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Abstract: Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract
infections in children < 5 years of age worldwide and repeated infections throughout life leading
to serious disease in the elderly and persons with compromised immune, cardiac, and pulmonary
systems. The disease burden has made it a high priority for vaccine and antiviral drug development
but without success except for immune prophylaxis for certain young infants. Two RSV proteins
are associated with protection, F and G, and F is most often pursued for vaccine and antiviral drug
development. Several features of the G protein suggest it could also be an important to vaccine or
antiviral drug target design. We review features of G that effect biology of infection, the host immune
response, and disease associated with infection. Though it is not clear how to fit these together into
an integrated picture, it is clear that G mediates cell surface binding and facilitates cellular infection,
modulates host responses that affect both immunity and disease, and its CX3C aa motif contributes
to many of these effects. These features of G and the ability to block the effects with antibody, suggest
G has substantial potential in vaccine and antiviral drug design.

Keywords: respiratory syncytial virus; G protein; pathogenesis; vaccines; treatment

1. Background

Respiratory syncytial virus (RSV) is a major cause of serious lower respiratory tract
infections in children < 5 years of age worldwide, causing an estimated 3.4 million hos-
pitalizations, 95,000–150,000 deaths globally, and up to 175,000 hospitalizations in the
United States [1,2]. Nearly all children are infected by 2 years of age, but RSV repeatedly
infects and causes disease throughout life with the infants, elderly, and persons with
compromised immune, cardiac, and pulmonary systems at the greatest risk of serious
disease [3,4]. Given its disease burden, RSV has been a priority for vaccine and anti-viral
development for over 50 years. Though no vaccine has yet been developed, immune
prophylaxis initially with high RSV antibody titer immune globulin and later a neutralizing
monoclonal antibody, palivizumab, is effective and available for young children at high
risk for serious RSV disease [5,6].

RSV vaccines are being developed for children < 6 months of age, children of 6 months
to 24 months of age, pregnant women, and elderly adults > 65 years of age [7,8]. Some of the
obstacles to vaccine development include concern that a non-live virus vaccine for young
children may predispose to enhanced RSV disease (ERD); an incomplete understanding of
protective immunity and disease pathogenesis; immature or altered immune responses
in two target populations, young children, and elderly adults; and the cost of clinical
vaccine trials. The first RSV vaccine trial with a formalin-inactivated RSV with alum
adjuvant (FI-RSV) led to the concern for enhanced RSV disease (ERD). In this trial, young
children who received the vaccine had an unexpected high rate of hospitalization with
later RSV infection, and two infected children died [9–12]. This raised concern that other
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non-live virus vaccines might also cause ERD and has limited vaccine development for
young children to live virus vaccines which are not associated with ERD. In contrast, for
adults, ERD is not an issue and, since live attenuated RSV replicates poorly and is not very
immunogenic in adults, adult vaccine development has focused on subunit vaccines. Thus,
there are two distinct vaccine development strategies, live virus vaccines for children and
subunit vaccines for adults.

The past failures suggest that novel approaches to vaccine development may be
needed to achieve a successful vaccine [7]. The biology of infection, immunopathogenesis of
disease, and protective immunity provide the foundation for developing novel approaches
to RSV vaccines. RSV has 10 genes that encode for 11 proteins [13] and two of these proteins,
F and G, are associated with inducing protective immunity in animals and neutralizing
antibodies [14]. In this review, we will focus on one of these proteins, the G protein, and its
role in infection and disease pathogenesis and how these roles inform its potential value to
a vaccine and as a target for anti-viral drugs. Of note, there are two major antigenic RSV
subgroups, A and B, and substantial strain variation within the two subgroups [15–18].
Since the F protein is much less variable than G, it induces better cross protection between
the two subgroups [19], and, as it induces a higher titer of neutralizing antibody, F has
been the focus of most vaccine development. The fact that prior infection and high titers
of neutralizing antibodies, including those that are maternally derived, provide some
protection from disease, and the effectiveness of immune prophylaxis with a neutralizing F
protein monoclonal supports the F protein as important to a vaccine [20–26].

