Table 5.
Dataset | Methods | F1-Score | Precison | Recall |
---|---|---|---|---|
WISDM | The proposed method | 0.77 ± 0.07 | 0.77 ± 0.07 | 0.77 ± 0.07 |
Ensemble (DT-LR-MLP) [38] | 0.73 ± 0.11 | 0.73 ± 0.11 | 0.73 ± 0.11 | |
Adaboost [61] | 0.46 ± 0.13 | 0.46 ± 0.13 | 0.46 ± 0.13 | |
Random Forest [60] | 0.72 ± 0.11 | 0.72 ± 0.11 | 0.72 ± 0.11 | |
Hexoskin | The proposed method | 0.85 ± 0.12 | 0.85 ± 0.12 | 0.85 ± 0.12 |
Ensemble (DT-LR-MLP) [38] | 0.79± 0.14 | 0.79± 0.14 | 0.79± 0.14 | |
Adaboost [61] | 0.49 ± 0.11 | 0.49 ± 0.11 | 0.49 ± 0.11 | |
Random Forest [60] | 0.81 ± 0.14 | 0.81 ± 0.14 | 0.81 ± 0.14 |