Skip to main content
. 2021 Jul 15;21(14):4836. doi: 10.3390/s21144836
Algorithm2. Overall framework of the IGEP-based offline training method.
1: Inputs: Training instances I, i=1,2,,n
2: Set parameters, population size (popsize), maximum iteration (maxIter), probability of mutation (pm), probability of recombination (pr), probability of transposition (ptr), and the pre-set value for selection (k_s).
3: Initialize population randomly P, j=1,2,,popsize
4: Calculate each individuals Fj, store the best individual into Jbest
5: for iteration = 1: maxIter do
6:  Apply selection to generate the new population
7:  if p < pm
8:   Apply recombination to generate the new population
9:  end if
10:  if p < pm
11:   Apply mutation to generate the new population
12:  end if
13:  if p < pm
14:   Apply transposition to generate the new population
15:  end if
16:  Calculate each individuals Fj, store the best individual into Jbest
17:  iterationiteration+1
18: end for
19: Compare Jbest with the dispatching rule JR_base in the rules base by testing instances.
20: if Jbest is better than JR_base then
21: JR_base =Jbest
22: end if