There are, however, features of the G protein that suggest it could also be an important
component of an RSV vaccine [27]. First, from studies in animals, G modulates the host
response that contributes to inflammation and disease, and binding G with the antibody
prevents much of this disease [28–31]. Second, it mediates binding to CX3CR1 in primary
human airway epithelial cells in vitro as the first step in the infection of cells, and the
anti-G antibody effectively neutralizes RSV in these cells [32,33]. Thus, binding G with
vaccine-induced or passively administered antibodies or anti-viral drugs has the potential
to decrease disease by decreasing virus-induced inflammation and virus replication. Of
note, studies in mice with the intact (neutralizes virus) and F(ab’)2 (does not neutralize the
virus) forms of an anti-G mAb show that they decrease disease after infection to a similar
extent and indicate that a significant portion of the anti-inflammatory effect of binding G
does not rely on decreasing virus replication [28,30]. In this review, we provide examples
of functional features of G that contribute to these effects and note how this supports G’s
potential contribution to an RSV vaccine and as a target for anti-viral drug development.

2. Structure of G

The G protein is a type II, highly glycosylated membrane protein of 292–319 amino
acids (aa) with an intracellular cytoplasmic tail (aa 1–37), transmembrane domain (aa 38–66),
and the extracellular domain ending at its carboxy-terminas (Figure 1).

A second translation initiative site at aa 48 in the transmembrane domain leads to a
truncated G that, after the remaining 18 aa in the transmembrane domain are proteolytically
cleaved, only contains the extracellular domain [34]. This truncated form of G is secreted.
The extracellular domain contains an initial highly glycosylated, a variable mucin-like
domain (~aa 66–160), a central relatively conserved domain (aa 160–200), and a second
highly glycosylated variable mucin-like domain ending in the carboxy-terminas (ranging
from aa 192 to 319). There are 4–5 N-linked glycans and 30–40 O-linked glycans in the
extracellular domain of G [34,35]. There are, however, over 75 serine and threonine potential
O-linked glycosylation sites and O-linked glycosylation sites usage varies. The G protein
is ~32 kDa without post-translational processing, ~95 kDa when fully glycosylated in
Hep-2 cells, ~55 kDa cells after glycosylation and cleavage in Vero cells, and ~170 kDa
after post-translational processing in primary human bronchial epithelial cells [36]. A
virus grown in primary human bronchial epithelial cells is less infectious in Hep-2 cells
than a virus grown in Hep-2 cells. The central relatively conserved domain is relatively
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conserved within but not between the two groups, as illustrated in Figure 1 [27]. For the
purpose of this review, we used CCD to indicate this central relatively conserved domain
at aa 160–200 of G.

Figure 1. Schematic of the functional domains of the RSV G protein. The first three panels are entropy plots that indicate
variability at each amino acid by height of the bar. Sequences were aligned using mafft 7.471, and Shannon entropy

was calculated using the formula H = −
M
∑

i=1
Pilog2Pi, where Pi is the fraction of residues of type I, and M is the total

number of residue type (Wootton, J.C. and Federhen, S., Computers & Chemistry, 1993) [37], using Python code from
https://gist.github.com/jrjhealey/130d4efc6260dd76821edc8a41d45b6a (accessed on 6 April 2021). The panels were
generated using Tableau 2021.1.0. The 1st panel, Group A, is based on 50 sequences representing the different Group A
genotypes. Since some Group A viruses have a 23 aa duplication in G, a gap was included in viruses without the duplication
to maintain the alignment. The 2nd panel is based on 53 sequences representing the different Group B genotypes. Since
some Group B viruses have a 20 aa duplication in G, a gap was included in viruses without the duplication to maintain the
alignment. The 3rd panel is based on the 103 Group A and B sequences used in panels 1 and 2. It includes one gap for the
23 aa duplication in Group A and a second gap for the 20 aa duplication in Group B viruses. The 4th panel is a schematic of
the structure of the RSV A2 G gene adapted from Teng et al. (with permission) [38]. P indicates prolines and C cysteine.
The stalk with large circles indicates sites for N-linked carbohydrates, and stalks with small circles indicate sites, serine
open, and threonine closed, for O-linked carbohydrates. The 13 aa, aa 164–176, conserved among all strains is highlighted in
beige. The 5th panel shows aa sequences that include CCD, the CX3C motif (aa 182–186), and the HBD (aa 187–198). CCD is
defined in this review as the central relatively conserved domain from ~aa 160 to 200 that is relatively conserved within but
not between Group A and B strains. CT = cytoplasmic tail. TM = transmembrane domain. The CX3C motif and K (lysine)
are in bold print.

