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Abstract

Machine learning is widely used in developing computer-aided diagnosis (CAD) schemes of 

medical images. However, CAD usually computes large number of image features from the 

targeted regions, which creates a challenge of how to identify a small and optimal feature vector 

to build robust machine learning models. In this study, we investigate feasibility of applying 

a random projection algorithm (RPA) to build an optimal feature vector from the initially CAD

generated large feature pool and improve performance of machine learning model. We assemble 

a retrospective dataset involving 1,487 cases of mammograms in which 644 cases have confirmed 

malignant mass lesions and 843 have benign lesions. A CAD scheme is first applied to segment 

mass regions and initially compute 181 features. Then, support vector machine (SVM) models 

embedded with several feature dimensionality reduction methods are built to predict likelihood of 

lesions being malignant. All SVM models are trained and tested using a leave-one-case-out cross

validation method. SVM generates a likelihood score of each segmented mass region depicting 
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on one-view mammogram. By fusion of two scores of the same mass depicting on two-view 

mammograms, a case-based likelihood score is also evaluated. Comparing with the principle 

component analyses, nonnegative matrix factorization, and Chi-squared methods, SVM embedded 

with the RPA yielded a significantly higher case-based lesion classification performance with the 

area under ROC curve of 0.84±0.01 (p<0.02). The study demonstrates that the random project 

algorithm is a promising method to generate optimal feature vectors to help improve performance 

of machine learning models of medical images.

Keywords

breast cancer diagnosis; computer-aided diagnosis (CAD) of mammograms; feature 
dimensionality reduction; lesion classification; random projection algorithm; support vector 
machine (SVM)

I. Introduction

Developing computer-aided detection and diagnosis (CAD) schemes of medical images 

have been attracting broad research interest in order to detect suspicious diseased regions, 

classify between malignant and benign lesions, quantify disease severity, and predict disease 

prognosis or monitor treatment efficacy. Some CAD schemes have been used as “a second 

reader” or quantitative image marker assessment tools in clinical practice to assist clinicians 

(i.e., radiologists) aiming to improve image reading accuracy and reduce the inter-reader 

variability [1]. Despite of extensive research effort and progress made in the CAD field, 

researchers still face many challenges in developing CAD schemes for clinical applications 

[2]. For example, in developing CAD schemes, machine learning plays a critical role, which 

use image features to train classification models to predict the likelihood of the analyzed 

regions depicting or patterns representing diseases. However, due to the great heterogeneity 

of disease patterns and the limited size of image datasets, how to identify a small and 

optimal image feature vector to build the highly performed and robust machine learning 

models remains a difficult task.

In current CAD schemes, after image preprocessing to reduce image noise, detecting and 

segmenting suspicious regions of interest (ROIs), CAD schemes can compute many image 

features from the entire image region or the segmented ROIs. Recently, two methods have 

attracted broad research interest to compute image features. One uses a deep transfer 

learning model as an automated feature extractor (i.e., extracting 4,096 features in a 

fully connected layer (FC6 or FC7) of an AlexNet). The disadvantage of this approach 

is requiring very big training and validation image datasets, which are often not available 

in medical image fields. Another approach uses radiomics concept and method to compute 

and generate an initial feature pool. Although Radiomics typically computes smaller number 

of features than deep learning based feature extractors, it may still compute many features 

(i.e., >1,000 image features, which mostly represent texture patterns of the segmented ROIs 

in variety of scanning directions as reported in previous studies [3, 4]). However, due to the 

limited size of the training datasets, such large number of image features can often drive 

to overfit machine learning models and reduce model robustness. Thus, it is important to 
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build an optimal feature vector from the initially large feature pool in which the generated 

features should not be redundant or highly correlated [5]. Then, machine learning models 

can be better trained to achieve the enhanced performance and robustness. In general, if the 

feature dimensionality reduction happens with choosing the most effective image features 

