
pathogens

Review

Licensing Natural Killers for Antiviral Immunity

John M. Cronk 1, Eleni Fafoutis 2 and Michael G. Brown 1,3,*

����������
�������

Citation: Cronk, J.M.; Fafoutis, E.;

Brown, M.G. Licensing Natural

Killers for Antiviral Immunity.

Pathogens 2021, 10, 908. https://

doi.org/10.3390/pathogens10070908

Academic Editors: Niels A.

Lemmermann and Vanda Juranic

Lisnic

Received: 1 July 2021

Accepted: 17 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine,
Charlottesville, VA 22908, USA; jmc5ed@virginia.edu

2 Human Biology Program, College of Arts and Sciences, University of Virginia,
Charlottesville, VA 22908, USA; ecf8b@virginia.edu

3 Department of Medicine, Division of Nephrology, University of Virginia School of Medicine,
Charlottesville, VA 22908, USA

* Correspondence: mgbrown@virginia.edu

Abstract: Immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) enable
discrimination between self- and non-self molecules on the surface of host target cells. In this
regard, they have a vital role in self-tolerance through binding and activating intracellular tyrosine
phosphatases which can inhibit cellular activation. Yet, self-MHC class I (MHC I)-specific IRs are
versatile in that they can also positively impact lymphocyte functionality, as exemplified by their
role in natural killer (NK) cell education, often referred to as ’licensing‘. Recent discoveries using
defined mouse models of cytomegalovirus (CMV) infection have revealed that select self-MHC I IRs
can increase NK cell antiviral defenses as well, whereas other licensing IRs cannot, or instead impede
virus-specific NK responses for reasons that remain poorly understood. This review highlights a
role for self-MHC I ‘licensing’ IRs in antiviral immunity, especially in the context of CMV infection,
their impact on virus-specific NK cells during acute infection, and their potential to affect viral
pathogenesis and disease.
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1. Introduction

NK cells are essential mediators of host defense against viruses and tumors [1,2].
Patients with NK cell deficiency (NKD) often succumb to overwhelming fatal viral infec-
tions before adulthood, and are particularly susceptible to herpesviruses, such as CMV [3].
Importantly, NKD can also affect other innate lymphoid cell (ILC) subsets [4], including
tissue-resident ILC1. Although conventional NK cells and ILC1 share the ability to pro-
duce IFN-γ, recent murine findings suggest that early ILC1-derived IFN-γ is essential for
optimal antiviral immunity [5]. Tissue-resident ILC1 thus likely plays a non-redundant
role in innate immunosurveillance (reviewed in [6]). Nonetheless, NK cells are distinctive
from tissue-resident ILC1 as they can be recruited to infected tissues where they rapidly
limit viral spread by directly lysing infected or malignant target cells [7].

NK cell effector activities are regulated by a diverse array of germline-encoded activa-
tion and immunoreceptor tyrosine-based inhibitory motif (ITIM)-bearing receptors (IRs) [1].
Many NK receptors are expressed in a variegated manner, encoded by genes clustered in
the natural killer gene complex (NKC) or leukocyte receptor complex (LRC) [8]. Polymor-
phic Ly49 C-type lectin-like receptors (mouse) and functionally orthologous killer Ig-like
(KIR) receptors (human) [9] can either activate or inhibit NK cell functional responses.
Whereas NK activation receptor triggering drives signaling cascades [10], IR binding of
self-MHC I results in IR clustering and ITIM phosphorylation, promoting recruitment
and association with SH2 domain-containing phosphatases (e.g., SHP-1 and SHP-2) [11].
ITIM-activated SHP-1 dominantly impedes stimulatory signals via proximal activation
receptors by dephosphorylating Vav, SLP-76, LAT, and PLC-γ [12–14]. Self-IR ligation
also results in Crk phosphorylation and association with tyrosine kinase c-Abl, which
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contributes to NK cell inhibition [15]. Phosphorylated Crk is thought to inhibit NK cells by
blocking F-actin network formation and constraining activation receptor movement [16].