The amino acids 160–200 designated as CCD for this review contain the 13 aa (aa 164–176)
that are conserved among all isolates, a CX3C chemokine motif (aa 182–186) [39], and a heparin
binding domain (HBD) at aa 187–198 [40]. Through the CX3C motif, G binds to the CX3C

https://gist.github.com/jrjhealey/130d4efc6260dd76821edc8a41d45b6a
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chemokine receptor, CX3CR1. One group solved the crystal structure of a subgroup A G
peptide from aa 161–197 bound to one monoclonal antibody and the Subgroup A G peptide
from aa 169–198 bound to a second mAb [41]. Another group solved the crystal structure
of a Subgroup A G peptide from aa 153–197 bound to two different monoclonal antibodies,
noted that the structure of this peptide is distinct from fractalkine, and concluded that G
likely binds to CX3CR1 differently than fractalkine [42]. Recently, it has been shown that
the structure of CCDs is flexible, and this flexibility may allow G to bind to CX3R1 in a
fashion sufficiently similar to fractalkine to account for its reported ability to compete with
fractalkine binding to CX3CR1 and mimic the fractalkine induction of leukocyte migration
in vitro [39,43]. G’s binding to CX3CR1 facilitates the infection of primary human airway
epithelial cells and suggests that CX3CR1 is a receptor for the infection of these cells [32,33].
Through the HBD on G, RSV binds to glycosaminoglycans (GAGs) on the cell surface [40].
There may be other HBDs in G, and G HBDs may vary among strains [44,45]. There are
also HBDs on F which presumably provide the means for viruses without the G protein to
bind to and infect cells [46,47]. F also binds to nucleolin, and nucleolin has been reported
to be a receptor for RSV infection [48].

The G protein is the most variable of the RSV proteins, and its antigenic and sequence
differences have been used to determine the subgroup and genotype of isolates [49]. Anti-
genic or sequence differences among RSV strains have made it possible to define many
features of the epidemiology and transmission of RSV. For example, early studies with mon-
oclonal antibodies showed that some suspected nosocomial transmissions were nosocomial,
while others represented multiple introductions from the community [50,51]. Sequence
studies replaced mAb reactivity to identify strain differences and found both in subsequent
studies of RSV transmission in healthcare settings [52,53]. G gene sequence studies have
also helped understand community RSV outbreaks and shown the co-circulation of mul-
tiple genotypes in one season in a community, different patterns of genotypes in nearby
communities during the same season, and clarified household transmission [17,18,54–56].
One conclusion from these studies is that yearly community RSV outbreak strains are
not dominated by regional or national strains. Whole RSV genome sequence studies are
expanding our understanding of the fine details of transmission, as indicated in a study of
household transmission [57]. Sequence studies of RSV isolates over time in an immune-
suppressed child with persistent infection that showed increases in G gene diversity after
immune reconstitution associated with the engraphtment of a bone marrow transplant
support immune selection contributing to G diversity [58].

Multiple sequence studies of the G gene of isolates from community outbreaks have
found specific genotypes associated with increased disease severity [59], but no genotype
has consistently been associated with increased disease severity across outbreaks [60]. Thus,
G genotypes do not explain strain differences in virulence. Studies in mice show strain-
specific differences in virulence associated with sequences in the F protein gene [61,62]. In a
recent study, investigators from the Netherlands looked at G gene sequences and their data
suggest that specific amino acid changes are associated with increased disease severity [63].
Such links between G gene sequences and disease severity, however, need to be confirmed.
It is likely that whole genome sequence studies with genomewide association analysis will
be the best way to identify virulence-associated sites in the RSV genome.

