
sensors

Article

Deep Transfer Learning Based Intrusion Detection System for
Electric Vehicular Networks

Sk. Tanzir Mehedi 1 , Adnan Anwar 2,* , Ziaur Rahman 1 and Kawsar Ahmed 1

����������
�������

Citation: Mehedi, S.T.; Anwar, A.;

Rahman, Z.; Ahmed, K. Deep

Transfer Learning Based Intrusion

Detection System for Electric

Vehicular Networks. Sensors 2021, 21,

4736. https://doi.org/10.3390/

s21144736

Academic Editor: Juan A. Cabrera

Received: 18 June 2021

Accepted: 8 July 2021

Published: 11 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Information and Communication Technology, Mawlana Bhashani Science and Technology
University, Tangail 1902, Bangladesh; tanzirmehedi@ieee.org (S.T.M.); zia@iut-dhaka.edu (Z.R.);
k.ahmed.bd@ieee.org (K.A.)

2 Centre for Cyber Security Research and Innovation (CSRI), Deakin University, Geelong 3216, Australia
* Correspondence: adnan.anwar@deakin.edu.au; Tel.: +61-3-522-73679

Abstract: The Controller Area Network (CAN) bus works as an important protocol in the real-time
In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of
IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures
which greatly increase the accessibility to unauthorized networks and the possibility of various
types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing
interest. With the rapid development of IVNs and evolving threat types, the traditional machine
learning-based IDS has to update to cope with the security requirements of the current environment.
Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in
several areas has guided as an effective solution for network intrusion detection. This manuscript
proposes a deep transfer learning-based IDS model for IVN along with improved performance in
comparison to several other existing models. The unique contributions include effective attribute
selection which is best suited to identify malicious CAN messages and accurately detect the normal
and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating
considering real-world data. To this end, an extensive experimental performance evaluation has
been conducted. The architecture along with empirical analyses shows that the proposed IDS
greatly improves the detection accuracy over the mainstream machine learning, deep learning, and
benchmark deep transfer learning models and has demonstrated better performance for real-time
IVN security.

Keywords: electric vehicles; in-vehicle network; controller area network; cybersecurity; intrusion
detection; deep learning; transfer learning

1. Introduction

In recent years, the automotive industry has been undergoing a radical transformation.
With the ongoing development of network communication, modern vehicles are rapidly
transitioning from fully mechanical to software-controlled technologies [1]. Modern In-
vehicle Network (IVN) technologies and services are being integrated with intelligent
information systems. As a result, the number of IVN devices is rapidly increasing and
becoming more complex. The IVN devices must be seamlessly connected to an external net-
work system in order to receive communication services efficiently. However, this increases
the risk of the IVN to potential internal or external threats. The Electronic Control Units
(ECUs) are software-controlled technologies that read various sensor data and perform
relevant processing, including automatic brake control, pedestrian detection, auto-parking,
path-planning, actuators control, and collision avoidance [2]. The sensor and actuator val-
ues are transmitted to other ECUs via the IVN protocol, resulting in the formation of a very
complex network. There are several IVN protocols in the automotive industry, including
Controller Area Network (CAN), Controller Area Network Flexible Data-Rate (CAN FD),
Media Oriented Systems Transport (MOST), FlexRay, and Local Interconnect Network

Sensors 2021, 21, 4736. https://doi.org/10.3390/s21144736 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4435-7856
https://orcid.org/0000-0003-3916-1381
https://orcid.org/0000-0002-7759-3428
https://orcid.org/0000-0002-4034-9819
https://doi.org/10.3390/s21144736
https://doi.org/10.3390/s21144736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144736
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144736?type=check_update&version=2

Sensors 2021, 21, 4736 2 of 23

(LIN) [3]. Among all the data communication buses, CAN bus is the most well-known and
extensively used protocol in the automotive vehicles industry [4]. Furthermore, the CAN
buses are being applied also in other industries, including agriculture, aerospace, medical
devices, and commercial machinery [1]. Several other protocols are also available with
more security features (e.g., Ethernet). However, in the field of automotive IVN communi-
cation, these advanced protocols can not be completely replaced by the CAN bus protocol
due to some reasons [4]. First of all, the CAN bus is more design flexible and perfectly
appropriate for real-time environments, ensuring secure and fast communication between
ECUs with minimal latency time. Secondly, there is a process of prioritization in the CAN
bus protocol that prevents lower-priority messages from interfering with higher-priority
messages. To cite an example, a message that transmits a more critical function such as an
engine control message takes precedence over a door control message. Finally, the CAN
bus protocol serves as the backbone of automotive IVN communication in all modern
vehicles. To completely replace this protocol with another, the IVN architecture must be
completely redesigned. As a result, other protocols will not completely replace the CAN
bus’s role and application.

However, in-vehicle intrusion detection has become a growing interest field that has
been researched across a wide range of disciplines. In the CAN bus protocol, intrusion
detection is the method of monitoring normal and abnormal traffic between different
ECUs and identifying any abnormal traffic using Traditional Machine Learning (TML)
algorithms [5]. With the rapid development of IVNs and evolving threat types, the TML-
based IDS has to update to cope with the security requirements of the current environment.
Nowadays, regarding the progression of Deep Learning (DL), Deep Transfer Learning
(DTL), and its impactful outcome in several areas, these techniques have gained the
attention of many researchers in the field of cybersecurity (e.g., IDS, antivirus or malware
identification) [6]. In particular, in the field of the automotive industry, recent DL and
DTL-based IDS have also gained the attention of many researchers, which is discussed
further in the Related Work section.

Automobile manufacturers are working to develop fully autonomous vehicles, which
will necessitate the addition of more attack surfaces. Since the CAN bus protocol does not
encrypt data, the attackers can use a reverse mechanism to interpret each CAN packet in
order to inject malicious messages into in-vehicle networks [7]. This malicious message
injection mechanism will cause some abnormal behaviors in the communication traffic,
which can be detected by developing an intrusion detection system. The threat of cyber-
attacks in the automotive industry and the securing of communication protocols have
gotten a lot of attention in recent years. However, due to the complexity of in-vehicle
embedded systems and the reality of a real-time experiment with a limited processing
unit and memory resources, it is impractical and nearly impossible to apply the standard
measures to build a potential IDS for vehicular networks. Therefore, a different mechanism
is required to detect normal and abnormal characteristics in a vehicular network. In this
manuscript, we propose a deep transfer learning-based intrusion detection model that can
efficiently classify the normality and abnormality of a communication traffic and allows
the immediate detection of anomalies in the CAN bus protocol. The key contributions of
this paper are narrated as follows:

• In this work, a deep transfer learning-based LeCun Network (LeNet) model has been
proposed for effective intrusion detection in-vehicle network CAN bus protocol. The
proposed model enabled to develop effective models that speed up the training
process and improve the performance of the deep learning model.

• The experiments have been conducted using an in-vehicle real-time dataset generated
from heterogeneous sources that include three types of malicious messages. We have
made observations on this practical data to identify the best features in the context of
supervised learning for effective intrusion detection.

• In-depth architectural and statistical analyses have been conducted considering tra-
ditional machine learning, deep learning, and deep transfer learning algorithms.

Sensors 2021, 21, 4736 3 of 23

Extensive analysis and performance evaluation show that the proposed deep transfer
learning-based LeNet model outperforms other approaches.

The rest of this research paper is organized as follows. First of all, Section 2 discusses
the background of CAN bus protocol security vulnerabilities and introduces the related
work done with in-vehicle networks. Additionally, we present the problem statement and
the solution methodology also include the proposed architecture in Section 3. Furthermore,
Section 4 discusses a detailed description of the dataset as well as an overview of selected
models. Evaluation and experimental results analysis of these methods are discussed
in Section 5. Finally, Section 6 includes the summary and feasible future directions for
this research.

2. Background and Related Work

While investigating the most recent relevant works in this field, we discovered that
several of them share a common motivation in different ways. In terms of security features,
various studies show the CAN bus’s vulnerabilities and weaknesses [8]. The following
subsections illustrate those works before we demonstrate our proposed methodology.

2.1. Background of CAN and Security Vulnerabilities

During the development of the CAN bus protocol, vehicles were considered as isolated
objects that did not have a connection with the outside environment [9]. By design, the
CAN bus protocol is plagued with various security issues because of the lack of encryption
and authentication requirements [10]. Therefore, any malicious or hijacked node can cause
disastrous accidents and serious financial loss. For instance, hackers can affect an ECU by
injecting malicious messages and various attacks due to the lack of an efficient message
authentication method. The CAN node is the combination of a CAN controller and a
CAN transceiver that transmits and receives messages but not simultaneously [11]. The
architecture of a CAN bus node is shown by Figure 1. The data frame, remote frame,
error frame, and overload frame are four different types of frames that have been used in
the CAN bus [9,12]. The data frame is used to transmit actual data from a transmitter to
receivers (other nodes). A node requests a specific message with a specific identifier using
the remote frame. If any of the nodes on the bus detects an error, it will send an error frame.
The overload frame adds a delay between the data and remote frames.

Terminating
Resistor 120 Ω

Terminating
Resistor 120 Ω CAN Bus

CAN Bus High Line

CAN Bus Low Line

CAN
Node A

CAN
Node X

CAN Controller

CAN Transceiver
RxTx

CAN Node B

Figure 1. The standard CAN bus node architecture.