from the initial feature pool, it is known as feature selection (i.e., using sequential forward 

floating selection (SFFS) [6]). On the other hand, if the dimensionality reduction comes 

from reanalyzing the initial set of features to produce a new set of orthogonal features, it 

is known as feature regeneration (i.e., principal component analysis (PCA) and its modified 

algorithms [7]). Comparing between these two methods, feature regeneration method has 

advantages to more effectively eliminate or reduce redundancy or correlation in the final 

optimal image feature vector. However, most of medical image data or features have very 

complicated or heterogeneous distribution patterns, which may not meet the precondition 

that all feature variables are linear to optimally apply PCA-type feature regeneration 

methods.

In order to better address this challenge and more reliably regenerate image feature vector 

for developing CAD schemes of medical images, we investigate and test another feature 

regeneration method namely, a random projection algorithm (RPA), which is an efficient 

way to map features into a space with a lower-dimensional subspace, while preserving 

the distances between points under better contrast. This mapping process is done with a 

random projection matrix. In the lower space since the distance is preserved, it will be much 

easier and reliably to classify between two feature classes. Because of its advantages and 

high performance, RPA has been tested and implemented in a wide range of engineering 

applications including handwrite recognition [8], face recognition and detection [9], visual 

object tracking and recognition [10, 11], and car detection [12].

Thus, motivated by the success of applying RPA to the complex and nonlinear feature 

data used in many engineering application domains, we hypothesize that RPA also has 

advantages when applying to medical images with the heterogeneous feature distributions. 

To test our hypothesis, we conduct this study to investigate feasibility and potential 

advantages of applying RPA to build optimal feature vector and train machine learning 

model implemented in a new computer-aided diagnosis (CAD) scheme to classify between 

malignant and benign breast lesions depicting on digital mammograms. The details of 

the assembled image dataset, the experimental methods of feature regeneration using RPA 

and a support vector machine (SVM) model optimization, data analysis and performance 

evaluation results are presented in the following sections.

II. Materials and Methods

A. Image Dataset

A fully anonymized dataset of full-field digital mammography (FFDM) images acquired 

from 1,487 patients are retrospectively assembled and used in this study. All cases were 

randomly selected by an institutional review board (IRB) certified research coordinator from 

the cancer repository and picture archive and communication system (PACS). All selected 

cases have suspicious soft-tissue mass type lesions previously detected by the radiologists 

on the mammograms. Based on lesion biopsy results, 644 cases depict malignant lesions 
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and 843 cases had benign lesions. These patients have an age range from 35 to 80 years 

old. Table I summarizes and compares case distribution information of patients’ age and 

mammographic density rated by radiologists using breast imaging reporting and data system 

(BIRADS) guidelines. As shown in the table, patients in benign group are moderately 

younger than the patients in the malignant group. However, there is not a significant 

difference of mammographic density between the two groups of patients (p = 0.576).

All FFDM images were acquired using one type of digital mammography machines (Selenia 

Dimensions made by the Hologic Company), which have a fixed pixel size of 70μm in 

order to detect microcalcifications. Since in this study, we only focus on classification 

of soft tissue mass type lesions, all images are thus subsampled using a pixel averaging 

method with a 5 × 5 pixel frame, so that the pixel size of the subsampled images 

increases to 0.35mm. This subsample method has been used and reported in many of 

our previous CAD studies (i.e., [13, 14]). Additionally, in this dataset, the majority of 

cases have two craniocaudal (CC) and mediolateral oblique (MLO) view mammograms of 

either left or right breast in which the suspicious lesions are detected by the radiologists, 

while small fraction of cases just have one CC or MLO image in which the lesions were 

detected. Overall, 1,197 images depicting malignant lesions and 1,302 images depicting 

benign lesions are available in this image dataset. All lesion centers are visually marked 

by the radiologists using a custom-designed interactive graphic user interface (GUI) tool. 

The marked lesion centers are recorded and used as “ground-truth” to evaluate CAD 

performance [13].