Interestingly, a duplication in the G gene of Subgroup B strains was detected in isolates
from 1999 in Argentina (RSV BA) [64]. In this strain, aa 240–259 are duplicated and inserted
between aa 259 and 260, which results in a 20 aa longer G protein. A G gene duplication in
Subgroup A strains was detected in isolates from 2011 in Canada (RSV ON1) [65]. In this
strain, aa 261–283 are duplicated and inserted between aa 284 and 285, which results in
a 23 aa longer G protein. Viruses with the G duplication, both Subgroup A and B, have
spread globally, and variants of the original viruses have become the dominant currently
circulating strains [55,66,67]. In vitro studies on reverse genetics-derived Subgroup B
viruses with and without the G duplication showed that, the duplication likely improved
virus attachment in binding to heparin sulfate proteoglycans on the cell surface and
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conferred a competitive replication advantage [68]. A study of the in vitro infection of
lentivirus pseudoparticles expressing G protein showed that the Group A duplication
also improved infectivity [69]. These studies suggest that the selective advantage of the G
duplication in Groups A and B may be increased binding to the cell surface, possibly to
GAGs, resulting in improved infectivity.

3. Secreted G

Secreted G contains all domains of extracellular G and, thus, can interact with cells
in a fashion similar to the intact G protein, such as binding to HBD [70], though the effect
may be distinct. For example, one group found that RSV with G lacking the secreted G
was more pathogenic in mice than the virus with an intact G that had secreted G [71],
while another group found that RSV without secreted G was less pathogenic than RSV
with intact G in mice [72]. Secreted G has also been reported to enhance cytotoxic T-cell
responses in mice [73], act as an antigen decoy, and modulate Fc-mediated antibody anti-
viral activity [59,74,75]. Several studies have demonstrated a reduction in proinflammatory
responses associated with secreted G but not membrane-bound G. For example, RSV infec-
tion of the human airway epithelial cell line, A549, without secreted G compared to RSV
with secreted G, showed that the presence of secreted G reduced levels of surface ICAM-1
and secreted IL-8 and RANTES [76]. In another study, the cysteine-rich region within the
CCD of secreted G was shown to inhibit F protein and RSV-induced secretion of IL-6 in
human peripheral blood monocytes [77]. In this study, they also showed that secreted G
appeared to inhibit the early levels of infection-induced IL-6 in lung macrophages as well
as lung inflammation in infected mice, and a peptide containing the cysteine-rich region
of CCD inhibited the human monocyte response to endotoxin in vitro. Secreted G was
also reported to suppress human peripheral blood mononuclear cell lymphoproliferative
responses to tetanus toxoid and mycobacterial lysates [78]. These studies highlight the
substantial immune modulatory activity of secreted G.

4. Binding to and Infection of Cells

The G protein has been noted to bind to a number of molecules on the cell surface,
including CX3CR1, through its CX3C motif (aa 182–186) [39], GAGs through its HBDs
(including one at aa 187–198 [40]), surfactant A [79], annexin II [80], and DC-Sign and
L-Sign [81].

G binding to CX3CR1 in primary human airway epithelial cells (pHAECs) facilitates
the infection of these cells, and CX3CR1 is considered a receptor for the infection of these
cells [32,33,39,82]. CX3CR1 is a G-coupled transmembrane protein that serves as the
receptor for one CX3C chemokine fractalkine [83,84]. CX3CR1 is found on the surface of
a number of cell types, such as neurons and microglia cells, smooth muscle cells, airway
epithelial cells, monocytes, dendritic cells, NK cells, and T and B cells [85–89]. The ligand
for CX3CR1, fractalkine (CX3CL1), has some features similar to the RSV G protein [90,91],
i.e., it has a membrane anchored and soluble form and a large mucin-like domain. The
soluble form is produced by metalloproteinase Adam 17 cleavage and associated with
the directional migration of immune cells to sites of inflammation. The membrane-bound
form is associated with cell adhesion. The CX3CRL1-CX3CR1 interaction often has a
proinflammatory effect through the JAK-STAT, Toll-like receptor, MAPK, AKT, NF-κB, or
other pathways, but can also have an anti-inflammatory effect depending on the tissue, cell
type, and local environment [91–93]. The CX3CL1-CX3CR1 interaction has been linked to
a number of diseases, including cardiac, lung, neoplastic, neurologic, and rheumatologic
disease [90,91,94,95]. CX3CR1 has different isoforms, and isoform differences may be
responsible for the range of responses associated with fractalkine-CX3CR1 binding [96].