In addition to their negative regulatory role, IRs can dynamically increase NK cell
functionality when they encounter and bind self-MHC I ligands [1,11]. This MHC I-
dependent educational process is referred to as ‘licensing’. Relative to unlicensed NK cells,
IR-licensed NK cells are more responsive to activation receptor stimulation and thus they
can more effectively lyse self-MHC I-deficient (i.e., missing-self) targets [1,11]. Self-MHC
I IRs may thus increase activation receptor-mediated recognition of virus-infected target
cells. A role for self-MHC I IRs has been difficult to unravel, however, due to their intrinsic
ability to license NK effector functions, or dominantly inhibit activation receptor-driven
signaling pathways.

Many viruses employ a variety of strategic mechanisms to manipulate MHC I and
MHC I-like molecules to evade CD8+ T cell and NK cell immunity (reviewed in [17,18]).
Endowed with IRs that can detect missing self-MHC I, licensed NK cells represent a
critical arm of the innate immune response to CMVs or other viral pathogens. This review
thus examines a role for self-MHC I KIR and Ly49 IRs in antiviral immunity and disease,
with a special emphasis on how IR polymorphism differently affects virus-specific NK
cell responses.

2. Linking Self-Tolerance to NK Cell Functionality

Though well known for their role in self-tolerance through dominant inhibition of
cellular activation, self-MHC I-specific IRs help to educate NK cells, thereby maintaining
or enhancing effector functions as well [19–21]. Compared to NK cells without self-specific
IRs, licensed NK cells exhibit greater mTOR/Akt pathway activation at steady-state [22],
enhanced expression of adhesion receptors DNAM-1 and LFA-1 [23,24], increased LFA-
1-dependent adhesion to target cells [25], and specialized compartmentalization and mo-
bilization of activation receptors in the plasma membrane [26,27]. Enhanced activation
of glycolysis and greater accumulation of large granzyme-B filled secretory lysosomes
further contributes to heightened proliferative and cytolytic responses of IR-licensed NK
cells [28,29]. Self-specific IRs have also been shown to positively regulate type I IFN produc-
tion in plasmacytoid dendritic cells (pDCs) upon TLR9 stimulation [30]. TLR9-triggered
self-IR+ pDCs further exhibit increased lysosomal integrity and stability, which is asso-
ciated with protection from pyroptosis-like cell death [31]. These findings indicate that
IRs can modify the intrinsic cytolytic potential of NK cells by affecting diverse cellular
processes. Yet, the molecular pathway by which IR signals license NK cells has not been
fully elucidated.

Although a mechanistic basis for licensing remains to be uncovered, several stud-
ies have advanced our understanding of the requirements for IR-dependent tuning of
NK cell reactivity. A functional IR ITIM domain is essential to bind and activate SH2
domain-containing phosphatases [32], and to sustain the licensing status of NK cells [19,33].
The strength of the inhibitory signals propagated by a given IR/self-MHC I ligand pair
differently calibrate the functional responsiveness of licensed NK cells [34], and when
transferred into a disparate MHC I environment, mature NK cells become ‘re-educated’ by
resetting IR-defined self-tolerance in balance with their potential for activation receptor
signaling [35,36]. IR ITIM signaling thus serves to dynamically tune activation receptor
signaling pathways during and after NK cell development to promote cellular immunity.

SHP-1 activity is required in licensing since SHP-1-deficient NK cells fail to reject
MHC I-deficient tumors and poorly respond to activation receptor crosslinking [22,37]. In-
terestingly, SHP-2-deficient NK cells exhibit reduced ERK1/2 phosphorylation in response
to IL-15 [38]. Because SHP-2 can also bind phosphorylated ITIMs, an IR-ITIM—SHP-2
signaling axis might be important in regulating ERK1/2 signaling pathway in NK cells. In
contrast to SHP-1 and SHP-2, SHIP1 has not been shown to directly interact with KIR ITIMs
during KIR-mediated inhibition [39,40]. Nonetheless, SHIP1 may play a role in NK cell li-
censing, as SHIP1-deficient NK cells exhibit reduced stimulation in response to platebound
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activation receptor ligation, and further fail to mediate acute MHC I-mismatched bone
marrow graft rejection [41]. Further investigation thus is needed to more fully elucidate
how the balance of SHP-1, SHP-2, and SHIP1 signaling may affect licensed NK cell effector
activities and immunity.