The standard CAN message frame format is the composition of header, trailer, and pro-
tected data payload field that can be up to 64 bits long. The header field is the combination
of 1-bit Start of Frame (SOF), 12-bits arbitration field, and 6-bits control field. Further-
more, the arbitration field divided into an 11-bits identifier and 1-bit Remote Transmission
Request (RTR) field. The identifier field represents the message priority. It also consists
of Identifier Extension (IDE), Reserved, Data Length Code (DLC), Cyclical Redundancy
Check (CRC), Delimiter, Acknowledge (ACK), End of Frame (EOF), and Inter Frame Space

Sensors 2021, 21, 4736 4 of 23

(IFS) fields. Both sides of the message frame end with a bus idle field. Figure 2 shows the
standard CAN message frame format [9].

Identifier
(ID)

(11 bits)

Remote
Transmission

Request
(RTR)
(1 bit)

Identifier
Extension

(IDE)
(1 bit)

Reserved
(R)

(1 bit)

Data
Length
Code

(DLC)
(4 bits)

Cyclic
Redundancy

Check
(CRC)

(15 bits)

Delimiter
(DEL)
(1 bits)

Acknow
ledgment
(ACK)
(1 bit)

Delimiter
(DEL)
(1 bit)

Message Frame (Standard)

Bit Stuffing Bit Not Stuffing

Header Field (19 bits)

Control Field
(6 bits)

Data Field
(0 to 8 bytes)

Check Field
(16 bits)

ACK Field
(2 bits)

Arbitration Field
(12 bits)

Protected Payload Field (80 bits max) Trailer Field (12 bits)

Start
of

Frame
(SOF)
(1 bit)

End of
Frame
(EOF)
(7 bits)

Inter
Frame
Space
(IFS)

(3 bits)

Data
[0]

Data
[7]

Data
[1]

B
us

 Id
le

B
us

 Id
le

Figure 2. The standard CAN bus message frame format.

Nowadays, with the progression of data-mining techniques, many researchers have
addressed this type of attack and are able to detect and ignore any abnormal traffic activities
in CAN networks [13–17]. Recently, modern vehicles are not considered only a closed-loop
system; instead, they also communicate with the outside world via various intelligent
systems. As a result, hackers or attackers can use various internal and external interfaces
to inject malicious messages into CAN traffic. Despite the tendency of injecting malicious
messages, ECUs can be re-programmed remotely by embracing over-the-air (OTA) updates,
which may provide more comfort and advantages to the vehicle owner [15]. However,
these mechanisms have also initiated more remote attacks, which can assist attackers or
hackers in compromising the ECUs by sending malicious messages.

2.2. TML and DL Based IDSs for IVN

In the existing automotive applications, the TML and DL-based IDSs have obvious
advantages in detecting various malicious messages [18–20]. Bozdal et al. [21] and Lok-
man et al. [22] reviewed the security threats and challenges of the automotive CAN bus
system, and discuss some potential security solutions. In 2016, Kang et al. [23] proposed
a Deep Neural Network (DNN)-based IDS for IVN security. Using the unsupervised
pre-training model of Deep Belief Networks (DBN), the selected parameters of the DNN
model were trained with probability-based feature vectors extracted from the IVN packets,
followed by the traditional stochastic gradient descent technique. The results of the ex-
periment showed that the model can provide a real-time response to malicious messages,
with a detection ratio over 95% on average in the CAN bus. The robustness of the model
is high, but detection coverage is not defined. Loukas et al. [24] proposed cloud-based
cyber-physical IDS for IVN using the Deep Learning (DL) model to detect Denial-of-Service
(DoS), command injection, and malware (Net) attacks. The model had a validation accuracy
score of overall 86.9%, which motivates additional research into this field to improve the
detection rate, particularly for these attacks. Seo et al. [25] introduced an IDS to identify
DoS, Fuzzy, RPM, and Gear attacks in the CAN bus network traffic by applying Genera-
tive Adversarial Network (GAN). This DL-based model can detect unknown malicious
messages using only normal CAN data for training. The results of various simulations
show that each of the four attacks was detected with a high accuracy score of over 95%,
demonstrating the robustness of the model.

Lokman et al. [26] developed an IDS for an in-vehicle network using an unsupervised
DL-based model, known as Deep Contractive Auto-encoders (DCAEs). The DCAE model
outperformed other regularized auto-encoder variants, with a 91.0% detection rate. As
the proposed IDS performance is evaluated within a simulated network, further evalua-
tion is necessary to validate the efficiency against a larger array of various cyber-attacks.
Zhang et al. [27] in 2019 proposed a DL-based IDSs for in-vehicle security to detect only
spoofing and replay attacks. The results were evaluated in a simulated environment, which
is hopeful as they can effectively detect only spoofing and replay attacks. The proposed

Sensors 2021, 21, 4736 5 of 23

model is capable of adapting to new attacks. The detection accuracy of this model varies
between 97.0% and 98.0% when it faces unknown attack types. Zhu et al. [28] proposed a
DL-based method to speed up intrusion detection using the LSTM model. They executed
the spoofing, replay, and flooding attacks in the CAN network. The authors proposed using
a mobile edge-assisted multi-task LSTM model because the computation time with LSTM
is so high. The model had an accuracy score of over 80% and a detection latency of 0.61 ms.
Avatefipour et al. [29] proposed a new effective IDS based on a modified one-class SVM
in the CAN traffic by deploying three attacks (e.g., DoS, fuzzing, and spoofing attacks).
The experimental result shows that the proposed model has a high accuracy score of over
90%, demonstrating the robustness of the model. In order to prove the efficiency of the
this model, they applied it to other recent popular public datasets in the scope of CAN bus
traffic intrusion detection. Xiao et al. [30] proposed a lightweight ML algorithm based on
RNN for IDS on the CAN bus network. The experimental evaluation using appropriate
hyper-parameters demonstrated that the proposed model had good performance metrics,
compared to LSTM and GAN models.

Al-Saud et al. [31] proposed an IDS model based on an improved SVM model for
the CAN bus network. The experimental results on the real dataset reveal the good per-
formance metrics and high robustness of the model against only DoS attacks in electric
vehicles. Lin et al. [32] proposed a DL-based intrusion detection system for CAN networks
to detect DoS, fuzzing, and impersonation attacks particularly. The model is trained with a
deep denoising auto-encoder during the training phase, which includes a feature extraction
mechanism. Their work had a low detection rate when compared to other ML algorithms.
Yang et al. [33] proposed an IDS using a recurrent neural network with long short-term
memory (RNN-LSTM). The selected model had a higher validation accuracy score espe-
cially for detecting only spoofing attacks in the CAN network traffic, which motivates
additional research into this field to detect other cyber-attacks. A Long Short-Term Memory
(LSTM) NN-based IDS was proposed by Hossain et al. [34]. The proposed IDS is capable
of detecting various attacks on the CAN bus network, such as DoS, fuzzing, and spoofing
attacks. Recently, Song et al. [35] proposed an IDS based on a Deep Convolutional Neu-
ral Network (DCNN) model called Inception-ResNet to detect various attacks (e.g., DoS,
fuzzing, gear, and RPM attacks) to test in a real-time in-vehicle system. The authors also
investigated the sequence of messages for intrusion detection. There are two steps to the
proposed model. The first is a training step and the last one is a detection step. In the first
step, the CNN classifier is trained and, in the last step, real CAN data frames are passed
through this proposed model to classify whether they are normal or attack messages. In
comparison to previous work, the proposed model had an over 80% detection rate and
a low error rate but has high computational cost and memory consumption. However,
further analyses are necessary to investigate the performance on new complex types of
cyber-attacks in various categories.

The existing IDSs have categorized according to detection algorithm, detection accuracy,
robustness, and detection coverage. Here, robustness is defined as the ability of the IDS to
detect attacks in the CAN bus network. A summary of all the existing IDSs for in-vehicle
network is given in Table 1. Several existing IDSs have used data from different small
in-vehicle networks, which can not be implemented in a realistic environment. Moreover,
existing IDSs concentrated on detecting whether specific cyber-attacks have occurred, but
most of them did not classify the type of attack. This limitation of previous approaches is a
significant feature for further investigation for in-vehicle security.

Sensors 2021, 21, 4736 6 of 23

Table 1. Overview of recent research on IDSs for in-vehicle networks.

Ref. Algorithm Accuracy Robustness Detection Coverage

[23] DL >95% High N/A
[24] DL >85% Medium DoS, Command Injection, Malware
[25] GAN >95% High DoS, Fuzzing, RPM, Gear attacks
[26] DCAE >90% Medium DoS, Fuzzing, Impersonation
[27] DL >95% High Spoofing, Replay
[28] LSTM >80% Medium Spoofing, Replay, Flooding
[29] ML >90% High DoS, Fuzzing, Spoofing
[30] RNN >95% High DoS, Fuzzing, Impersonation
[31] ML >90% Medium DoS
[32] DL >80% N/A DoS, Fuzzing, Impersonation
[33] RNN-LSTM >95% High Spoofing
[34] NN-LSTM >90% N/A DoS, Fuzzing, Spoofing
[35] DCNN >80% Medium DoS, Fuzzing, RPM, Gear attacks
[36] DTL >90% High Impersonation, ARP, Flooding

N/A means “Not Applicable”.