B. Initial Image Feature Pool with a High Dimensionality

In developing CAD schemes to classify between malignant and benign breast lesions, many 

different approaches have been investigated and applied to compute image features including 

those computed from the segmented lesions [15], the fixed regions of interest (ROIs) [16] 

and the entire breast area [14]. Each approach has advantages and disadvantages. However, 

their classification performance may be quite comparable with an appropriate training 

and optimization process. Thus, since this study focus on investigating the feasibility and 

potential advantages of a new feature dimensionality reduction method of RPA, we will use 

a simple approach to compute the initial image features from both the fixed ROI and the 

segmented lesion regions.

Since classification between malignant and benign lesions is a difficult task, which depends 

on optimal fusion of many image features related to tissue density heterogeneity, speculation 

of lesion boundary, as well as variation of surrounding tissues. Previous studies have 

demonstrated that statistics and texture features can be used to model these valuable image 

features including intensity, energy, uniformity, entropy, and statistical moments, etc. Thus, 

like most CAD schemes using the ROIs with a fixed size as classification targets (including 

the schemes using deep learning approaches [17]), this CAD scheme also focuses on using 

the statistics and texture-based image features computed from the defined ROIs and the 

segmented lesion regions. For this purpose, following methods are used to compute image 

features that are included in the initial feature pool.
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First, from a ROI of an input image, gray level difference method (GLDM) is used to 

compute the occurrence of the absolute difference between pairs of gray levels divided 

in a particularly defined distance in several directions. It is a practical way for modeling 

analytical texture features. The output of this function is four different probability 

distributions. For an image I(m, n), we consider displacement in different directions 

like δ(dx, dy), then I (m, n) = ∣ I(m, n) − I(m + dx, n + dy) ∣ estimates the absolute difference 

between gray levels, where dx, dy are integer values. Now it is possible to determine an 

estimated probability density function for I (m, n) like f(.∣δ) in which f(i ∣ δ) = P (I (m, n) = i). 
It means for an image with L gray levels, the probability density function is L-dimensional. 

The components in each index of the function show the probability of I (m, n) with the same 

value of the index. In the proposed method implemented in this CAD study, we consider dx 

= dy = 11 which is calculated heuristically [18]. The probability functions are computed in 

four directions (φ = 0, π/4, π/2, 3π/4), which signifies that four probability functions are 

computed to provide the absolute differences in four primary directions that each of which is 

used for feature extraction.

Second, a gray-level co-occurrence matrix (GLCM) estimates the second-order joint 

conditional probability density function. The GLCM carries information about the locations 

of pixels having similar gray level values, as well as the distance and angular spatial 

correlation over an image sub-region. To establish the occurrence probability of pixels with 

the gray level of i,j over an image along a given distance of d and a specific orientation of 

φ, we have P(i, j, d, φ). In this way, the output matrix has a dimension of the gray levels (L) 

of the image [19]. Like GLDM, we compute four co-occurrence matrices in four cardinal 

directions (φ = 0, π/4, π/2, 3π/4). GLCM is rotation invariant. We combine the results of 

different angles in a summation mode to obtain the following probability density function 

for feature extraction, which is also normalized to reduce image dependence.

P (i, j) = ∑
φ = 0, π ∕ 4, π ∕ 2, 3π ∕ 4

P (i, j, d = 2, φ)

P (i, j) = P (i, j)
∑i ∑jP (i, j) ; i, j = 1, 2, 3, …, L

(1)

Third, a gray level run length matrix (GLRLM) is another popular way to extract textural 

features. In each local area depicting suspicious breast lesion, a set of pixel values are 

searched within a predefined interval of the gray levels in several directions. They are 

defined as gray level runs. GLRM calculates the length of gray-level runs. The length of 

the run is the number of pixels within the run. In the ROI, spatial variation of the pixel 

values for benign and malignant lesions may be different, and gray level run is a proper way 

to delineate this variation. The output of a GLRM is a matrix with elements that express 

the number of runs in a particular gray level interval with a distinct length. Depending on 

the orientation of the run, different matrices can be formed [20]. We in this study consider 

four different directions (φ = 0, π/4, π/2, 3π/4) for GLRM calculations. Then, just like 

