharan Africa. We add to this body of work by in-
cluding another critical locus, pfcrt K76T, and by developing
spatially smoothed maps of partner drug resistance prevalence and
uncertainty. These maps enable researchers to estimate marker
prevalence in areas without sampling and to leverage uncertainty
for strategic surveillance (14). This study also helps determine
continent-wide geographic and temporal trends in key molecular
markers and their association with environmental and policy
landscapes.
In the final section of this study, we provide maps (Fig. 3) de-

lineating regions undergoing potentially strong selection toward
genotypes associated with reduced drug susceptibility, providing a
genetic background within which artemisinin resistance may be
more likely to emerge or spread (16). We recommend enhanced
surveillance in these regions, which could entail more frequent
surveys to establish the real-time frequency of molecular markers

Table 1. Fitted and predicted estimates of molecular marker prevalence

Marker Time period
East

(mean, SD)
West

(mean, SD)
Central

(mean, SD)
Southern
(mean, SD) Aggregate prevalence

No. of ADs with decreases in
mutation prevalence (%)

pfcrt 76T 2004 to 2009 0.76 (0.19) 0.67 (0.17) 0.74 (0.15) 0.50 (0.27) 0.75 (0.21) 544 (89.5%)
2010 to 2018 0.52 (0.19) 0.44 (0.14) 0.45 (0.18) 0.33 (0.13) 0.45 (0.18)

pfmdr1 86Y 2004 to 2009 0.70 (0.09) 0.54 (0.12) 0.69 (0.12) 0.58 (0.12) 0.62 (0.15) 585 (96.2%)
2010 to 2018 0.34 (0.11) 0.25 (0.14) 0.24 (0.17) 0.18 (0.14) 0.23 (0.16)

pfmdr1 184F 2004 to 2009 0.43 (0.13) 0.62 (0.11) 0.55 (0.12) 0.49 (0.11) 0.52 (0.21) 313 (51.4%)
2010 to 2018 0.54 (0.19) 0.55 (0.16) 0.49 (0.15) 0.49 (0.16) 0.51 (0.17)

pfmdr1 1246Y 2004 to 2009 0.36 (0.26) 0.14 (0.16) 0.21 (0.20) 0.13 (0.13) 0.23 (0.15) 496 (81.6%)
2010 to 2018 0.09 (0.11) 0.07 (0.07) 0.05 (0.04) 0.05 (0.03) 0.08 (0.08)

The table shows the average fitted/estimated prevalence and SD for all administrative divisions in the respective time period and region of sub-Saharan
Africa, the overall average for all administrative divisions (ADs), and the overall number of ADs with decreased prevalence of mutant alleles in the latter
time period.
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Fig. 2. Contributions of covariates in the periods of 2004–2009 (A) and 2010–2018 (B). Posterior regression parameter estimates (mean, points, and 95%
credible interval, whiskers) for covariates used in spatial models estimating the prevalence of individual molecular markers and time periods. Continuous
variables are scaled for ease of comparison. The reference category for first-line therapy was AL. First-line drug policies were included only as covariates in the
latter time period because they were assumed to have little effect during the period of ACT uptake (details in SI Appendix, Table S1).
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as well as patterns of drug consumption and quality. Additional
focused studies in these areas may include treatment efficacy and
pharmacokinetic studies as well as deep sequencing of local par-
asite strains to delineate haplotypes and novel variants (11, 12, 40,
41). The utility of our surveillance maps will improve with ad-
ditional data coverage from surveillance conducted throughout a
country/region, ideally under the guidance of national malaria
control programs, and future versions should be optimized to sup-
port local research and decision making (42, 43). We intend for this
work to help catalyze global agencies and regional networks alike
to allocate resources urgently and strategically for drug resistance
surveillance.