2.3. DTL Based IDSs for IVN

Deep transfer learning (DTL) is a solution that can reuse previous trained-model knowl-
edge and outperform other TML and DL models in terms of intrusion detection [36,37].
Zadrozny et al. [38] proposed a model for intrusion detection that performs better in both
labeled and unlabeled data. Another type of transfer learning model called TrAdaBoost was
proposed by Dai et al. [39]. This model allows knowledge from the old trained data to be
efficiently transferred to the new validation data, resulting in a more efficient classification
model. Additionally, Raina et al. [40] also proposed a transfer learning model that builds
an informative Bayesian from prior knowledge before validating a new task. Furthermore,
Gou et al. [41] proposed a novel transfer learning model for IDS especially to detect the
different types of cyber-attacks. The proposed model shows that the detection accuracy
of the different types of cyber-attacks has been comprehensively improved than others.
Li et al. [36] proposed a transfer learning approach for intrusion detection of different
types of attacks on the Internet of Vehicles (IoV). The experimental results show that, when
compared to existing TML and DL methods, this model significantly improved detection
accuracy by at least 23%. Xu et al. [42] recently proposed an IDS based on DL and transfer
learning. To improve the model’s efficiency and adaptability, transfer learning is imple-
mented here. The experimental analysis shows that the proposed model outperforms the
mainstream TML and DL methods in terms of efficiency and robustness, and it can detect
and classify new cyber-attacks more effectively. The deep-computational-intelligence sys-
tem has recently been applied in transfer-learning to optimize the performance of existing
transfer-learning models [37]. As a result, current transfer learning solutions for intrusion
detection still need to be updated [36]. A new-generation labeled dataset of an in-vehicle
network proposed by Kang et al. [43], which is more suitable for applying transfer learning
models because, for time series classification, deep transfer learning approach shows the
better performances than other TML or DL models [44–46]. This paper has improved the
existing transfer learning model for detecting various complex types of cyber-attacks in
CAN bus protocol.

3. Proposed Solution

The proposed deep transfer learning-based LeCun network (P-LeNet) approach is
presented in this subsection. Following that, we have thoroughly explained the problem
statement, solution formulation, the structure of the proposed P-LeNet based intrusion
detection model, and how we adapted it for deep transfer learning.

Sensors 2021, 21, 4736 7 of 23

3.1. Problem Statement

Automobile manufacturers are working to develop fully autonomous vehicles, which
will necessitate the addition of more attack surfaces. Since the CAN bus protocol does
not encrypt data, the attackers can use a reverse mechanism to interpret each CAN packet
in order to inject various malicious messages into the in-vehicle network. This malicious
message injection mechanism will cause abnormal behaviors in the communication traffic,
which can be detected by developing an intrusion detection system. Three types of attacks
(e.g., flooding, fuzzing, and spoofing) have been considered due to their severely impaired
characteristics, the intensity of an attack, and the degree of damage among in-vehicle
functions. The three most common attack scenarios against an in-vehicle network are
shown in Figure 3. By maintaining an influential situation on the CAN bus, the flooding
attack allows an ECU node to hold many of the resources allocated to the CAN bus.
This attack disrupts normal driving and limits the communication between ECU nodes
by sending high frequency and high priority messages (e.g., 0 × 000). Figure 3a shows
a scenario of a flooding attack on CAN networks. In the fuzzy attack, a malicious ECU
from IVN transmits random frames with spoofed CAN IDs with arbitrary data values,
which caused the vehicle function to be unavailable (e.g., 0 × 4CC, 0 × 7C6). Due to
the limited number of valid CAN frames streaming over the bus, this type of attack is
easy to implement and does not necessitate reverse engineering. The fuzzy attack scenario
against an IVN is shown in Figure 3b. Spoofing is a type of attack in which a malicious
node transmits messages to the receiver with a fake ID (e.g., 0 × 2B0, 0 × 130) that
appears identical to that of an original node. As a result, the receiver node considers that
the message is from an original node. It is tough to distinguish between malicious and
original messages because there is no message authentication mechanism on the CAN bus.
Figure 3c shows a scenario for a spoofing attack on a CAN network.

Electronic
Control

Unit (ECU)
A

0X000

0X000

0X000

0X000

Electronic
Control

Unit (ECU)
B

CAN Bus

Electronic
Control

Unit (ECU)
X

0X2B0 0X130

Electronic
Control

Unit (ECU)
A

0X130

0X7C6

0X2B0

0X4CC

Electronic
Control

Unit (ECU)
B

CAN Bus

Electronic
Control

Unit (ECU)
X

0X2B0 0X130

Electronic
Control

Unit (ECU)
A

0X130

0X130

0X2B0

0X2B0

Electronic
Control

Unit (ECU)
B

CAN Bus

Electronic
Control

Unit (ECU)
X

0X2B0 0X130

Flooding
Attack

Fuzzing
Attack

Spoofing
Attack

(a) (b) (c)

Sending
Fake

Messages

Inject
Malicious

CAN
Frame

High
Frequency
& Priority
Message

Figure 3. (a) Flooding attack scenario against an IVN; (b) Fuzzing attack scenario against an IVN;
(c) Spoofing attack scenario against an IVN.

However, due to the complexity of in-vehicle embedded systems and the realities of a
real-time experiment with limited processing and memory resources, applying standard
measures to build a potential IDS for vehicular networks is impractical and nearly impos-
sible. As a result, detecting normal and abnormal characteristics in a vehicular network
requires a different mechanism. The next subsection discusses the solution formation and
the details’ architecture of our proposed intrusion detection model that can efficiently
classify the normality and abnormality of communication traffic and allows the immediate
detection of anomalies in the CAN bus protocol. Figure 4 shows the application of our
proposed intrusion detection mechanism for vehicular network traffic.

Sensors 2021, 21, 4736 8 of 23

Front Active Stabilizer ECU

Variable Gear Ratio Steering ECU

Vehicle Stability Control ECU

Rear Active Stabilizer ECU

Adaptive Variable Suspension ECU

Brake Control ECU

Body Control ECU

Powertrain Control ECU

In
tru

si
on

D
et

ec
tio

n
M

od
el

Flooding Attack
Spoofing Attack
Fuzzing Attack

Airbag ECU

Lighting ECU

H
ac

ke
r

Figure 4. Application of intrusion detection model for IVN traffic. The figure illustrates how the
proposed IDS can detect the possible attack vectors within an in-vehicle Network. The car image is
adopted from [47].

3.2. Solution Formulation

Table 2 shows the symbols and descriptions, in which we set the initial model with
enough labeled data to build an effective intrusion detection model. The source domain
data (Ds : (As, Bs)) is the combination of (As1, Bs1), (As2, Bs2), (As3, Bs3), (Asn, Bsm)
and the target domain data (Dt : (At, Bt)) is the combination of (At1, Bt1), (At2, Bt2),
(At3, Bt3), (Atn, Btm), in which the class of source domain label data (Bs) and tar-
get domain label data (Bt) is 0 and 1, where the normal and attack scenario is represented
by 0 (zero) and 1 (one), respectively.

Table 2. Symbols and description.

Description Source (s) Target (t)

Domain data Ds : (As, Bs) Dt : (At, Bt)
Domain feature As At
Domain label Bs Bt
Number of domain data n m

Additionally, both the labels of the source domain (Bs) and the target domain (Bt)
data contain only normal and attack data, although the attackers in the source and target
domains may be different. Although the source domain label (Bs) and the target domain
label (Bt) share the same feature space, they perform differently in specific features. We
used the Maximum Mean Discrepancy Equation (1) to calculate the difference between the
source and target domains [48]:

Distance(As, At) =

∥∥∥∥∥ 1
n

n

∑
i=0

φ(Asi)−
1
m

m

∑
i=0

φ(Ati)

∥∥∥∥∥
2

(1)

The detection model trained by the source domain data (Ds) does not have excellent
detection accuracy when faced with target domain data (Dt), according to the dependency
of TML and DL models, and this has been totally proven by the subsequent experiment.
The TML and DL models require a large amount of training data. Thus, it is difficult
to train an effective IDS model using a small amount of source domain data (Ds). As a
result, we have proposed a deep transfer learning based P-LeNet method to transfer the
knowledge contained in source domain data (Ds) to the target domain and combine the
target domain data (Dt) to build an efficient IDS to improve the detection accuracy for any
electric vehicular ecosystems.

Sensors 2021, 21, 4736 9 of 23

3.3. Architecture

The block diagram of the proposed P-LeNet model is shown in Figure 5, which contains
two parts: the model training part and the intrusion detection part. After pre-processing
the raw data, we have applied it to our proposed model for training. Through subsequent
empirical experiments, the most important parameters for the selected model have been
determined. We used a randomly selected training dataset to train the proposed P-LeNet
model and a validation dataset to validate the model. The final IDS model has been selected
based on its best prediction performance on the validation dataset.

Training Data Validation Data

Classifier

Convolution Layer

Dense Layer

MaxPooling Layer

PredictionLabels VS

Loss

Reuse Existing
Knowledge P-LeNet

Model

Prediction

Intrusion
Detection

Figure 5. The block diagram of the proposed P-LeNet mode.

The proposed P-LeNet architecture is made up of seven layers with a total of 12,052
trainable parameters (weights). The layer is the composition of two convolutional layers,
two subsampling layers, one flatten layer, one fully connected layer, and one output layer. Each
layer takes the previous layer outputs as inputs for the current layer and performs some
nonlinearity’s to transform it into a multivariate series whose dimensions are defined by
the number of filters in each layer. The structure of the proposed LeCun Network (P-LeNet)
model is shown in Figure 6. The first layer is the Input layer, which is not considered
a network layer because it does not learn anything. The input layer is designed to take
dataset and pass it on to the following layer. The dataset has a total of four features
including the label feature. The four features are CAN_ID, DLC, Data_Field, and Label.
The one-dimensional convolutional layer (Conv1D) is used in the first, and the third layer
respectively to transform the dataset. The first Conv1D layer produces as output five
feature maps, and has a kernel size of 5, and the second Conv1D layer produces as output
20 feature maps, and has a kernel size of 5. The Rectified Linear-Unit (ReLU) activation
function is used in the both convolution layer. The two Conv1D layers contain 30 and 520
trainable parameters, respectively. The first MaxPooling1D subsampling layer follows the
first Conv1D layer, and the second MaxPooling1D subsampling layer follows the second
Conv1D layer shown in Figure 6. The two subsampling layers halves the dimension of
the feature maps it receives from the previous layer; this is known commonly as down-
sampling. The two subsampling layers also produce 5 and 20 feature maps, respectively,
each one corresponding to the feature maps passed as input from the previous layer. The
fifth layer of our proposed model is the Flatten layer which converts the pooled feature map
to a single column that is passed to the next layer. The next is fully-connected Dense layer

Sensors 2021, 21, 4736 10 of 23

where total trainable parameter is 10,500. This operation reduces drastically the number
of trainable parameters in a deep model while enabling the use of a class activation map
which allows an interpretation of the learned features [49]. Finally, the output layer whose
number of neurons is equal to the number of classes in the dataset. The softmax function is
used as the activation function in this layer to predict a probability distribution between
normal and attack scenarios.