RSV infection of pHAECs is initiated by binding to CX3CR1 through the CX3C motif in
G. Some groups have detected GAGs on the surface of pHAECs and the RSV-neutralizing
activity of heparin in pHAECs [32,97], while others have not [33,98]. Mouse and human
anti-G monoclonal antibodies that bind in CCD-G, i.e., at or near G’s CX3C motif, as well
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as anti-CX3CR1 antibodies neutralize the RSV infection of pHAECs [32,82,99,100]. Unlike
pHAECs, RSV infects continuous cell lines, such as HEp-2 and Vero cells, through GAGs
on the cell surface and not CX3CR1. In these cells, heparin effectively neutralizes infection,
while anti-G monoclonal antibodies (mAbs) have limited neutralizing activity without the
addition of complement [33,40,101]. Note that complement neutralizes the virus through
the Fc portion of antibodies bound to the virus and is one of the antibody Fc-mediated
anti-viral activities [102] that likely explains anti-G mAb virus neutralization in mice, which
requires an intact Fc [28,103,104].

GAGs, e.g., heparin sulfate proteoglycans, are another G-associated receptor for
infection and, as noted above, are the receptors that HBDs on G bind to the cell surface and
mediate infection [39,105]. There may be other HBDs in G, as indicated by some heparin
virus neutralization that is independent of the aa 187–198 HBD and strain variability
in HBDs [44,45]. There are also HBDs on F, which presumably provide one way for
viruses without the G protein to infect cells [46,47]. Note that the F protein is reported
to bind nucleolin and, thus, nucleolin has been proposed as another receptor for RSV
infection [48,106].

G is reported to interact with surfactant A [79], annexin II [80], and DC-Sign and
L-Sign [81]. This interaction does not mediate infection but does have other effects. For
example, surfactant A, as well as surfactant D, have broad antimicrobial effects and can
inhibit RSV replication [107,108].

It is also reported that G on the cell surface affects, though is not required for, F-
mediated binding to cells, fusion, and possibly other aspects of the role of F in the infection
of cells [109,110].