GLCM, GLRM is also rotation invariant. Thus, the output matrices of different angles in a 

summation mode are merged to generate one matrix.
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Fourth, in addition to the computing texture features from the ROI of the original image 

in the spatial domain, we also explore and conduct multiresolution analysis, which is a 

reliable way to make it possible to perform zooming concept through a wide range of 

sub-bands in more details [21]. Hence, textural features extracted from the multiresolution 

sub-bands manifest the difference in texture more clearly. Specifically, a wavelet transform 

is performed to extract image texture features. Wavelet decomposes an image into the sub

bands made with high-pass and low-pass filters in horizontal and vertical directions followed 

by a down-sampling process. While down-sampling is suitable for noise cancelation and 

data compression, high-pass filters are beneficial to focus on edge, variations, and the 

deviation, which can show and quantify texture difference between benign and malignant 

lesions. For this purpose, we apply 2D Daubechies (Db4) wavelet on each ROI to get 

approximate and detailed coefficients. From the computed wavelet maps, a wide range of 

texture features is extracted from principal components of this domain.

Moreover, analyzing geometry and boundary of the breast lesions and the neighboring area 

is another way to distinguish benign and malignant lesions. In general, benign lesions are 

typically round, smooth, convex shaped, with well-circumscribed boundary, while malignant 

lesions tend to be much blurry, irregular, rough, with non-convex shapes [22]. Hence, we 

also extract and compute a group of features that represent geometry and shape of lesion 

boundary contour. Then, we add all computed features as described above to create the 

initial pool of image features.

C. Applying Random Projection Algorithm (RPA) to Generate Optimal Feature Vector

Before using RPA to generate an optimal feature vector from the initial image feature pool, 

we first normalize each feature to make its value distribution between [0, 1] to reduce 

case-based dependency and weight all features equally. Thus, for each case, we have a 

feature vector of size d, which is valuable to determine that case based on the extracted 

features as a point in a d dimensional space. For two points like X = (x1, … , xd) and Y = 

(y1, … yd), the distance in d dimensional spaces define as:

∣ X − Y ∣ = ∑
j = 1

d
(xj − yj)2 (2)

In addition, it is also possible to define the volume V of a sphere in a d dimensional space as 

a function of its radius (r) and the dimension of the space as (3). This equation is proved in 

[23].

V (d) = rdπ
d
2

1
2dΓ(d

2 )
(3)

The matrix of features is normalized between [0, 1]. It means a sphere with r = 1 can 

encompass all the data. An interesting fact about a unit-radius sphere is that as equation (4) 

shows, as the dimension increase, the volume goes to zero. Since π
d
2  is an exponential of 
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d
2 , while growing rate of Γ(d

2 ) is a factorial of d
2 . At the same time, the maximum possible 

distance between two points stays at 2.

lim
d ∞

π
d
2

d
2 Γ d

2
≅ 0 (4)

Moreover, based on the heavy-tailed distribution theorem, for a case like X = (x1, … , xd) in 

the space of features, suppose with an acceptable approximation features are independent, or 

nearly perpendicular variables as mapped to different axes, with E(xi) = pi, ∑i = 1
d pi = μ and 

E∣(xi − pi)k∣ ≤ pi for k = 2,3, … , ⌊t2/6μ⌋, then, the previous study [24] has proven that:

prob( ∑
i = 1

d
xi − μ ≥ t) ≤ Max 3e

−t2
12μ , 4 × 2

−t
e (5)

We can perceive that the farther the value of t increases, the smaller the chance of having 

a point out of that distance, which means that X would be concentrated around the mean 

value. Overall, based on equations (4), and (5) with an acceptable approximation, all data are 

encompassed in a sphere of size one, and they are concentrated around their mean value. As 

a result, if the dimensionality is high, the volume of the sphere is close to zero. Hence, the 

contrast between the cases is not enough for a proper classification.