Dense
(softmax)

Input
Layer

1

Flatten
Layer

3
3

Dense
(ReLu)

Convolution
Layer

Convolution
Layer

1

Pooling
Layer

Pooling
Layer

20

20

50
0 2205

5
5 3

Figure 6. The structure of the proposed P-LeNet model.

Furthermore, the Compile function enables the actual building of the model we have
implemented with some additional characteristics such as the loss function, optimizer, learn-
ing rate, and metrics. To train the network, we utilize a loss function called categorical
crossentropy, which calculates the difference between the network’s predicted values and
the actual values of the training data. The number of changes made to the weights within
the network is facilitated by the loss values accompanied by an optimization algorithm
(Adam). During training, we have been used the valuation dataset to validate our proposed
model after each epoch. The proposed model has achieved a better validation accuracy.
However, we have evaluated the trained model on the test dataset for a more explicit
verification of the proposed model’s performance on an unknown dataset.

4. Materials and Methods

In this section, we have thoroughly explained the dataset and the transformation
process of the dataset to feed the selected models.

4.1. Dataset Description

The dataset has been generated in two different ways. Details of the dataset can be
accessed in [43]. The first dataset contained normal driving data without an attack and the
second dataset contained abnormal driving data that has been collected during an attack
was performed in in-vehicle networks. Each dataset has been combined into one CSV file
by a Python script. The class distribution of the combined dataset is shown in Figure 7.
The combined dataset has a total of 5 features including the label feature. The five features
are Timestamp, CAN_ID, DLC, Data_Field, and Label. The Timestamp feature represents
the recorded time in seconds (s). The CAN_ID is used to identify the CAN messages in
hexadecimal format (e.g., 0 × FA5, 0 × 18F) and assigns its priority. The messages having
the lowest CAN_ID value represent the highest priority. The DLC feature in the control
field shows the number of bytes, from 0 to 8, and values change depending on the vehicle
categories. The Data_Filed feature contains the data to be transferred from one node to
another and consists of the data value in a byte that has eight fields in total (e.g., Data[0],
Data[5]). Finally, the Label feature contains two quantitative values, i.e., 0 and 1, which
indicates normal and attack (injected message) scenarios, respectively.

Sensors 2021, 21, 4736 11 of 23

Normal driving data
without an attack

(61.82%)

Abnormal driving data
with attacks

(38.18%)

Python Script
Combine Dataset

(100.00%)Python Script

First Dataset (CSV File)

Second Dataset (CSV File)

Flooding
Attack

29%
Fuzzing
Attack

40%
Spoofing
Attack

31%

Figure 7. Statistics of the dataset.

4.2. Data Preparation

The dataset must be cleaned and prepared before applying the selected TML, DL, and
DTL methods to achieve optimal performance and improve the learning process. Data
preparation generally happens by eliminating unnecessary features, checking for changes
in independent features, converting non-numeric features, and removing outliers. Three
fundamental steps are applied during the data preparation process. The first step is data
cleaning, the second is data integration, and the final step is data transformation.

4.2.1. Data Cleaning

This dataset is very sensitive to missing and noisy data because of its large size.
There are a total of 1,270,310 instances in the dataset including noisy and inconsistent
data. In this subsection, we have discussed the essential steps in prepossessing of data.
First of all, we have applied various techniques to remove noise and clean inconsistencies
data from the dataset, for example, Rosner’s Test for outliers checking, and the Predictive
Mean Matching method for imputing missing values. Then, in order to apply the selected
models, we have converted the qualitative values into quantitative values. To cite an
example, the Label feature in the dataset, which has qualitative values ‘Normal’ and ‘Attack’,
has been converted into ‘0’ and ‘1’. These quantitative values have been converted to
quantitative values by performing a numerical convolution label-encoding library numconv.
The CAN_ID feature in the dataset, which has hexadecimal values (e.g., 58B, F41), has
been converted into decimal values by applying the hex2dec function. On the other hand,
the Data_Field feature in the dataset, which also has hexadecimal values of eight bytes
separated by space (e.g., 80 7F 00 73 20 00 0A A1, 14 80 10 80 00 00 0A 73). The space
between bytes have been removed by applying gsub function and then the hexadecimal
values have been converted into decimal values by applying the Rmpfr function as most of
the data field is over 64 bits (maximum 152 bits). The Timestamp feature has been omitted
from feature vectors as they may cause overfitting the training data. Furthermore, for some
DL and DTL models, the input data shape has been reshaped into three dimensions to feed
the models by applying numpy.reshape with swapaxes and concatenate methods.

4.2.2. Data Integration

To improve the accuracy and speed of the training and validation process, the data
integration technique helped us by reducing and avoiding redundancies from the resulting
dataset. As this dataset originates from two different ways. Thus, it is an essential step
to analyze the redundancy and correlation between the selected features. This analysis
has measured how strongly one feature, i.e., CAN_ID implies the other, i.e., Data_Field.
We used cutoff criteria (p < 0.05) to find the correlation between different features. The
results indicated that the higher the coefficient value, the stronger the relationship between
those features [50]. Table 3 shows the correlation between different features. For our
analysis, we assessed the correlation between all features by calculating the following
Pearson product-moment coefficient Equation (2) [51]:

Sensors 2021, 21, 4736 12 of 23

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(2)

where n is the number of tuples, xi and yi are the respective values in tuple i, and x̄ and ȳ
are the respective mean values of x and y.

Table 3. Pearson product–moment correlation between different features.

Timestamp CAN_ID DLC Data_Field

Timestamp 0 × 100 4.285 × 10−2 6.525 × 10−6 1.794 × 10−4

CAN_ID 4.285 × 10−2 0 × 100 1.663 × 10−1 3.966 × 10−1

DLC 6.525 × 10−6 1.663 × 10−1 0 × 100 2.707 × 10−1

Data_Field 1.794 × 10−4 3.966 × 10−1 2.707 × 10−1 0 × 100

Cutoff criteria: p < 0.05 (statistically significant) and the values have been rounded to the four decimal places.

4.2.3. Data Transformation

We have taken this step to achieve more efficient results and to better understand the
patterns. Some features are higher than others, leading to wrong performance, though
some models may be preferred for larger functional values. We have performed these
strategies to re-scale the selected feature values within a range between [0.0, 1.0] without
changing the characteristics of original data [52,53]. As shown in the following Equation (3),
a technique called minimum–maximum normalization has been used to re-scale the selected
feature values within the range:

Nv =
X − Xmin

Xmax − Xmin
(3)

where Nv is the output normalized values, X is an original value and Xmax, and Xmin is the
maximum and minimum values of the feature, respectively.

4.3. Training Process

As mentioned in the previous subsection, a Python script combined the two datasets
into a single dataset that included both the training and test data. First of all, we have
used the scikit_learn library’s train_test_split method to split the combined dataset into the
training (80%) and test (20%) datasets. In the raw dataset, the total number of data are
1,270,310. After removing the noisy and inconsistent data, we got a total of 1,257,303 data
where the number of training data are 1,005,843 (80%) and the testing data are 251,460
(20%). The training dataset has been used to train the selected models, and the test dataset
has been used to further assess the trained classifier. Furthermore, we split again the
training data 1,005,843 (80% of the total data) into the new training data 804,674 (80%)
for training the selected model and validation data 201,169 (20%) for hyperparameters’
optimization. The percentages of 80% for the training dataset and 20% for the test dataset
have been chosen as suggested in [54]. To avoid the over-fitting problem, this splitting ratio
has been considered as the best ratio between the training and the test dataset [55]. We
have used the value of the random_state parameter as true, which decided the splitting of
dataset into the training and the test dataset randomly [56]. Finally, various performance
indicators have used to evaluate the overall performance of the selected models, which
have been discussed in the Results section. The steps involved to evaluate the performance
of all of the selected models are summarized in Figure 8.

Sensors 2021, 21, 4736 13 of 23

Combined
Dataset

Training
Set

Testing
Set

Training
Set

Validation
Set

Data Transformation

Data Cleaning

Data Integration

DT

SVM

KNN

RF
TML

Algorithms

Data Preparation

NN

CNN

RNN

LSTM
DL

Algorithms

IncepNet

P-LeNet

FCN

ResNet
DTL

AlgorithmsResults

Python
Script

Normal and
Attack

Driving Data

Models

Figure 8. Evaluation process on the datasets with the selected models.

