Skip to main content
. 2021 Jul 9;21(14):4701. doi: 10.3390/s21144701
Algorithm 1: Multiple-Criteria-based Patch Selection
  • Input:

     Image patch set, I={I1,I2,,Im}

     Number of textual patches, T

     Number of cluster centers, k

     Number of patches per cluster, n

     Number of iterations, N

     // Edge-and-Texture-based patch selection

  • for  i=1,2,,m  do

  •   Calculate fi according to (2)

  • end for

  •  Sort fi in descending order fπ(1),fπ(2),,fπ(m)

  •  Select the first T patches as edge and textual representatives: E={Iπ(1),Iπ(2),,Iπ(T)})

     // Semantic-content-based patch selection

  • for  i=1,2,,m  do

  •    μi=13c[R,G,B]μci

  •    σi=13c[R,G,B]σci

  • end for

  •  Form feature space Z={ζ1,ζ2,...,ζm}) from patch set ζi=(μi,σi)

  •  Perform K-Means clustering in feature space Z to obtain the k Cluster centroids:

    c1,c2,,ck until N iterations is exceeded

  •  For each of the k centroids, select n nearest patches as semantic representatives:

    S={Ic11,Ic12,,Ic1n,,Ick1,Ick2,,Ickn}

  •   

  • Output:

     Training patch set P=ES