ITIM signals drive phosphatase activity and also enhance the functionality of licensed
NK cells. One explanation that could account for these seemingly paradoxical observations
is that ITIM-regulated signaling molecules are spatially and temporally poised to promote
cellular activation during release of inhibition. In this regard, an IR SHP-1 signaling
axis leading to Crk phosphorylation may be an important mechanism by which self-
MHC I-specific NK cell IRs modulate the movement and spatial distribution of activation
receptors in the NK cell plasma membrane [16,26,27,42]. Modulation of E3-ubiquitin
ligase c-Cbl phosphorylation may be another molecular pathway by which IR/SHP-1
activity tunes NK cell activation receptor signaling [43]. Alternatively, IRs might promote
NK cell functionality by preventing induction of hyporesponsiveness downstream of
chronic activation receptor stimulation [21]. If so, it will be important to define which
ITIM-regulated signaling molecules downstream of activation receptors (e.g., Vav, SLP-76,
LAT, or PLC-γ) are responsible for tolerizing NK cells to activation receptor stimulation.
The advent of inducible systems to delete or overexpress the aforementioned signaling
molecules in mature primary NK cells will be useful to address these gaps in knowledge.

3. Self-KIR IR and HLA Class I Associations with Human Viral Diseases

The effects of IR-dependent tuning of NK cell functionality described above likely
regulate the quality and magnitude of NK cell-mediated antiviral immunity in both humans
and mice. Moreover, human genetic variation within these diverse NK cell recognition
receptors and their polymorphic MHC I ligands may influence the immune response to
particular pathogens. Indeed, discrete inhibitory KIR (iKIR)/HLA gene pairs have been
associated with disease outcomes in several human chronic viral infections, including
human immunodeficiency virus (HIV), hepatitis C virus (HCV), and CMV [44,45].

Genetic association studies of individuals with HIV infection were among the first to
identify a role for iKIR/HLA gene pairs in antiviral immunity. Notably, the HIV-encoded
immunoevasin Nef selectively downregulates HLA-A and HLA-B cell surface expression
to evade T cell recognition [46]. HIV-infected targets thus are resistant to missing-self
recognition by NK cells expressing HLA-C-specific IRs [46]. However, NK cells lacking
HLA-C-specific IRs readily lyse infected cells when the HIV strain is capable of downregu-
lating MHC I [47]. These findings hinted that additional NK IRs may detect HIV-induced
alterations in MHC I expression.

Indeed, HIV-infected patient outcomes can be related to HLA-B-binding KIR3DL1
allotypes. High KIR3DL1 cell surface expression in combination with HLA-B*57 bear-
ing a Bw4 motif with Ile at position 80 (Bw4-80I) corresponds to delayed progression to
acquired immune deficiency syndrome (AIDS) in comparison to patients lacking HLA-
B*57 [48]. Related to this, licensed NK cells encoding high surface expression KIR3DL1
and HLA-B allotypes exhibit higher reactivity against autologous HIV-infected CD4+ T
cells in vitro relative to licensed NK cells encoding low receptor/ligand surface expression
KIR3DL1/HLA-B allotypes [49]. Thus, akin to murine studies showing greater inhibitory
signaling input increases the licensing status of NK cells [34], greater KIR3DL1 and HLA-B
density may similarly enhance NK cell cytolytic potential and detection of HIV infection.

Beyond surface expression differences, KIR3DL1 structural polymorphism may also
regulate NK functionality through binding or clustering interactions with HLA-B. KIR3DL1
alleles differing in affinity or specificity for HLA-B were shown to differently affect NK
cytotoxicity towards HLA-Bw4+ target cells [50]. Moreover, a KIR3DL1 (Val47) allele
variant was shown to be significantly associated with elite virus control in HIV-infected
HLA-B*57+ patients [51]. HIV seropositive ’elite controllers‘ maintain low, or in some
cases undetectable, plasma HIV RNA in the absence of anti-retroviral therapy, and do
not progress to AIDS [52]. Hence, self-MHC I-specific iKIR polymorphisms may modify
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iKIR/HLA binding interactions so that NK cells differently respond to HIV-modified HLA
class I proteins, resulting in long-term HIV immunity.