Above analysis also indicates the more features included in the initial feature vector, the 

higher the dimension of the space is, and the more data is concentrated around the center, 

which makes it more difficult to have enough contrast between the features. A powerful 

technique to reduce the dimensionality while approximately preserves the distance between 

the points, which implies approximate preservation of the highest amount of information, 

is the key point that we are looking for. If we adopt a typical feature selection method and 

randomly select a k-dimensional sup-space of the initial feature vector, it is possible to prove 

that all the projected distances in the new space are within a determined scale-factor of the 

initial d-dimensional space [25]. Hence, although some redundant features are removed, the 

final accuracy may not increase, since contrast between the points may still be not enough to 

present a robust model.

To address this issue, we take advantage of Johnson-Lindenstrauss Lemma to optimize the 

feature space. Based on the idea of this lemma, for any 0 < ε < 1, and any number of cases 

as N, which are like the points in d-dimensional space (ℝd), if we assume k as a positive 

integer, it can be computed as:

k ≥ 4 ln N
( ϵ2

2 − ϵ3
3 ) (6)
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Then, for any set V of N points in ℝd, for all u,v ∈ V, it is possible to prove that there is 

a map, or random projection function like f :ℝd ℝk, which preserves the distance in the 

following approximation [26], which is known as Restricted Isometry Property(RIP):

(1 − ϵ) ∣ u − v ∣2 ≤ ∣ f(u) − f(v) ∣2
≤ (1 + ϵ) ∣ u − v ∣2

(7)

Another arrangement of this formula is like:

∣ f(u) − f(v) ∣2
(1 + ϵ) ≤ ∣ u − v ∣2 ≤ ∣ f(u) − f(v) ∣2

(1 − ϵ) (8)

As these formulas show the distance between the set of points in the lower-dimension space 

is approximately close to the distance in high-dimensional space. This Lemma states that it 

is possible to project a set of points from a high-dimensional space into a lower dimensional 

space, while the distances between the points are nearly preserved.

It implies that if we project the initial group of features into a space with a lower

dimensional subspace using the random projection method, the distances between points are 

preserved under better contrast. This may help better classify between two feature classes 

representing benign and malignant lesions with low risk of overfitting.

It should be noted that for an input matrix of features like X ∈ ℝn × d, n and d represent 

the number of training samples and features, respectively. Unlike the principal component 

analysis (PCA) that assumes relationship among feature variables are linear and intends to 

generate new orthogonal features, RPA aims to preserve distance of the points (training 

samples) while reducing the space dimensionality. Thus, using RPA will create a subspace 

X = XR in which R satisfies the RIP condition, and R ∈ ℝd × k, X ∈ ℝn × k. Since the 

subspace's geometry is preserved, previous studies [27,28] proved that a SVM based 

machine learning classifier could better preserve the characteristics of the image dataset 

to build the optimal hyperplane and thus reduce the generalization error. In other words, if 

an SVM classifier makes the resulting margin γ∗ = ∕‖w∗‖21  for its optimal hyperplane (w*) 

after solving the optimization problem on the initial feature space of X, and on the subspace 

of X, it makes the resulting margin γ ∗ = ∕‖w∗‖21  for the respective optimized hyperplane 

(w∗). Another study [29] also proved that hinge loss (for margin γ ∗) of the classifier trained 

on the subspace data (X) was less than that (γ*) of the classifier trained on the original data 