Several supervised TML algorithms have been applied to evaluate their performance
for intrusion–detection purposes. The TML algorithms have been chosen based on their
extensively used in the security-domain as they have already shown good performance
on these scenarios [57]. We have predominantly applied Decision Tree (DT), Random
Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) algorithms
for classification analysis. The DT algorithm is the most popular model that is used for
the IDS domain, which is showed by the authors in [57,58]. The effectiveness of the RF
models in the IDS domain has been shown in a survey conducted by Yang et al. [59]. The
SVM algorithm has been considered as it has low computation overheads [60]. Finally, the
KNN algorithm has been selected as it achieves good performance in dealing with different
sensor data [57].

In recent years, DL algorithms have advanced significantly and some of the variants
of DL algorithms have been successfully applied to solve classification tasks related to
intrusion detection [61]. Therefore, we have considered simple Neural Network (NN),
Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), and Long
Short-Term Memory (LSTM) algorithms because of their optimal performance. In the
LSTM algorithm, we have used three hidden layers, and the union of hidden layers are
128, 100, and 64, respectively. The tanh is the hidden layer activation function and Adam is
used as an optimizer. In addition, sigmoid is used as a network output activation function,
and categorical_crossentropy is used as a loss function. Furthermore, both NN and CNN
algorithms have used the same optimizer and activation function but a different type of
hidden layer activation function. Particularly for the RNN model, the softmax is used
as the network output activation function, and categorical_crossentropy is used as the loss
function. On the other hand, for the CNN algorithm, the number of hidden layers is
four, and binary_crossentropy is used as the loss function. The dropout layer has been
added after each layer to prevent model overfitting as RNN and LSTM generally have
the problem of overfitting [62]. We have evaluated the selected DL models with a wide
range of tested hyperparameters. We have obtained the optimal performance when we
used these combinations of tested hyperparameters. Table 4 shows the hyper-parameter
list of all the selected DL algorithms.

Sensors 2021, 21, 4736 14 of 23

Table 4. The hyper-parameters of the selected DL models.

Parameters NN RNN CNN LSTM

Number of hidden Layers 2 3 4 3
Units in hidden layers 68, 68 64, 64, 64 32, 64, 256, 128 128, 100, 64
Batch size 64 64 64 16
Hidden layer activation relu relu relu tanh
Output activation function sigmoid softmax sigmoid sigmoid
Dropout N/A 0.1 N/A 0.2
Optimizer Adam Adam Adam Adam

In addition, we would like to emphasize some DTL models that give better perfor-
mance than others. We have considered four DTL models and the selected model are Fully
Convolutional Networks (FCN), Inception Network (IncepNet), Residual Neural Network
(ResNet), and our proposed LeCun Network (LeNet). For all the selected models, the
hyper-parameters—batch size, hidden layer activation function, output layer activation
function, loss function, and the optimizer are 64, ReLu, softmax, categorical_crossentropy, and
Adam, respectively. Furthermore, FCN, IncepNet, and ResNet models have used the same
number of hidden layers, but the units in the hidden layer are different. Particularly for
the P-LeNet model, the number of the hidden layers is 2, and the units in the hidden layer
are 5, 20. We have evaluated the selected DTL models with a wide range of tested hyperpa-
rameters. We have obtained the optimal performance when we used these combinations of
tested hyperparameters. On the other hand, we have used the Adam optimizer for all the
models because it combines the best properties of the AdaGrad and RMSProp algorithms
to provide an optimization algorithm [63]. Furthermore, particularly for this analysis,
the Adam optimizer has shown the lowest training loss and validation loss among other
optimizers. Table 5 shows the hyper-parameters list of all the selected DTL algorithms.

Table 5. The hyper-parameters of the selected DTL models.

Parameters FCN IncepNet ResNet P-LeNet

Number of hidden Layers 3 3 3 2
Units in hidden layers 128, 256, 128 32, 64, 32 128, 256, 128 5, 20
Batch size 64 64 64 64
Hidden layer activation relu linear relu relu
Output activation function softmax softmax softmax softmax
Dropout N/A N/A 0.1 N/A
Optimizer Adam Adam Adam Adam

5. Results

This section discusses the overall performance of the selected models, starting with
an analysis of TML metrics and concluding by explaining the effectiveness of the DL and
DTL models.

5.1. Experimental Evaluation Indicators

Various measurement indicators (e.g., accuracy, precision, F1-score) are used to il-
lustrate the results where the obtained accuracy shows the overall effectiveness of the
proposed model. We evaluated the performance of all the selected models using the
following four terms:

• True-positive (TP) refers to the number of actual attack instances that are correctly
detected as attack.

• True-negative (TN) is the number of normal instances that are correctly detected
as normal.

Sensors 2021, 21, 4736 15 of 23

• False-positive (FP) is the number of normal instances that are incorrectly detected
as attack.

• False-negative (FN) refers to the number of actual attack instances that are incorrectly
detected as normal.

Accuracy is the closeness of the measurements to a specific value, which demonstrates
the efficiency of the classifier to determine the total instances. Clearly, a higher accuracy
means better classification results. The mathematical expression of accuracy can be defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The fraction of the true positive instances in the positive case determined by the classi-
fier is represented by precision, which demonstrates the closeness of the measurements to
each other. Precision can be represented by the following equation:

Precision =
TP

TP + FP
(5)

The proportion of relevant instances (positive cases) that are correctly judged to the
total positive case is referred to as recall. Recall can be defined as follows:

Recall =
TP

TP + FN
(6)

The following F1-score computes the harmonic mean of precision and recall, respec-
tively. F1-score can range from 1.0 to 0.0, with 1.0 indicating perfect precision and recall:

F1Score = 2 × Precision × Recall
Precision + Recall

(7)

As one of the significant indicators, the ROC AUC determines areas where the pro-
posed model is classified better within normal and attack scenarios. Measuring ROC
AUC requires diagnostic accuracy, which depends on the sensitivity, i.e., true positive rate
(TPR), and the specificity, i.e., true negative rate (TNR). As demonstrated by the following
equations, TPR, often called recall:

Sensitivity(TPR) =
TP

TP + FN
(8)

Speci f icity(TNR) =
TN

TN + FP
(9)

In this analysis, we incorporated a wide range of analyses’ scenarios with varying pa-
rameters. To this end, we conduct experiments considering different numbers of the hidden
layers, units in the hidden layers, numbers of the epoch, a range of hidden layer activation
functions, output layer activation functions, loss functions, and different optimizers. These
critical parameters significantly affect the calculation of the performance metrics for DL
and DTL algorithms. Finally, we show the performance comparisons between TML, DL,
and DTL models where the performance of the proposed model has a meaningful impact
to indicate the predicted label correctly.

5.2. TML Models Analysis

We start with the traditional machine learning (TML) algorithms because these state-
of-the-art algorithms provide the optimal performance and take the least amount of time
to run. The performance of the selected TML algorithms has been quantitatively evaluated
using the fundamental evaluation indicators. Figure 9 shows the performance metrics of
the selected TML algorithms. The DT algorithm shows the optimal performance among

Sensors 2021, 21, 4736 16 of 23

all considered TML algorithms with an accuracy score of 0.9532, precision score of 0.9463,
recall score of 0.9558, F1-score of 0.9608, and ROC AUC score of 0.8408. As shown in
Figure 9, the red quadrangle represents the accuracy score for all of the selected TML
algorithms and the best one highlighted in blue color text. On the other hand, the KNN
algorithm shows the lowest accuracy score of 0.9248 and a precision score of 0.9141. We
used an accuracy plot to determine the proper K value for the KNN algorithm, and the
highest accuracy was obtained when K = 12. The RF algorithm achieves the second-best
performance with an accuracy score of 0.9448 and a precision score of 0.9448. The SVM
algorithm achieves an accuracy score of almost 0.9440 and a precision score of 0.8840 by
using C = 1.2, epsilon = 0.1, and Gaussian RBF Kernel particularly, which is the third-best
performance. However, RF and SVM algorithms have an overall accuracy score of almost
0.9444, but the SVM algorithm has the lowest precision score of 0.8840 when compared
to the other selected TML algorithms. The lowest precision score of the SVM algorithm
indicates that most of the predicted labels are incorrect. In contrast, the precision score
of the RF and DT algorithms is around 0.9455, indicating that the majority of predicted
labels are correctly classified. Taking into account all aspects of performance indicators,
we conclude that the DT algorithm outperforms the other selected TML algorithms. This
optimal performance indicates that most of the predicted labels are correctly classified
between normal and attack scenarios.

Highest Accuracy

Lowest Accuracy

Figure 9. TML algorithms’ performance metrics visualization.

5.3. DL Models Analysis

In recent years, DL models have advanced significantly, and several variations of these
models have been successfully applied to solve classification tasks related to intrusion
detection [61]. Therefore, in this subsection, we consider DL models because of their
optimal performance. We have considered LSTM, NN, CNN, and RNN models. The
LSTM model shows the highest accuracy score of 0.9762, precision score of 0.9808, recall
score of 0.9392, F1-score of 0.8884, and ROC AUC score of 0.9288. Figure 10 shows the
performance metrics comparison of the selected DL models. We used three hidden layers
for the LSTM model, with units of hidden layers is 128, 100, and 64. The tanh is the hidden
layer activation function and Adam is used as optimizer. In addition, sigmoid is used as a
network output activation function, and categorical_crossentropy is used as a loss function.
On the other hand, the NN model has the lowest accuracy score of 0.9563. The performance

Sensors 2021, 21, 4736 17 of 23

of the RNN and the CNN models outperform most of the TML models, where these models
show an accuracy score of 0.9640 and 0.9590, respectively.

Figure 10. DL models’ performance metrics visualization.