Materials and Methods
Prevalence Data Assembly and Aggregation.We aggregated the results of 254
published studies in 35 countries in sub-Saharan Africa and Sudan, as pre-
viously described, encompassing 501 surveys assessing molecular markers in
a specific location and year (14). In brief, all surveys assessed P. falciparum
samples collected between 2004 and 2018 in sub-Saharan Africa for geno-
types pfmdr1 N86Y, Y184F, and D1246Y and/or pfcrt K76T. We excluded
studies that reported prevalence data aggregated across multiples sites
more than 300 km apart and whose results could not be disaggregated (n =
23 surveys) (35). From each survey, we extracted the midpoint year of
sampling, geographic coordinates of the study site, the number of samples
tested at each locus, and the number of samples with wild-type, mutant, or
mixed genotypes (in the case of polygenomic infections) at each locus.
Prevalence was calculated as the number of individuals with mutant or
mixed infections out of the total surveyed (35).

The study region was divided into the 608 first-level administrative divi-
sions having endemic malaria transmission during the study period (44); the
island nation of Comoros was excluded because administrative divisions
did not have spatially contiguous neighbors, a requirement for our spatial
models. The study period was divided into two time units representing
the uptake of ACTs, 2004 to 2009, and widespread usage of ACTs, 2010 to
2018 (19). The observed prevalence of each marker in each administra-
tive division was calculated as the weighted average of all respective
survey estimates within each administrative division and time period (SI
Appendix, Fig. S1).

While we define prevalence as the number of individuals with mutant
or mixed infections out of the total number of P. falciparum–infected
individuals surveyed, frequency is the proportion of parasite clones with
the molecular marker in the parasite population, which may matter in
highly endemic regions in which individuals often have polygenomic
infections (35, 45). For example, say an individual is infected with four
clones of P. falciparum, one of which has the mutant genotype of in-
terest: If only that single person were surveyed, the frequency of the
mutation would be 25%, whereas the prevalence would be 100%. Be-
cause the majority of studies (n = 209/254 studies) did not report the
average number of clones within the surveyed population, we used
the subset of data that reported the prevalence of mixed and mutant

infections separately (n = 245/501 surveys) and inferred the proportion
of multiclonal infections using the P. falciparum parasite rate obtained
from the Malaria Atlas Project (44). We then applied methodology de-
veloped by Okell et al. (35) to estimate the observed frequency of each
marker in each survey and aggregated surveys in the same method as
described above.

Covariate Data Assembly and Selection. Variables that we hypothesized
to be associated with drug resistance were considered for inclusion (SI
Appendix, Table S1 and Supplementary Methods) (12, 46). The final se-
lected set of variables were P. falciparum parasite rate in children ages 2
to 10 y (P. falciparum parasite rate [PfPR]2–10), P. vivax parasite rate in
individuals ages 0 to 99 y (P. vivax parasite rate [PvPR]0–99), seasonality of
annual rainfall, ACT coverage, ITN coverage, city accessibility, and na-
tional first-line drug policy (AL, AS-AQ, or both/other; SI Appendix, Fig.
S2) for the treatment of P. falciparum. For all covariates, excluding those
only available at the national level, we averaged pixel values from ras-
terized data to generate administrative division-level estimates. Cova-
riates were extracted for the midpoint year of both time periods, when
possible, and for the equivalent study region (SI Appendix, Table S1
and Fig. S3).

Bayesian Hierarchical Spatial Model. We used a logistic regression frame-
work with spatially correlated random effects to identify factors that ex-
plain variability in the prevalence of molecular markers associated with
partner drug resistance by first-level administrative divisions and to predict
prevalence in administrative divisions without observed data. We previ-
ously found evidence of spatial autocorrelation in the data, suggesting
utility of spatial analysis (14). Here, we specify a conditional autoregressive
(CAR) model for the random effects which allows for the possibility that
neighboring administrative divisions exhibit similar behavior, leading to
localized smoothness of estimated prevalence, potentially improved pre-
dictions in unobserved regions, and accurate statistical inference for the
regression associations of interest. The model for the aggregated survey
data during a selected time period t (t = 1: 2004 to 2009, t = 2: 2010 to
2018) is given as

Ykt ∼ Binomial(Nkt , pkt) fork = 1, . . . , K

and

ln( pkt

1 − pkt
) = xTktβ + ψkt ,

where Ykt is the number of mutant or mixed genotypes observed in ad-
ministrative division k during time period t, Nkt is the total number of in-
dividuals tested, and pkt is the true prevalence of resistance. Logistic
regression is used to link pkt with the covariates and random effect, where
xkt represents a vector of previously described covariates specific to admin-
istrative division k during time period t and ψkt is the spatially correlated
random effect.