5. Animal Studies and Disease Pathogenesis

G affects the host immune response and disease pathogenesis with studies in animals
tending to inform G’s effect on disease pathogenesis and in vitro studies G’s effect on the
host immune response. The effect on immune responses and disease pathogenesis are
interrelated. In this section, we discuss animal model studies that show a substantial role
of G in disease pathogenesis. For example, studies with anti-G monoclonal antibodies,
anti-CX3CR1 antibodies, and G mutant viruses in mice suggest that G plays a substantial
role in the pathogenesis of FI-RSV ERD [111,112]. In the study of FI-RSV vaccinated mice
challenged with RSV without G or with G’s CX3C motif mutated to not bind, CX3CR1
showed a marked decrease in pulmonary inflammation and eosinophilia compared to
wildtype virus. In this study, they also gave anti-CX3CR1 antibody before challenge with
wildtype virus and saw a similar decrease in disease compared to untreated mice. In the
second study, the wildtype and F(ab’)2 forms of an anti-G mAb were administered to FI-
RSV-vaccinated mice before challenge with wildtype virus, and both decreased pulmonary
inflammation and eosinophilia to similar degrees. These studies indicate a role for G at the
time of later challenge in FI-RSV-associated ERD. Though it is possible that differences in
virus replication accounted for some differences seen with G-altered challenge viruses, the
fact that the F(ab’)2 form of the anti-G monoclonal antibody similarly decreased ERD in
the mice supports a G effect independent of a decrease in virus replication. The F(ab’)2
form of this monoclonal antibody does not decrease virus replication in the mouse [28,30].
The fact that the anti-CX3CR1 antibody also decreases disease suggests that G binding
to CX3CR1 likely explains at least some of G’s role in ERD. Another group reported that
anti-G mAbs binding to CCD given before challenge of vaccinia G-vaccinated mice reduced
the enhanced disease seen with this vaccine [113]. In a number of studies, the G protein or
G peptide vaccines have not predisposed to enhanced disease with later RSV infection in
mice [114–119]. In other studies of G vaccines in vaccinia virus- or hepatitis B virus-like
particles, increased pulmonary eosinophilia was noted with later RSV infection [120,121].
Specific amino acid sequences in G have been associated with pulmonary eosinophilia
in mice. In one study, mice vaccinated with vaccinia G and challenged with RSV with a
deletion of aa 151 to 221 or aa 178 to 219 compared to challenge with the parent wildtype
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virus showed a marked in decrease pulmonary eosinophilia [122]. In this study, the
viruses with the deletions had similar levels of lung virus post infection as the comparison
parent virus. In another study, vaccination with different G peptides with overlapping
aa sequences expressed in vaccinia identified aa 193–205 as predisposing to pulmonary
eosinophilia with later RSV challenge [123]. These studies indicate that G can sometimes
prime for increased disease. On the other hand, G does not need to be present in a FI-
RSV vaccine for it to predispose mice to ERD and pulmonary eosinophilia with later RSV
challenge [124]. Finally, a CCD peptide vaccine given the day after FI-RSV decreased
the ERD and pulmonary eosinophilia with later RSV challenge [125]. The fact that the
administration of anti-G antibodies or a G-peptide vaccine can prevent FI-RSV ERD and G
is not needed in FI-RSV for it to predispose to ERD suggests that G has a role in FI-RSV
ERD at the time of later challenge and not at the time of vaccination.

Studies also show that G makes a substantial contribution to RSV disease during
primary infection in mice. For example, administration of the anti-G mAb 131-2G or
mAbs with similar specificity, before infection (prophylaxis), reduces weight loss, lung
inflammation, and/or lung Th2 cytokine levels [30,126,127]. Additionally, if the infecting
virus induces lung mucous production and increased breathing effort (an indicator of
airway resistance), mAb 131-2G or a similar mAb given prophylactically also decreases
or eliminates these disease markers. Importantly, the F(ab’)2 form of the mAb does not
decrease lung virus titer but does effectively reduce these disease markers similarly to
the intact mAb [28,30]. Thus, the effect of 131-2G prophylaxis on disease in mice does
not require a decrease in virus replication and mAb 131-2G, and likely, antibodies with a
similar specificity have two independent effects on RSV disease in mice, an Fc-dependent
anti-viral effect and an anti-inflammatory effect. Importantly, the treatment of mice infected
with RSV 3 days earlier with mAb 131-2G or a similar mAb promptly decreased weight
loss, lung inflammatory cells, lung mucus levels, and/or breathing effort when compared
to untreated mice [31,126]. This decrease in lung disease was much quicker and more
effective than treatment with palivizumab (the neutralizing anti-F mAb that is licensed for
RSV immune prophylaxis in high-risk infants [128]) or a palivizumab-like anti-F mAb. It is
likely that the anti-inflammatory effect of these G mAbs was responsible for the prompt
decrease in disease, and this G mAb anti-inflammatory effect could be the missing piece
in achieving effective RSV treatment. One study suggested that a combination of two
anti-G mAbs might be more effective than one. In this study, mAbs reacting at different
epitopes in CCD were more effective than alone in decreasing pulmonary inflammation,
while an anti-G mAb binding outside CCD was not [129]. Infecting mice with a virus with
a mutated G that does not bind to CX3CR1 causes much lower levels of lung disease, which
suggests that the G-CX3CR1 interaction is important to G-associated lung disease [130].
In this study, the G-mutated virus replicated to slightly lower levels in the lungs than the
wildtype virus but, based on the results with different virus inocula, the decrease in disease
was not explained by this difference in lung virus replication.