Whereas Nef targets HLA-A and HLA-B to subvert T cell recognition, the HIV-encoded
Vpu immunoevasin specifically mediates HLA-C downregulation and limits in vitro HLA-
C restricted T cell responses to HIV-infected CD4+ T cells [53]. In support of a role
for licensed KIR2DL+ NK cells in missing-self recognition, KIR2DL+ NK cells readily
degranulate in response to HLA-C downregulation during coculture with HIV-infected
CD4+ T cells [54]. However, licensed KIR2DL+ primary NK cells exhibit impaired ability to
inhibit HIV replication relative to their unlicensed KIR2DL+ counterparts, perhaps due to
binding of residual HLA-C molecules on the surface of autologous HIV-infected cells [54].
Thus, the above findings indicate HIV immunity may be positively or negatively affected
by licensed IR+ NK cells, and patient outcomes may be defined by polymorphisms in iKIRs
or their HLA class I ligands which can affect their binding interactions.

Associations between iKIR/HLA gene pairs and disease outcome have also been
observed in hepatitis C virus (HCV) infection. Homozygosity for certain KIR2DL3 and
HLA-C1 allotypes is associated with resolution of HCV infection in a cohort of individ-
uals exposed to low infectious doses [55]. A separate study revealed that the combina-
tion of KIR3DL1 and an HLA-Bw4 allele with threonine at position 80 (HLA-Bw4-80T)
is significantly enriched in seropositive-HCV RNA-negative individuals in comparison
to seropositive-HCV RNA-positive individuals [56]. Intriguingly, both KIR3DL1 and
KIR2DL3 exhibit peptide selectivity [57,58]. Moreover, KIR2DL3 has been shown to dif-
ferently bind HCV core-derived peptides presented by a particular HLA-C1 allotype [59].
While a basis for defined iKIR/HLA contributions in HCV control remains to be elucidated,
distinct licensed iKIR+ NK cells may be differently responsive to HCV targets.

Similar to HIV and HCV, herpesviruses such as CMV have evolved an arsenal of
immunoevasins to evade detection by cytolytic effector cells of the immune system, namely
CD8+ T cells and NK cells. Several of the proteins employed by herpesviruses regulate cell
surface expression of MHC I or MHC I-like molecules in infected cells, which underscores
the importance of the IR/MHC I recognition axis for control of viral spread [17,60]. Despite
the fact that all classes of herpesviruses downregulate MHC I [61], licensed iKIR+ NK
cells specifically expand in response to CMV infection in comparison to Epstein-Barr virus
(EBV), Herpes simplex virus (HSV)-1, HSV-2, or Varicella zoster virus (VZV) infection [62],
resulting in long-term CMV-associated imprints on the human KIR repertoire.

A direct role for NK cells in antiviral immunity to CMV is supported by a study show-
ing that a T-B+NK+ severe combined immunodeficiency (SCID) patient could control CMV
infection in the absence of T cell immunity [63]. Notably, NK cells derived from the patient
during peak CMV infection were >80% positive for KIR2DL2/2DS2/2DL3 [63]. A separate
study of hematopoietic cell transplant (HCT) recipients showed that licensed KIR2DL3+
NK cells selectively expand following CMV reactivation, which further corresponds with
the heightened functionality of self-specific KIR+ NK cells relative to non-self-specific KIR+
NK cells analyzed in this work [64].

The significance of the expansion of licensed NK cells in response to CMV remains un-
clear. Certain licensed iKIR+ NK cell subsets may be more responsive to CMV reactivation,
enabling efficient control of CMV spread. In support of this possibility, KIR2DL3/2DS2+/HLA-
C1+ CMV seronegative solid organ transplant (SOT) recipients receiving organs from
CMV seropositive HLA-C1+ donors experience significantly decreased hazard of CMV
viremia [65]. Notably, lack of HLA-C1 expression in KIR2DL3/2DS2+ SOT recipients or
donors is associated with increased risk of CMV viremia [65], suggesting that KIR2DL3/HLA-
C1 interactions may be protective during infection. In future studies, it will be of interest to
delineate a basis for expansion of licensed KIR2DL3+ NK cells during CMV infection, and
the significance of this NK cell subset with respect to limiting CMV spread.

Taken together, the above findings suggest self-specific iKIR/HLA interactions may
endow NK cells with increased responsiveness during HIV, HCV, or CMV infection, per-
haps by enabling detection of virus-modified self-MHC I. Additional studies are needed
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to define whether particular iKIR/HLA gene pairs also affect disease risk associations
in other viral infections, especially for viruses known to modify MHC I expression or
conformation. In this regard, the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2)-encoded immunoevasin ORF8 was recently shown to re-direct MHC I to lysosomes
for degradation [66].