Furthermore, both the NN and CNN models used the same optimizer and activation
function, but different types of hidden layer activation functions. Particularly for the
RNN model, the softmax is used as the network output activation function, and categori-
cal_crossentropy is used as the loss function. On the other hand, for the CNN model, the
number of hidden layers is four, and binary_crossentropy is used as the loss function. Finally,
taking into account all of the significant parameters of the DL models, the LSTM model
demonstrated the best performance, indicating that the majority of the predicted labels are
correctly classified.

5.4. DTL Models Analysis

We analyzed the results of TML and DL models to achieve optimal performance.
In this subsection, we highlighted four selected DTL models that perform better than
others. We considered the number of hidden layers, units in the hidden layers, output layer
activation functions, loss functions, and so on, in addition to the fundamental evaluation
criteria. First of all, we considered the quantitative performance of DTL models. Table 6
shows the quantitative performance summary of the DTL models, where the proposed
P-LeNet model shows an optimal performance compared to the other DTL models with an
accuracy score of 0.9810, precision score of 0.9814, recall score of 0.9804, F1-score of 0.9783,
and ROC AUC score of 0.9542. In this model, we used two hidden-layers where relu is the
hidden layer activation function. In addition, softmax is used as a network output activation
function, and categorical_crossentropy is used as a loss function along with adam optimizer.

Table 6. DTL models’ performance comparison metrics.

Algorithm Accuracy Precision Recall F1-Score ROC AUC

FCN 0.9786 0.9832 0.9617 0.9488 0.9248
IncepNet 0.9803 0.9152 0.9265 0.9024 0.9129
ResNet 0.9795 0.8958 0.8845 0.9001 0.8703
LeNet 0.9810 0.9814 0.9804 0.9783 0.9542

The values have been rounded to the four decimal places.

Figure 11 shows the accuracy score of every single epoch for both the training and
testing phase on the above-mentioned DTL models. We have considered 1000 epochs for
our analysis because the flattening characteristics of the curve and the training/testing

Sensors 2021, 21, 4736 18 of 23

accuracy are not increasing literally between the epoch number 450 to 1000. The proposed
P-LeNet model has the highest accuracy score in both the training and testing phases. For
a better understanding of our proposed P-LeNet model, Figure 12 shows the trend of the
accuracy score in both phases. The proposed model’s accuracy increases rapidly in epoch
number 10 and gradually rises to a point close to 0.9809 at epoch number 400. However, as
shown in Figure 12, which remains nearly stable up to the early stopping checkpoint with
an accuracy score of 0.9810. In contrast, the FCN model has the lowest accuracy score in
the epoch number ranges from 1 to 1000. The FCN model’s accuracy begins around 0.9545
for the training phase and 0.9422 for the testing phase in epoch number 46, as shown in
Figure 11. However, it rises dramatically around 0.9785 in epoch 554 and 0.9783 in epoch
610 for the training and testing phases, respectively. Furthermore, the accuracy score of
0.9786 remains stable in epochs 555 to 1000 during the training phase. On the other hand,
for the testing phase, the accuracy score of 0.9783 remains stable between epoch numbers
611 and 1000.

 0 100 200 300 400 500 600 700 800 900 1000
Number of Epoch

A
cc
ur
ac
y

A
cc
ur
ac
y

1.00
0.99
0.98
0.97
0.96
0.95
0.940.94
0.93
0.92
0.91
0.90

1.00
0.99
0.98
0.97
0.96
0.95
0.940.94
0.93
0.92
0.91
0.90

FCN\Train

ResNet\Train
ResNet\Test

FCN\Test
IncepNet\Train

LeNet\Train
LeNet\Test

IncepNet\Test

Figure 11. DTL models’ training and testing accuracy.

The training and testing accuracy of the IncepNet model remains steady between the
epoch number 500 to 1000 as shown in Figure 11. The accuracy of ResNet models starts
with a score of 0.9102 for training and 0.9089 for the testing phase. However, as the epoch
number increases, this score gradually rises and reaches approximately 0.9745 when the
epoch number is 450, and then remains stable between epoch numbers 451 and 1000 for
both phases. The remarkable point is that the behavior of the training phase is nearly
identical to that of the testing phase. For better understanding, the trend of both phases is
shown by zooming in Figure 11.

 0 100 200 300 400 500 600 700 800 900 1000
Number of Epoch

A
cc
ur
ac
y

A
cc
ur
ac
y

LeNet\Train
LeNet\Test

1.00
0.99
0.98
0.97
0.96
0.95
0.940.94
0.93
0.92
0.91
0.90

1.00
0.99
0.98
0.97
0.96
0.95
0.940.94
0.93
0.92
0.91
0.90

Figure 12. Training and testing accuracy of the proposed P-LeNet model.

Next, we analyzed the losses of each model. The training and testing phases’ losses
of every single epoch are shown in Figure 13. The FCN model shows the highest loss

Sensors 2021, 21, 4736 19 of 23

in both the training and testing phase. The highest loss of this model indicates that the
model cannot provide a reliable classification between normal and attack scenarios in the
CAN networks.

 0 100 200 300 400 500 600 700 800 900 1000
Number of Epoch

Lo
ss

Lo
ss

0.60
0.55
0.50
0.45
0.40
0.35
0.300.30
0.25
0.20
0.15
0.10
0.05

0.60
0.55
0.50
0.45
0.40
0.35
0.300.30
0.25
0.20
0.15
0.10
0.05

FCN\Train

ResNet\Train
ResNet\Test

FCN\Test
IncepNet\Train

LeNet\Train
LeNet\Test

IncepNet\Test

Figure 13. DTL models’ training and testing loss.

On the other hand, our proposed P-LeNet model shows the lowest loss. In detail, the
loss of the proposed model starts around 0.50 for the training phase and 0.35 for the testing
phase at the beginning as shown in Figure 14. However, it is decreasing to 0.1689 and
0.1750 for the epoch number 10 for the training and testing phase, respectively. The loss
score of 0.1459 remains almost constant between epochs 400 and 1000. Furthermore, the
losses of the IncepNet and ResNet models are nearly constant during both the training
and testing phases, as shown in Figure 13. The loss of these models is almost 0.5506 at
the beginning, which declines gradually to approximately 0.1409 for the epoch number
350 and remains stable for both of the phases. For better understanding, the trend of both
phases is shown by zooming in Figure 13.

 0 100 200 300 400 500 600 700 800 900 1000
Number of Epoch

Lo
ss

Lo
ss

LeNet\Train
LeNet\Test

0.60
0.55
0.50
0.45
0.40
0.35
0.300.30
0.25
0.20
0.15
0.10
0.05

0.60
0.55
0.50
0.45
0.40
0.35
0.300.30
0.25
0.20
0.15
0.10
0.05

Figure 14. Training and testing loss of the proposed P-LeNet model.

5.5. Performance Comparison

We have considered a variety of strategies for selecting the important features and then
applied the chosen algorithms. We have predominantly applied the TML, DL, and DTL
approach in the same dataset. The TML algorithms did not show remarkable performance.
However, when we have applied the DL algorithms, most of the algorithms perform better
than the TML algorithms. Furthermore, when we have applied the DTL algorithms, all the
algorithms perform significantly better in most cases. In such cases, accuracy, precision,
recall, F1-score, and ROC AUC are better than other experimental scenarios. Moreover, the
proposed P-LeNet model has adequate stability, low loss, and better classification accuracy
than other DTL approaches. Finally, the proposed model can effectively identify and

Sensors 2021, 21, 4736 20 of 23

classify the normal and attack scenarios of in-vehicle networks to correctly manage vehicle
communications for vehicle security.

6. Conclusions

Automobile manufacturers are working to develop fully autonomous vehicles, which
will ensure proper security. In this manuscript, we propose a deep transfer learning-based
LeNet model for intrusion detection in electric in-vehicle networks. The proposed detection
model has an overall accuracy score of 98.10%. Moreover, the model has precision score
98.14%, recall score 98.04%, F1-score 97.83%, and ROC AUC score by 95.42%, which is a
noticeable improvement when compared to the other benchmark ML, DL, and DTL models.
These experimental results demonstrated that the proposed P-LeNet model efficiently
classifies the normality and abnormality and allows the immediate detection of anomalies
in the CAN networks. To summarize, it is obvious that the model has proven its potential to
efficiently exhibit anomalous data identification to protect the CAN network that can also be
extended in other emerging applications within critical infrastructures where automation
and secure data processing is the main challenge. In the future, we will try to implement
this proposed deep learning model based on decentralized devices or servers. We will
also concentrate on improving the performance of the proposed model by optimizing the
hyper-parameters.

