Skip to main content
. 2021 Jul 1;11(7):629. doi: 10.3390/jpm11070629

Table 6.

Summary of classical machine learning-based methods.

Study Year Datasets No. of
Patients
Performance Image
Modalities
Time/
Equipment
Category
Dice (%) ASD (mm) HD (mm) Jac (%) FPVF/FNVF (%) MSE/RMSE (mm)
Ji [64] 2013 In-house 12 97.90±1.10 0.20±0.13 95.80±2.00 MRI 128 s/CPU CML
Wang [65] 2015 In-house 30
60
94.00±2.00
95.00±2.00
0.42±0.15
0.33±0.11
0.74±0.25
0.41±0.20
CBCT
CT
20 min/— CML
Udupa [66] 2014 In-house 15 3.30±0.56 1.00±0.00/
49.00±8.00
MRI 54 s/CPU CML
Linares [19] 2019 In-house 16 92.88 86.48 CBCT 5 min/CPU CML
Barandiaran [67] 2009 In-house 12 CT 10 s/CPU CML
Orbes-Arteaga [68] 2015 PDDCA 40 93.08±2.36 CT CML
Wang [69] 2016 PDDCA 48 94.40±1.30 0.43±0.12 CT —/CPU CML
Qazi [70] 2010 In-house 25 90.19 CT 3 min/CPU CML
Torosdagli [71] 2017 PDDCA 40 91.00 <1.00 CT —/CPU CML
Wu [72] 2018 In-house 216 89.00 1.60 CT CML
Tam [36] 2018 In-house 56 85.20±5.30 0.10/3.16 CT 1 s/CPU CML
Tong [73] 2018 In-house 246 CT CML
Wu [74] 2019 In-house 216 89.00 CT 30 s/CPU CML
Gacha [75] 2018 PDDCA 30 80.49 CT CML
Spampinato [76] 2012 In-house 10 CT CML