4. Bridging Education, Natural Killing, and Antiviral Immunity

IRs that can efficiently distinguish self-MHC I from virus-induced self-MHC I alter-
ations or virus-encoded MHC I mimics may enable more effective NK cell responses and
viral clearance. Herein, we highlight murine CMV (MCMV) infection studies in mouse
models demonstrating the importance of self-MHC I-specific IRs in antiviral immunity.
These studies reveal a combined effect of polymorphism in both MHC I and Ly49 recep-
tors on NK cell antiviral immunity which hints that similar mechanisms may underlie
iKIR/HLA associations with human disease.

Prior work using MA/My or C57L-derived mouse strains expressing the MHC I Dk

protein found that NK cells expressing the Dk-specific-Ly49G2 inhibitory receptor undergo
selective expansion during acute MCMV infection [67–69]. This expansion is genetically
determined by defined MHC class I (i.e., H-2Dk) and Ly49G2 IR alleles. Both Dk-binding
MA/My (G2M) and C57L (G2L) Ly49G2 IRs can license NK cells and enable selective
NK expansion in Dk-bearing host mice during MCMV infection [67,70,71], whereas the
C57BL/6 (G2B6) IR which does not bind Dk cannot [72]. Depletion of G2+ NK cells
from MA/My or C57L-Dk mice before infection thus abolishes MCMV control [67–69,73].
Moreover, because both MA/My and C57L NKC-Ly49 haplotypes lack a Ly49h gene, MHC
I-dependent MCMV resistance in these strains is fundamentally distinct from NK-mediated
MCMV control in B6 mice.

To further elucidate G2L’s role in MCMV immunity, we crossed the C57L NKC (NKCL)
and Dk onto the B6 background. We further used CRISPR/Cas9 editing to ablate Ly49G2
from B6.NKCL-Dk mice, generating Ly49G2null mice. We discovered G2null mice exhibit
significantly increased mortality during MCMV infection, despite an otherwise intact
Ly49 repertoire and normal NK cell development [71]. MCMV control in this model is
T cell-independent since depletion of CD4+ and CD8+ T cells prior to infection has no
effect, and it requires perforin-dependent cytotoxicity (data not shown). Less effective
G2null NK activation, differentiation, or proliferation in comparison to wild-type NK cells
thus suggests G2L recognition of MCMV targets is vital to deliver highly efficient antiviral
immunity.

Parikh et al. have since shown the G2B6 or Ly49AB6 IRs can likewise enhance NK-
mediated antiviral immunity in Dd-transgenic B6 mice during MCMV infection [74]. Both
IRs bind Dd, license NK cells, and promote rejection of missing-self targets [19,33,75,76]. A
functional ITIM was shown essential to trigger licensed IR+ NK control of MCMV in this
model system [74], suggesting that the activation of key intracellular tyrosine phosphatases
is required in MHC I-dependent antiviral immunity through NK cells [16,68]. Presumably,
IR/phosphatase interactions do not propagate inhibitory signals upon interaction with
missing-self targets. However, it is possible IR/phosphatase activities could enhance
licensed NK responsiveness towards MCMV-induced changes in cell surface MHC I.

A requirement for G2L, G2B6, or Ly49AB6 self-specific IRs in NK-mediated MCMV
control suggests each may have a key role in recognition of viral targets, possibly via
detection of missing-self MHC I MCMV targets. However, this model does not readily
explain why NK cells bearing other Dk-specific (e.g., Ly49O/V [77]) or licensing (e.g.,
NKG2A [78]) IRs in G2null mice do not similarly recognize missing-self targets and mediate
MCMV control. Hence, select self-IRs may be better equipped to recognize missing-self
MCMV targets than others. Alternatively, beyond detection of missing-self cues, perhaps
certain self-IRs can distinguish self- from virus-modified MHC I molecules (i.e., altered-self
recognition).
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Unlike the self-MHC I licensing IRs described above, the H-2Kb-specific Ly49C IR was
shown to impede virus-specific NK cell immunity driven by the Ly49H activation recep-
tor [79], which binds the MHC I-like viral protein m157 [80]. This result is intriguing since
Kb-licensed Ly49C+ NK cells exhibit high basal reactivity at steady-state, efficiently reject
missing-self MHC I targets [22,78], and because Kb is efficiently downregulated by viral
immunoevasins gp40 and gp48 in MCMV-infected cells [81,82]. Whether Ly49C’s failure to
release Ly49H+ NK cells to kill MCMV targets is related to its affinity for Kb [83], its broad
specificity for different MHC I molecules [76], or binding to the MCMV immunoevasin
gp34 plus Kb (i.e., gp34/Kb complexes) is unknown. Nonetheless, polymorphic IRs with
differing affinities or specificities for MHC I thus may differently recognize virus-induced
changes in cognate self-MHC I expression or conformation on infected targets.

