Skip to main content
. 2021 Jul 1;11(7):629. doi: 10.3390/jpm11070629

Table 9.

Summary of 2.5D networks deep learning-based methods.

Study Year Datasets No. of
Patients
Performance Image
Modalities
Time/
Equipment
Category
Dice (%) ASD (mm) 95HD (mm) RMSE (mm)
Qiu [5] 2019 In-house
PDDCA
109
40
88.10
93.28±1.44

1.43±0.56
0.58
CT 2.5 min/GPU DL
Lei [90] 2021 StructSeg2019 50 91.10±2.90(L); 91.70±1.50(R) 2.81±0.45(L); 2.70±0.40(R) CT 2 min/GPU DL
StructSeg2019 +
PDDCA + In-house
50 + 48 + 67 90.00±4.20 6.54±19.14
Liang [91] 2020 PDDCA
In-house
48
96
94.10±0.70
91.10±1.00(L); 91.40±2.00(R)
0.28±0.14
0.76±0.13(L); 0.86±0.14(R)
CT —/GPU DL
Qiu [92] 2020 In-house
PDDCA
109
40
97.53±1.65
95.10±1.21
0.21±0.26
0.14±0.04
2.40±4.61
1.36±0.45
CT 1.5 min/GPU DL