Fig. 3. Prioritized sites for enhanced molecular surveillance. First-level administrative divisions were comparatively ranked according to the relative mag-
nitude of change over time, dependent on first-line drug regimen to account for directional selection, after accounting for uncertainty in model results. Red
regions are ranked highest priority for surveillance; blue regions are lower priority.
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We specify the Leroux version of the CAR model for the spatial random
effects (47), with an intuitive conditional form such that

ψkt

⃒⃒
⃒⃒
⃒ψ−kt , τ2, ρ ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ρ∑K
j=1wkjψ jt

ρ∑K
j=1wkj + 1 − ρ

,
τ2

ρ∑K
j=1wkj + 1 − ρ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

where ψ−kt is the full vector of spatial random effects from time period t
with ψkt removed and wkj is equal to one if administrative division k and
administrative division j are neighbors (i.e., share a common border) and is
equal to zero otherwise; wkk is equal to zero for all k (4). The CAR model
includes two hyperparameters that control the total variability of the effects
(τ2) and whether this variability is spatially smooth (ρ ≈ 1) or independent
(ρ ≈ 0), both of which are assigned prior distributions so that the data inform
these quantities. This model specifies that the prior mean of a particular
random effect is a weighted average of its neighbors’ random effect values.
As ρ approaches one, more emphasis is placed on the neighbors’ values,
whereas the random effect becomes centered closer to zero as ρ approaches
zero.

Models were fit separately for each marker and time period. We selected
weakly informative priors for model parameters to allow the data to drive
the inference, such that βj ∼ N(0, 1002), ρ ∼Uniform(0, 1) and τ2 ∼Inverse
gamma(0.01, 0.01). We collected 1,000,000 samples (after discarding 200,000
during a burn-in period) from the joint posterior distribution of the pa-
rameters using a Markov chain Monte Carlo sampling algorithm. We thin-
ned these samples by a factor of 100 to reduce posterior autocorrelation,
resulting in 10,000 nearly independent samples with which to make poste-
rior inference. Convergence was assessed through visual inspection of trace
plots and calculation of the Geweke diagnostic for all monitored parameters,
with no obvious signs of nonconvergence across all fitted models. All anal-
yses were conducted in R version 3.5.1. Spatial models were implemented
with the CARBayes package (48).

Estimation of Marker Prevalence and Changes over Time. In administrative
divisions with observed data, we extracted the posterior mean of pkt. In
administrative divisions without observed data, we used the CAR structure

of the spatial model to predict the prevalence and uncertainty by collecting
samples from the corresponding posterior predictive distributions of the
random effects. Hereafter, prevalence represents the posterior mean or SD
of the predicted or fitted estimates for each administrative division. For each
marker, we compared the change in prevalence over time by calculating the
posterior probability that the prevalence from 2004 to 2009 was larger than
the prevalence from 2010 to 2018. We also fitted a linear regression model
with CAR random effects to determine which covariates explained variability
in the estimated differences in prevalence over time while also accounting
for spatial correlation in the data (SI Appendix, Supplementary Methods).

Identification of Potential Regions for Enhanced Surveillance. We considered
regions of high priority for enhanced surveillance to be those with large
relative changes toward the genotypes that confer reduced susceptibility to
the first-line regimen used in that region, or a large relative change in any
direction in the case of multiple first-line therapies. For each administrative
division, we calculated the relative change in marker prevalence over the
two time periods for each posterior sample collected, yielding 10,000 dif-
ference estimates. We then subset administrative divisions by the first-line
drug regimen used in that region (AL, AS-AQ, or both/other) to account for
opposing selective pressures of drugs on markers in pfcrt and pfmdr1. Maps
were created with the tmap package (49).

Data Availability. Data, code, and maps generated by this study are publicly
available in GitHub at https://github.com/hannaehrlich/maldrugres_SSA (50).
Molecular marker survey data can also be viewed and deposited in the
Worldwide Antimalarial Resistance Network at https://www.wwarn.org/
tracking-resistance/act-partner-drug-molecular-surveyor. Please direct any
requests for tailored mapping modifications to the corresponding author.
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