A clue to understanding their role in MCMV immunity was revealed in a study from
Babić et al. showing that licensed IR+ NK cells in BALB/c (H-2d) mice can control an
attenuated MCMV strain lacking the m04 gene which encodes gp34 [84]. Because gp34
binds nascent MHC I molecules for transport to the cell surface where it facilitates MHC
I binding to self-MHC I-specific IRs expressed by NK cells, it can prevent missing-self
target recognition [84]. Hence, IR+ NK cell immunity in BALB/c mice is thwarted by gp34
during infection with wild-type MCMV [84]. Licensing IRs thus are exploited by MCMV
to prevent NK-mediated clearance of infection.

Licensed NK cell-mediated antiviral immunity may be particularly relevant in the
setting of hematopoietic stem cell transplant (HSCT). Transplant recipients frequently
undergo pharmacological immunosuppression to prevent complications associated with
transplant rejection such as graft versus host disease [85]. However, treatment regimens
can leave recipients susceptible to latent virus reactivation, as often occurs when recipients
or donors have experienced prior CMV infection. Ensuring optimal reactivity of licensed
NK cells in these settings is thus an important consideration. Related to this, it will
be important to understand how licensed NK cell functionality is calibrated by MHC I
molecules expressed by specific donor- and host-derived cell types.

Evaluation of reconstituted Ly49G2+ NK cells in radiation bone marrow chimeras
demonstrated that Dk expression in both hematopoietic and non-hematopoietic cells is
required for optimal NK cell stimulatory activity, rejection of missing-self targets, as well as
efficient control of MCMV infection [70,73]. In support of this, the absence of MHC I ligands
on non-hematopoietic cells in irradiation chimeras renders NK cells hyporesponsive to
activation receptor stimuli and further tolerizes NK cells to missing-self targets during
MCMV infection [86]. Both hematopoietic and non-hematopoietic cell types thus affect
the calibration of licensed NK cell functionality and their capacity to mediate antiviral
immunity. Altogether these findings further suggest that licensed NK cells are vital antiviral
effectors following HSCT. In line with this idea, licensed NK cells selectively proliferate
following MCMV infection in syngeneic or allogeneic HSCT recipient B6 mice, as well
as Dd-transgenic NKCB6 mice [87,88]. Selective expansion of licensed NK cells in these
settings corresponds with greater IFN-γ production and enhanced MCMV control by
licensed NK cells [87,88]. Further study is needed to address whether licensed NK cells
may affect CMV reactivation in patients following HSCT.

5. Selective Activation of Licensed NK Cells during Viral Infection

Whether self-specific IRs recognize missing- or altered-self MHC I, the signal-driving
mediators of MHC I-dependent NK cell antiviral immunity are less well defined. Many
types of viruses target MHC I antigen processing and presentation pathways to reduce
presentation of viral antigens [17]. Yet, certain IRs expressed by NK cells exhibit peptide
selectivity, suggesting they may play a key role in pathogen recognition. For instance,
the mouse Ly49I IR can distinguish peptides presented by Kd tetramers [76]. Similarly,
select peptide variants presented by Kb molecules modify the strength of Ly49C inhibitory
signals [89]. In humans, the KIR3DL1 IR differently inhibits NK clones depending on the
peptides presented by HLA-B [57]. Likewise, certain peptides presented by HLA-C weakly
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bind KIR2DL2/KIR2DL3 and antagonize inhibitory signals delivered by the respective
IRs [58]. Self-MHC I-specific IR recognition of an altered peptide repertoire during viral
infection thus might facilitate highly efficient NK recognition of viral targets, while also
protecting uninfected host cells.