Interestingly, two groups reported studies of RSV in CX3CR1-deficient mice (CX3CR1-)
compared to wildtype CX3CR1+ mice [131,132]. Both studies reported a decrease in the
in vitro migration of leukocytes from the CX3CR1- mice. In one study with 6–8 week
old mice, there was a decrease in NK cells, neutrophils, and IFN-γ levels in RSV-infected
CX3CR1- compared to the CX3CR1+ mice but no difference in lung virus titer [132]. In the
other study of neonatal mice, there was an increase in neutrophils, mucus, and IL-17+ γδ T
cells in the lungs of RSV-infected CX3CR1- mice and no difference in lung virus titer [131].
These mouse studies illustrate the importance of the CX3CR1-CX3CL1 interaction in
immune cell trafficking and support the concept that G’s interaction with CX3CR1 might
impact disease.

One feature of RSV infection in infants is apnea, a temporary cessation of breath-
ing [133]. A study of G administered to mice suggested that G might be responsible for
apnea, possibly by binding to CX3CR1 and the induction of substance P [134]. In this study,
the intravenous administration of G but not F decreased the respiratory rate in mice, while
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the co-administration of mAb 131-2G, an anti-CX3CR1 mAb, or an anti-substance P mAb,
but not an anti-F mAb with G, prevented this decrease in respiratory rate. In other studies,
both RSV infection and the G protein have been shown to increase levels of substance P,
and this induction of substance P was associated with disease in mice [111,135–137].

6. In Vitro Studies of the Immune Response

G has been shown to affect a variety of specific immune responses in human cells,
which shows G’s potential to affect the human immune response and disease and suggests
that at least some of G’s effects seen in animals will apply to human disease. It is not yet
clear, however, how these individual effects fit together to explain G’s effect on immunity
or disease in humans.

6.1. Innate Response

One area of considerable interest is RSV’s effect on dendritic cell responses, including
responses that direct the adaptive T-cell response [138], and G appears to have a substan-
tial effect on dendritic cell responses. For example, G binds to DC-Sign and L-Sign on
primary human myeloid DCs and plasmacytoid dendritic cells, and this binding induces
the phosphorylation of ERK1 and ERK2, which participate in the regulation of dendritic
cell responses to infection [81]. In a study of human peripheral blood mononuclear cells
exposed to RSV-infected A549 cells, the CX3C motif in G was implicated in the downregu-
lation of the type I and III interferon responses in monocytes and plasmacytoid dendritic
cells and interferon gamma in T cells [139]. In an in vitro model of the human response to
RSV antigens, the Th1 directing dendritic cell response to RSV or G was increased when
the CX3C motif was mutated to CX4C in the virus or in G expressed in VLPs, suggesting
that this motif participates in inducing a more Th2-biased immune response, as reported in
studies in mice [130,140]. The G protein has also been shown to inhibit the TLR3/TLR4
induction of INF-β in monocyte-derived dendritic cells [141]. In studies of different RSV
strains infecting A549 cells and monocyte-derived macrophages, there were differences in
IL-6 and CCL5 levels that mapped to the RSV G protein or M2-1 genes [142].

