Skip to main content
. 2021 Jul 9;21(14):4713. doi: 10.3390/s21144713

Table 5.

Comparison with state-of-the-art ensemble learning techniques applied to the WISDM and Hexoskin datasets.

Dataset Methods F1-Score Precison Recall
WISDM The proposed method 0.77 ± 0.07 0.77 ± 0.07 0.77 ± 0.07
Ensemble (DT-LR-MLP) [38] 0.73 ± 0.11 0.73 ± 0.11 0.73 ± 0.11
Adaboost [61] 0.46 ± 0.13 0.46 ± 0.13 0.46 ± 0.13
Random Forest [60] 0.72 ± 0.11 0.72 ± 0.11 0.72 ± 0.11
Hexoskin The proposed method 0.85 ± 0.12 0.85 ± 0.12 0.85 ± 0.12
Ensemble (DT-LR-MLP) [38] 0.79± 0.14 0.79± 0.14 0.79± 0.14
Adaboost [61] 0.49 ± 0.11 0.49 ± 0.11 0.49 ± 0.11
Random Forest [60] 0.81 ± 0.14 0.81 ± 0.14 0.81 ± 0.14