Self-specific KIR activation receptors have similarly been shown to exhibit selectivity
for pathogen-derived peptides. For example, KIR2DS2 discriminates HLA-C-presented
flaviviral peptides [90]. Moreover, KIR2DS4 was found to specifically recognize conserved
bacterial RecA peptides presented by HLA-C [91]. Perhaps related to triggering of acti-
vating KIR, peptide variants loaded into the MHC I peptide binding groove can alter the
conformational flexibility of MHC I molecules [92–94]. These findings beg the question
whether certain self-specific Ly49 and KIR are sensitive to viral peptide/protein-associated
changes in MHC I conformation during infection.

Because Ly49 IRs bind self-MHC I on targets (in trans) and on the same cell (in cis),
when NK cells encounter healthy cells an equilibrium (i.e., cis � trans) describing IR—
self-MHC I interactions thus exists (reviewed in [95]; and see Figure 1). IR binding to
trans MHC I leads to recruitment and activation of tyrosine phosphatases (e.g., SHP-1)
that dominantly turn off activation receptor signals and prevent NK effector functions. A
shift in this equilibrium so that cis binding prevails upon encountering missing-self MHC
I targets, however, results in reduced IR access to the immune synapse in trans [96], less
inhibitory signaling [97], and increased lysis of missing-self targets [98] that also display
ligands for NK activation receptors (Figure 1). Hence, IR polymorphisms that merely
bind self-MHC I, or those that bind altered-self MHC I with less affinity than self, should
release inhibition and unleash signaling through activation receptors. Licensing IRs which
can efficiently discriminate missing- or altered-self MHC I ligands thus may allow highly
sensitive NK sensing and recognition of viral targets.
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along with downregulation of surface MHC I (i.e., missing-self). For IRs that are highly specific for self-MHC I relative to
altered-self, cis-binding may prevail during interaction with infected targets, thereby diminishing negative signaling (0) so
that NK cells bearing activation receptors for ligands on infected targets are triggered. However, IRs that can bind self and
AS MHC I may continue to dominantly block activation receptor signaling pathways. Only a sufficient loss of self-MHC I
then can trigger both types of IRs. Hence, distinct IRs for self-MHC I, like their activation receptor counterparts, may differ
in NK sensing of virus infected targets.
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Prior studies suggest Ly49P and Ly49R activation receptors contribute to MCMV
control in MA/My mice, whereas the Ly49L activation receptor is linked with MCMV
control in BALB.K mice [71,99–101]. Ly49P and Ly49L activation receptors both bind
gp34-bound MHC I proteins displayed on MCMV targets [99–101]. While Ly49R binds
Dk itself [71,77], it is unclear if it also binds gp34-Dk or another MCMV-modified Dk

ligand. Still, the Ly49R-specific mAb 12A8 given to mice before infection abolishes Dk-
licensed Ly49G2+ NK antiviral immunity during MCMV infection [71]. Activation receptor
binding to gp34-MHC I complexes on MCMV targets thus may be analogous to Ly49H+
NK recognition of m157-bearing MCMV targets in B6 mice [80]. Nonetheless, none of these
activation receptors have yet been proven essential in MCMV control [65,87–89].

Whereas blockade of the NKG2D activation receptor abrogates licensed NK cell
immunity in BALB/c or BALB.K mice infected with attenuated ∆m04/gp34 MCMV [84],
licensed NK cells do not require DAP10 or DAP12 adaptor signaling to control MCMV
in Dd-transgenic B6 mice [74]. Because DAP10 and DAP12 signaling adaptors are used
by the Ly49 activation receptors mentioned above as well as NKG2D, these data suggest
other stimulatory receptor/adaptor pairs must be involved. While distinct mechanisms
appear to be at work, licensed NK cell virus immunity in the different model systems
may be similar or partially overlapping. Relatedly, although Ly49R-neutralization may
thwart G2L NK cells in MCMV-infected Dk mice by blocking an interaction between the
activation receptor and its ligand on infected targets, this treatment might instead alter
the cis � trans equilibrium for G2 binding with Dk described in Figure 1 since Ly49R
can also bind self-Dk proteins in cis and trans [71]. Usage of multiple different activation
receptors by virus-specific licensed NK cells thus might obscure a strict requirement for
DAP10/DAP12 signaling.

