Skip to main content
. 2021 Jul 1;11(7):629. doi: 10.3390/jpm11070629

Table 11.

Summary of two-stage strategies in deep learning-based methods.

Study Year Datasets No. of
Patients
Performance Image
Modalities
Time/
Equipment
Category
Dice (%) HD (mm) 95HD (mm)
Zhang [97] 2021 In-house 170 89.00±2.00 1.66±0.51 CT 40.1 s/GPU DL
Tappeiner [98] 2019 PDDCA 40 91.00±2.00 2.4±0.6 CT 38.3 s/GPU DL
Mu [99] 2020 In-house 50 89.80±2.70(L);
90.40±2.00(R)
CT 3 s/GPU DL
Wang [100] 2018 PDDCA 48 93.00±1.90 1.26±0.50 CT 6 s/GPU DL
Tang [32] 2019 In-house
HNC+ HNPETCT
PDDCA
175
35 + 105
48
93.12±1.41
89.31±11.59
95.00±0.80
2.48±0.83
3.05±2.60
CT 2 s/GPU DL
Lei [101] 2020 In-house 15 85.00±4.00 MRI DL
Lei [102] 2020 In-house 15 88.00±3.00 CT DL
Liang [103] 2019 In-house 185 91.40±0.04(L);
91.20±3.00(R)
CT 30 s/GPU DL
Dijk [104] 2020 In-house 693 94.00±1.00 1.30±0.50 CT DL
Men [105] 2019 HNSCC 100 92.00±2.00 2.40±0.40 CT 5.5 min/GPU DL
Egger [106] 2018 In-house 20 89.64±1.69 CT —/CPU DL