Table 11.
Study | Year | Datasets | No. of Patients |
Performance | Image Modalities |
Time/ Equipment |
Category | ||
---|---|---|---|---|---|---|---|---|---|
Dice (%) | HD (mm) | 95HD (mm) | |||||||
Zhang [97] | 2021 | In-house | 170 | — | CT | 40.1 s/GPU | DL | ||
Tappeiner [98] | 2019 | PDDCA | 40 | — | CT | 38.3 s/GPU | DL | ||
Mu [99] | 2020 | In-house | 50 |
; |
— | — | CT | 3 s/GPU | DL |
Wang [100] | 2018 | PDDCA | 48 | — | CT | 6 s/GPU | DL | ||
Tang [32] | 2019 | In-house HNC+ HNPETCT PDDCA |
175 35 + 105 48 |
|
— |
— |
CT | 2 s/GPU | DL |
Lei [101] | 2020 | In-house | 15 | — | — | MRI | — | DL | |
Lei [102] | 2020 | In-house | 15 | — | — | CT | — | DL | |
Liang [103] | 2019 | In-house | 185 |
; |
— | — | CT | 30 s/GPU | DL |
Dijk [104] | 2020 | In-house | 693 | — | CT | — | DL | ||
Men [105] | 2019 | HNSCC | 100 | — | CT | 5.5 min/GPU | DL | ||
Egger [106] | 2018 | In-house | 20 | — | — | CT | —/CPU | DL |