Author Contributions: Conceptualization, S.T.M. and A.A.; methodology, S.T.M. and A.A.; software,
S.T.M., K.A. and Z.R.; validation, S.T.M., A.A., Z.R. and K.A.; formal analysis, S.T.M. and A.A.
and Z.R.; investigation, S.T.M., A.A. and K.A.; resources, S.T.M., Z.R. and A.A.; data curation,
S.T.M.; writing—original draft preparation, S.T.M.; writing—review and editing, A.A., Z.R. and K.A.;
supervision, A.A., Z.R. and K.A.; project administration, A.A.; funding acquisition, A.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this manuscript are available on request from
the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CAN Controller Area Network
ECU Electronic Control Unit
IVN In-Vehicle Network
CAN FD CAN Flexible Data-Rate
LIN Local Interconnect Network
MOST Media Oriented Systems Transport
ML Machine Learning
IDS Intrusion Detection System
TML Traditional Machine Learning
DL Deep Learning
DTL Deep Transfer Learning
DT Decision Tree
RF Random Forest
SVM Support Vector Machine
KNN K-Nearest Neighbor
NN Neural Network
RNN Recurrent Neural Network

Sensors 2021, 21, 4736 21 of 23

CNN Convolutional Neural Network
LSTM Long Short-Term Memory
FCN Fully Convolutional Networks
IncepNet Inception Network
ResNet Residual Neural Network
LeNet LeCun Network
ReLu Rectified Linear-Unit
DLC Data Length Code
TNR True Negative Rate
TPR True Positive Rate
SOF Start of Frame
RTR Remote Transmission Request
IDE Identifier Extension
CRC Cyclical Redundancy Check
ACK Acknowledgment
EOF End of Frame
IFS Inter Frame Space
DEL Delimiter
ID Identifier
OTA Over the Air
DNN Deep Neural Network
DBN Deep Belief network
DoS Denial of Service
ARP Address Resolution Protocol
RPM Radiation Portal Monitors
GAN Generative Adversarial Network
DCAE Deep Contractive Auto Encoder
DCNN Deep Convolutional Neural Network
IoV Internet of Vehicle
MMN Minimum Maximum Normalization
MMD Maximum Mean Discrepancy
HEX2DEC Hexadecimal to Decimal
R-MPFR Multiple Precision Floating-Point Reliable
ROC-AUC Receiver Operating Characteristic-Area Under the Curve

References
1. Han, M.L.; IlKwak, B.; Kim, H.K. Anomaly intrusion detection method for vehicular networks based on survival analysis.

Veh. Commun. 2018, 14, 52–63. [CrossRef]
2. Steger, M.; Boano, C.A.; Niedermayr, T.; Karner, M.; Hillebrand, J.; Roemer, K.; Rom, W.A. Efficient and Secure Automotive

Wireless Software Update Framework. IEEE Trans. Ind. Inform. 2018, 14, 2181–2193. [CrossRef]
3. Zeng, W.; Mohammed, A.S.; Khalid, M.A.S.; Chowdhury, S. In-Vehicle Networks Outlook: Achievements and Challenges.

IEEE Commun. Surv. Tutor. 2016, 18, 1552–1571. [CrossRef]
4. Mathur, R.; Saraswat, R.; Mathur, G. An Analytical Study of Communication Protocols Used in Automotive Industry. Int. J. Eng.

Res. Technol. (IJERT) 2018, 2, 287–292.
5. Kieu, T.; Yang, B.; Jensen, C.S. Outlier Detection for Multidimensional Time Series Using Deep Neural Networks. In Proceedings

of the 2018 19th IEEE International Conference on Mobile Data Management (MDM), Aalborg, Denmark, 25–28 June 2018;
pp. 125–134. [CrossRef]

6. Sommer, C.; Hoefler, R.; Samwer, M.; Gerlich, D.W. A deep learning and novelty detection framework for rapid phenotyping in
high-content screening. Mol. Biol. Cell 2017, 28, 3428–3436. [CrossRef] [PubMed]

7. Sharma, S.; Krishna, C.R.; Sahay, S.K. Detection of Advanced Malware by Machine Learning Techniques. In Soft Computing:
Theories and Applications; Springer: Singapore, 2019; pp. 333–342.

8. Avatefipour, O.; Malik, H. State-of-the-Art Survey on In-Vehicle Network Communication “CAN-Bus” Security and Vulnerabilities.
arXiv 2018, arxiv:1802.01725.

9. Robert Bosch GmbH CAN Specification. Postfach 1991, 2, 1–72.
10. Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of CAN Bus Security Challenges. Sensors 2020, 20, 2364. [CrossRef]
11. Khatri, N.; Shrestha, R.; Nam, S.Y. Security Issues with In-Vehicle Networks, and Enhanced Countermeasures Based on Blockchain.

Electronics 2021, 10, 893. [CrossRef]
12. Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A Novel Intrusion Detection System for In-vehicle Network by Using Remote Frame. In

Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017.

http://doi.org/10.1016/j.vehcom.2018.09.004
http://dx.doi.org/10.1109/TII.2017.2776250
http://dx.doi.org/10.1109/COMST.2016.2521642
http://dx.doi.org/10.1109/MDM.2018.00029
http://dx.doi.org/10.1091/mbc.e17-05-0333
http://www.ncbi.nlm.nih.gov/pubmed/28954863
http://dx.doi.org/10.3390/s20082364
http://dx.doi.org/10.3390/electronics10080893

Sensors 2021, 21, 4736 22 of 23

13. Avatefipour, O.; Hafeez, A.; Tayyab, M.; Malik, H. Linking Received Packet to the Transmitter Through Physical-Fingerprinting
of Controller Area Network. In Proceedings of the IEEE Workshop on Information Forensics and Security (WIFS), Rennes, France,
4–7 December 2017; pp. 1–6. [CrossRef]

14. Yuan, Y.; Yuan, H.; Guo, L.; Yang, H.; Sun, S. Resilient Control of Networked Control System Under DoS Attacks: A Unified
Game Approach. IEEE Trans. Ind. Inform. 2016, 12, 1786–1794. [CrossRef]

15. Markovitz, M.; Wool, A. Field classification, modeling and anomaly detection in unknown CAN bus networks. Veh. Commun.
2017, 9, 43–52. [CrossRef]

16. Theissler, A.; Ulmer, D.; Dear, I. Interactive knowledge discovery in recordings from vehicle tests. In Proceedings of the FISITA
World Automotive Congress, Budapest, Hungary, 30 May–4 June 2010; pp. 1–10.

17. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 15. [CrossRef]
18. Alshammari, A.; Zohdy, M.A.; Debnath, D.; Corser, G. Classification Approach for Intrusion Detection in Vehicle Systems.

Wirel. Eng. Technol. 2018, 9, 79–94. [CrossRef]
19. Wang, L.; Jones, R. Big Data Analytics for Network Intrusion Detection: A Survey. Int. J. Netw. Commun. 2017, 7, 24–31. [CrossRef]
20. Nazakat, I.; Khurshid, K. Intrusion Detection System for In-Vehicular Communication. In Proceedings of the 2019 15th Interna-

tional Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 2–3 December 2019; pp. 1–6. [CrossRef]
21. Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. A Survey on CAN Bus Protocol: Attacks, Challenges, and Potential Solutions. In

Proceedings of the 2018 International Conference on Computing, Electronics Communications Engineering (iCCECE), Southend,
UK, 16–17 August 2018; pp. 201–205. [CrossRef]

22. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.H. Intrusion detection system for automotive Controller Area Network (CAN) bus
system: A review. EURASIP J. Wirel. Commun. Netw. 2019, 7, 24–31. [CrossRef]

23. Kang, M. J.; Kang, J. W. Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security. PLoS ONE
2016, 11, e0155781. [CrossRef]

24. Loukas, G.; Vuong, T.; Heartfield, R.; Sakellari, G.; Yoon, Y.; Gan, D. Cloud-Based Cyber-Physical Intrusion Detection for Vehicles
Using Deep Learning. IEEE Access 2017, 6, 3491–3508. [CrossRef]

25. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based Intrusion Detection System for In-Vehicle Network. In Proceedings of the IEEE
Access 2018 16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; pp. 1–6. [CrossRef]

26. Lokman S.F.; Othman A.T.; Musa S.; Abu-Bakar M.H. Deep Contractive Autoencoder-Based Anomaly Detection for In-Vehicle
Controller Area Network (CAN). Prog. Eng. Technol. Adv. Struct. Mater. 2019, 119._16. [CrossRef]

27. Zhang, J.; Li, F.; Zhang, H.; Li, R.; Li, Y. Intrusion detection system using deep learning for in-vehicle security. Ad Hoc Netw.
2019, 95. [CrossRef]

28. Zhu, K.; Chen, Z.; Peng, Y.; Zhang, L. Mobile Edge Assisted Literal Multi-Dimensional Anomaly Detection of In-Vehicle Network
Using LSTM. IEEE Trans. Veh. Technol. 2019, 68, 4275–4284. [CrossRef]

29. Avatefipour, O.; Al-Sumaiti, A.S.; El-Sherbeeny, A.M.; Awwad, E.M.; Elmeligy, M.A.; Mohamed, M.A.; Malik, H. An Intelligent
Secured Framework for Cyberattack Detection in Electric Vehicles’ CAN Bus Using Machine Learning. IEEE Access 2019, 7,
127580–127592. [CrossRef]

30. Xiao, J.; Wu, H.; Li, X. Internet of Things Meets Vehicles: Sheltering In-Vehicle Network through Lightweight Machine Learning.
Symmetry 2019, 11, 1388. [CrossRef]

31. Al-Saud, M.; Eltamaly, A.M.; Mohamed, M.A.; Kavousi-Fard, A. An Intelligent Data-Driven Model to Secure Intravehicle
Communications Based on Machine Learning. IEEE Trans. Ind. Electron. 2020, 67, 5112–5119. [CrossRef]

32. Lin, Y.; Chen, C.; Xiao, F.; Avatefipour, O.; Alsubhi, K.; Yunianta, A. An Evolutionary Deep Learning Anomaly Detection
Framework for In-Vehicle Networks—CAN Bus. IEEE Trans. Ind. Appl. 2020. [CrossRef]

33. Yang, Y.; Duan, Z.; Tehranipoor, M. Identify a Spoofing Attack on an In-Vehicle CAN Bus Based on the Deep Features of an ECU
Fingerprint Signal. Smart Cities 2020, 3, 2. [CrossRef]

34. Hossain, M.D.; Inoue, H.; Ochiai, H.; Fall, D.; Kadobayashi, Y. LSTM-Based Intrusion Detection System for In-Vehicle Can Bus
Communications. IEEE Access 2020, 8, 185489–185502. [CrossRef]

35. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21. [CrossRef]