There is evidence to suggest that similar mechanisms of IR-licensed or Ly49H-like
NK cell activation occur in response to viral infection in humans. IR-licensed human NK
cells coexpressing the CD94/NKG2C heterodimeric activation receptor clonally expand
in CMV-seropositive individuals [62]. Notably, expansion of NK cells expressing self-
specific iKIR is most striking for the NKG2C+ subset relative to the NKG2C- subset [62].
Related to this, NKG2C+ NK cells from CMV-seropositive donors selectively proliferate
during in vitro coculture with HLA-E expressing target cells [62] as well as CMV-infected
fibroblasts [102,103]. Collectively, these data suggest that NKG2C contributes to CMV-
specific activation of iKIR-licensed human NK cells.

CMV UL40 peptides were shown to elicit potent degranulation and cytokine produc-
tion by NKC2C+ ‘adaptive’ NK cells derived from CMV-seropositive patients [104]. In vitro
activation of adaptive NKG2C+ NK cells by UL40 peptides was shown to be HLA-E- and
CD94-dependent [104]. Moreover, NKG2C+ NK cells from CMV-seronegative donors,
but not NKG2C- NK cells, selectively proliferate in vitro in response to UL40 peptide
variation [104]. Therefore, akin to Ly49H, the NKG2C activation receptor likely contributes
activation of NK cells via direct recognition of CMV-infected targets.

Intriguingly, enhanced proliferation of NKG2C+ NK cells in response to disparate
UL40 peptides coincides with increased accumulation of NKG2C+ NK cells co-expressing
self-specific iKIR [104]. However, the extent to which IR-licensed human NK cells rely on
NKG2C signaling for antiviral immunity to CMV remains unclear. iKIR+ NK cells expand
in NKG2C-deficient CMV-seropositive donors, and functionally resemble adaptive iKIR+
NKG2C+ NK cells [105,106]. With the exception of triggering through activation receptors
CD16 [107] or Ly49H [108], NK cells require synergistic stimulation via multiple activation
receptors (e.g., NKG2D, 2B4, DNAM-1, CD2) to induce cytotoxicity [11]. Certain licensing
IRs may lessen this requirement for synergy by regulating the inhibitory activity of ubiqui-
tin ligase c-Cbl [15,109]. An interesting question is whether synergy exists between such
licensing IRs and activation receptors. Related to this, expression of activation/adhesion
receptor DNAM-1 is strongly correlated with IR licensing of both mouse and human NK
cells [23,24]. In humans, DNAM-1 blockade diminishes NK cell degranulation in response
to CMV-infected monocyte-derived DCs and HIV-infected CD4+ T cells in vitro [110,111].
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DNAM-1 has also been implicated in MCMV-specific unlicensed NK cell expansion in B6
mice [112]. However, licensed murine NK cells lacking DNAM-1 still mediate missing-self
lysis of targets [24]. A specific role for DNAM-1 in CMV-specific activation of licensed NK
cells thus remains to be elucidated.

6. Conclusions

With the seminal discovery that select IRs confer essential MCMV control, now there is
evidence that licensed NK cells play a key role in antiviral immunity, though not all IRs are
created equal. This distinction is almost certainly linked to IR polymorphism which affects
MHC I protein binding and IR-dependent tuning of licensed NK cell effector functions,
including functions conserved in mice and humans. Nonetheless, it remains unknown why
only certain licensing IRs adequately respond to missing-self MHC I cues during wild-type
or attenuated MCMV infection and contribute to viral control. Whether this ability is
related to a particular IR’s affinity for MHC I, its ability to license or tune NK effector
functions, or its capacity to efficiently detect altered-self MHC I proteins remains an open
question. Notwithstanding, multiple virus-responsive activation receptors are rendered
impotent in the absence of these vital licensing IRs during MCMV infection. These findings
are suggestive that iKIR/HLA class I associations in human patients with chronic virus
infections may likewise be related to highly efficient NK sensing via licensing IRs. Given
their role in self-tolerance, we envision licensed IR-dependent antiviral immunity might
also promote adaptive immunity through better overall protection of host cells, lymphoid
structures, antigen presenting cells and the development of highly specific T cells and B
cells. Resolving these questions may facilitate tailor-made strategies to enhance NK cell
cytotoxicity against specific viruses and tumors which downregulate MHC I molecules to
evade T cell immunity.
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