6.2. Adaptive Response

Other cells involved in the immune and inflammatory response also are affected by G.
For example, viruses lacking G or its CX3C motif were found to increase the trafficking of
CX3CR1+ CD4 and CD8 T cells to the lungs of infected mice, suggesting that G and its CX3C
motif inhibit the trafficking of these cells to the lungs during RSV infection [143]. Studies
with viruses lacking G, secreted G, or the cysteine residues in CCD indicate that G enhances
cytotoxic T-cell responses to infection, and this effect is associated with the 4 cysteines in
CCD [73,144]. In a study in mice, immunization with a peptide from G’s CCD induced
a Th2-biased response, but this peptide fused with an F and M2-1 peptide enhanced the
Th1 response, giving a more balanced response than the F or M2-1 peptide alone [145],
consistent with G enhancing CTL responses to other antigens and affecting adaptive
immunity. More recently, G has also been shown to play a central role in RSV’s modulation
of neonatal regulatory B cells (nBreg) and alterations to other responses associated with
this effect on nBregs [146]. In this study, RSV F binding to immune globulin on nBregs
induced CX3CR1 expression, which then facilitated G RSV infection of nBreg through the
G-CX3CR1 interaction. Infection by RSV resulted in IL-10 production which, in turn, altered
innate and adaptive immune responses. In a small study of RSV-infected infants, they
found RSV-infected nBregs in nasal pharyngeal swab specimens and a positive relationship
between the percent of nBregs in blood and disease severity.

6.3. Airway Epithelial Cells

G also modulates the response of airway epithelial cells to RSV infection. A study of
a G-deleted RSV in a mouse bronchial epithelial cell line indicated that G downregulates
suppressor of cytokine signaling 3 (SOCS3), IFN-β, and IFN-stimulated gene (ISG-15)
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mRNA [147]. In Calu-3 cells, a human airway epithelial cell line, RSV with an inactive
CX3C motif induced lower levels of miRNAs, let-7f, and miR-24, and an increase in IFN-λ
mRNA [148], suggesting that an intact CX3C motif increases these miRNAs and downregu-
lates INF-λ. Studies of primary human airway epithelial cells exposed to purified G or RSV
lacking G suggested that G induces IL-1a and RANTES and inhibits the induction of other
cytokines and chemokines, including IP10 and MCP-1 [149]. Another study of the RSV
infection of pHAECS cells suggested that the G-CX3CR1 interaction induced RANTES, IL-8,
and fractalkine production and downregulated IL-15, IL1-RA, and monocyte chemotactic
protein-1 production [32]. These conclusions followed from differences in responses to
infection with a virus with an intact or inactivated CX3C motif or the co-administration of
anti-CX3CR1 antibodies. In another study of RSV infection of primary airway epithelial
cells, significant changes were seen in over 700 transcripts compared to mock infection,
including increased nucleolin and decreased cilia-related gene transcripts [150]. The addi-
tion of purified G protein to the cells also increased nucleolin and decreased cilia-related
gene transcripts. Infection with RSV with an inactivated CX3C motif compared to one
with an intact CX3C motif showed a smaller increase in nucleolin and lower decrease in
cilia-related gene transcripts, suggesting that the G-CX3CR1 interaction played a role in
nucleolin induction and the downregulation of cilia-related genes.

7. Conclusions

These studies show the RSV G protein to have wide ranging effects on the biology of
RSV infection and the host immune response and disease associated with infection. Though
some reports appear contradictory and it is not clear how the in vitro and animal studies
noted above translate to human infection nor is it clear how to piece together individual
findings to understand RSV immunity, some general conclusions can be drawn. First,
G plays an important role in the first step of infection, binding to cell surface molecules
through GAGs and/or CX3CR1. Second, G modulates host responses to infection which,
in turn, affect immunity and disease. Third, the G-CX3CR1 interaction contributes to both
binding to cells and modulating the host response to infection. The fact that binding G
with antibodies against CCD decreases lung virus titer, lung inflammation, and disease
in mice, and G neutralization is, by a mechanism, distinct from F neutralization, suggests
that G can add value to an RSV vaccine. G, or a G peptide, has a potential role in a
subunit vaccine, and G’s role in disease pathogenesis suggests that mutations in G might be
used to attenuate a live RSV vaccine. The fact that an anti-CCD mAb promptly decreases
inflammation and disease during active infection in mice and more rapidly than an anti-F
neutralizing mAb does suggests G is a promising target for an anti-viral drug. It is possible
that G-target antiviral drugs could succeed when drugs against other targets have failed.
Thus, G has substantial potential in both vaccine and antiviral drug design. Further study,
however, is needed to determine how G can contribute to the prevention and treatment of
human RSV disease.
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