36. Li, X.; Hu, Z.; Xu, M.; Wang, Y.; Ma, J. Transfer learning based intrusion detection scheme for Internet of vehicles. Inf. Sci. 2021,
547, 119–135. [CrossRef]

37. Lu, J.; Behbood, V.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer Learning using Computational Intelligence: A Survey.
Knowl.-Based Syst. 2015, 80, 14–23. [CrossRef]

38. Zadrozny, B. Learning and Evaluating Classiers under Sample Selection Bias. In Proceedings of the Twenty-First International
Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004. [CrossRef]

39. Dai, W.; Yang, Q.; Xue, G.; Yu. Y. Boosting for transfer learning. In Proceedings of the 24th international conference on Machine
Learning (ICML’07), New York, NY, USA, 20–24 June 2007; pp. 193–200. [CrossRef]

40. Raina, R.; Andrew, Y.N.; Koller, D. Constructing Informative Priors using Transfer Learning. In Proceedings of the 23th
International Conference on Machine Learning (ICML’06), Pittsburgh, PA, USA, 25–29 June 2006; Association for Computing
Machinery: New York, NY, USA, 2006; pp. 713–720. [CrossRef]

http://dx.doi.org/10.1109/WIFS.2017.8267643
http://dx.doi.org/10.1109/TII.2016.2542208
http://dx.doi.org/10.1016/j.vehcom.2017.02.005
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.4236/wet.2018.94007
http://dx.doi.org/10.5923/j.ijnc.20170701.03
http://dx.doi.org/10.1109/ICET48972.2019.8994327
http://dx.doi.org/10.1109/iCCECOME.2018.865872
http://dx.doi.org/10.1186/s13638-019-1484-3
http://dx.doi.org/10.1371/journal.pone.0155781
http://dx.doi.org/10.1109/ACCESS.2017.2782159
http://dx.doi.org/10.1109/PST.2018.8514157
http://dx.doi.org/10.1007/978-3-030-28505-0_16
http://dx.doi.org/10.1016/j.adhoc.2019.101974
http://dx.doi.org/10.1109/TVT.2019.2907269
http://dx.doi.org/10.1109/ACCESS.2019.2937576
http://dx.doi.org/10.3390/sym11111388
http://dx.doi.org/10.1109/TIE.2019.2924870
http://dx.doi.org/10.1109/TIA.2020.3009906
http://dx.doi.org/10.3390/smartcities3010002
http://dx.doi.org/10.1109/ACCESS.2020.3029307
http://dx.doi.org/10.1016/j.vehcom.2019.100198
http://dx.doi.org/10.1016/j.ins.2020.05.130
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1145/1015330.1015425
http://dx.doi.org/10.1145/1273496.1273521
http://dx.doi.org/10.1145/1143844.1143934

Sensors 2021, 21, 4736 23 of 23

41. Gou, S.; Wang, Y.; Jiao, L.; Feng, J.; Yao, Y. Distributed Transfer Network Learning Based Intrusion Detection. In Proceedings of
the IEEE International Symposium on Parallel and Distributed Processing with Applications, Chengdu, China, 10–12 August
2009; pp. 511–515. [CrossRef]

42. Xu, Y.; Liu, Z.; Li, Y.; Zheng, Y.; Hou, H.; Gao, M.; Song, Y.; Xin, Y. Intrusion Detection Based on Fusing Deep Neural Networks
and Transfer Learning. In Proceedings of the Digital TV and Wireless Multimedia Communication (IFTC 2019), Shanghai, China,
19–20 September 2009; Volume 1181. [CrossRef]

43. Kang, H.; Kwak, B.; Lee, Y.H.; Lee, H.; Lee, H.; Kim, H.K. Car Hacking: Attack and Defense Challenge 2020 Dataset.
IEEE Dataport 2021. [CrossRef]

44. Li, F.; Shirahama, K.; Nisar, M.A.; Huang, X.; Grzegorzek, M. Deep Transfer Learning for Time Series Data Based on Sensor
Modality Classification. Sensors 2020, 20, 4271. [CrossRef] [PubMed]

45. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P. A. Transfer learning for time series classification. In Proceedings of
the IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018. [CrossRef]

46. Kimura, N.; Yoshinaga, I.; Sekijima, K.; Azechi, I.; Baba, D. Convolutional Neural Network Coupled with a Transfer-Learning
Approach for Time-Series Flood Predictions. Water 2020, 12, 96. [CrossRef]

47. Engine Structure Image from Pngtree. Available online: https://pngtree.com/so/engine-structure (accessed on 1 June 2021).
48. Borgwardt, K.M.; Gretton, A.; Rasch, M.J.; Kriegel, H.P.; Schölkopf, B.; Smola, A.J. Integrating structured biological data by kernel

maximum mean discrepancy. Bioinformatics 2006, 22, 49–57. [CrossRef]
49. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In

Proceedings of the International Conference on Machine Learning (PMLR), Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.
50. Van Aswegen, A.S.; Engelbrecht, A.S. The relationship between transformational leadership, integrity and an ethical climate in

organisations. SA J. Hum. Resour. Manag. 2009, 7, 9. [CrossRef]
51. Chee, J.D. Pearson’s Product-Moment Correlation: Sample Analysis; Available online: https://www.academia.edu/21484289

/Pearsons_Product-Moment_Correlation_Sample_Analysis (accessed on 12 November 2020)
52. Aminanto, M.E.; Choi, R.; Tanuwidjaja, H.C.; Yoo, P.D.; Kim, K. Deep Abstraction and Weighted Feature Selection for Wi-Fi

Impersonation Detection. IEEE Trans. Inf. Forensics Secur. 2018, 12, 621–636. [CrossRef]
53. Geller, S. Normalization vs. Standardization Quantitative Analysis. Available online: https://towardsdatascience.com/

normalization-vs-standardization-quantitative-analysis-a91e8a79cebf (accessed on 9 November 2020).
54. Geron, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow; O’Reilly Media: Sebastopol, California, USA 2018.
55. Guyon, I. A scaling law for the Validation-set training-set valid ratio. AT T Bell Lab. 1997, 1, 1–11.
56. Szajna, A.; Kostrzewski, M.; Ciebiera, K.; Stryjski, R.; Wozniak, W. Application of the Deep CNN-Based Method in Industrial

System for Wire Marking Identification. Energies 2021, 14, 3659. [CrossRef]
57. Wu, X.; Kumar, V.J.; Quinlan, J.R.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10

algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]
58. Buczak, A.L.; Guven, E. A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection.

IEEE Commun. Surv. Tutor. 2016, 18, 1153–1176. [CrossRef]
59. Yang, Y.; Zheng, K.; Wu, C.; Niu, X.; Yang, Y. Building an Effective Intrusion Detection System Using the Modified Density Peak

Clustering Algorithm and Deep Belief Networks. Appl. Sci. 2019, 9, 238. [CrossRef]
60. Subba, B.; Biswas, S. Intrusion Detection Systems using Linear Discriminant Analysis and Logistic Regression. In Proceedings of

the Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; pp. 1–6. [CrossRef]
61. Nisioti, A.; Mylonas, A.; Yoo, P.D.; Katos, V. From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of

Unsupervised Methods. IEEE Commun. Surv. Tutor. 2018, 20, 3369–3388. [CrossRef]
62. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
63. Brownlee, J. Gentle Introduction to the Adam Optimization Algorithm for Deep Learning. Available online: https://machinelearningmastery.

com/adam-optimization-algorithm-for-deep-learning (accessed on 9 December 2020).

http://dx.doi.org/10.1109/ISPA.2009.92
http://dx.doi.org/10.1007/978-981-15-3341-9_18
http://dx.doi.org/10.21227/qvr7-n418
http://dx.doi.org/10.3390/s20154271
http://www.ncbi.nlm.nih.gov/pubmed/32751855
http://dx.doi.org/10.1109/BigData.2018.8621990
http://dx.doi.org/10.3390/w12010096
https://pngtree.com/so/engine-structure
http://dx.doi.org/10.1093/bioinformatics/btl242
http://dx.doi.org/10.4102/sajhrm.v7i1.175
 https://www.academia.edu/21484289/Pearsons_Product-Moment_Correlation_Sample_Analysis
 https://www.academia.edu/21484289/Pearsons_Product-Moment_Correlation_Sample_Analysis
http://dx.doi.org/10.1109/TIFS.2017.2762828
https://towardsdatascience.com/normalization-vs-standardization-quantitative-analysis-a91e8a79cebf
https://towardsdatascience.com/normalization-vs-standardization-quantitative-analysis-a91e8a79cebf
http://dx.doi.org/10.3390/en14123659
http://dx.doi.org/10.1007/s10115-007-0114-2
http://dx.doi.org/10.1109/COMST.2015.2494502
http://dx.doi.org/10.3390/app9020238
http://dx.doi.org/10.1109/INDICON.2015.7443533
http://dx.doi.org/10.1109/COMST.2018.2854724
https://machinelearningmastery. com/adam-optimization-algorithm-for-deep-learning
https://machinelearningmastery. com/adam-optimization-algorithm-for-deep-learning

	Introduction
	Background and Related Work
	Background of CAN and Security Vulnerabilities
	TML and DL Based IDSs for IVN
	DTL Based IDSs for IVN

	Proposed Solution
	Problem Statement
	Solution Formulation
	Architecture

	Materials and Methods
	Dataset Description
	Data Preparation
	Data Cleaning
	Data Integration
	Data Transformation

	Training Process

	Results
	Experimental Evaluation Indicators
	TML Models Analysis
	DL Models Analysis
	DTL Models Analysis
	Performance Comparison

	Conclusions
	References