(X). Strictly speaking, the trained classifier's error rate on the optimized subspace generated 

using RPA is lower than that of the classifier trained on the original space. It indicates that 

training a machine learning classifier using an optimal subspace under RIP condition can 

build a more accurate and robust model for the classification purpose

In this study, we investigate and demonstrate whether using RPA can yield better result as 

comparable to other popular feature dimensionality reduction approaches (i.e., PCA).
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D. Experiment of Feature Combination and Dimensionality Reduction

First, the proposed CAD scheme applies an image preprocessing step to the whole images 

in the dataset to read them one by one, and based on the lesion centers pre-marked by 

the radiologists to extract a squared ROI area in which the centers of the lesion and ROI 

overlap. In order to identify the optimal size of the ROIs, a heuristic method is applied 

to select and analyze ROI size. Basically, the different ROI sizes (i.e., in the range from 

128×128 to 180×180 pixels) are examined and compared. From the experiments, we observe 

that the ROIs with size of 150×150 pixels generate the best classification results applying 

to this large and diverse dataset, which reveals that this is the most efficient size to cover 

all mass lesions included in our diverse dataset, which corresponds to use the ROI of 52.5 

× 52.5mm2. Figure 1 shows examples of 4 ROIs depicting two malignant lesions and two 

benign lesions. After ROI determination, all the images in the dataset are saved in Portable 

Network Graphics (PNG) format with 16 bits in the lossless mode for the feature extraction 

phase.

Next, the CAD scheme is applied to segment lesion from the background. For this process, 

CAD applies an unsharp masking method in which a low-pass filter with a window-size of 

30 is first applied to filter the whole ROI. Next, CAD computes the absolute pixel value 

difference between the original ROI and the filtered ROI to produce a new image map that 

highlights the lesion and other regions (or blobs) with locally higher and heterogeneous 

tissue density. Then, CAD applies morphological filters (i.e., opening and closing) to delete 

the small and isolated blobs (with the pixel members less than 50), and repair boundary 

contour of the lesion and other remaining blobs with higher tissue density. Since in this 

study, the user clicks the lesion center and the ROI is extracted around this clicked point, 

the blob located in the center of ROI represents the segmented lesion. Figure 2 shows 

an example of applying this algorithm to locate and segment suspicious lesion from the 

surrounding tissue background.

After image segmentation, CAD scheme computes several sets of the relevant image 

features. The first group of features are the pixel value (or density) related statistics features 

as summarized in Table II. These 20 statistics features are repeatedly computed from three 

types of images namely, 1) the entire ROI of the original images (as shown in Figure 

2(a)), 2) the segmented lesion region (as shown in Figure 2(f)), and 3) all highly dense and 

heterogeneous tissue blobs (as shown in Figure. 2(d)). Thus, this group of features includes 

60 statistics features.

The second group of features is computed from the GLRLM matrix of the ROI area. For this 

purpose, 16 different quantization levels are considered to calculate all probability functions 

in four different directions from the histograms. After combining the probability functions, 

on rotation invariance version of them, the following group of features is computed. Features 

are short-run emphasis, long-run emphasis, gray level non-uniformity, run percentage, run

length non-uniformity, low gray level run emphasis, and high gray level run emphasis. 

Hence, this group of features includes seven GLRM-based features.

The third group of features includes GLDM based features computed from the entire ROI. 

Specifically, we select a distance value of 11 pixels for the inter-sample distance calculation. 
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CAD computes four different probability density functions (PDFs) based on the image 

histogram calculation in different directions. The PDF (p) with (μ) as the mean of the 

population, standard deviation, root mean square level, and the first four statistical moments 

(n = 1, 2, 3, 4) with the following equation are calculated as features.

mn = ∑
i = 1

N
pi(xi − μ)n

(9)

It is an unbiased estimate of nth moment possible to calculate by:

mn = ∫
−∞

∞

p(x)xndx (10)

As shown in equation 10, p(x) is weighted by xn. Hence, any change in the p(x) is 

polynomially reinforced in the statistical moments. Thus, any difference in the four PDFs 

computed from malignant lesions is likely to be polynomially reinforced in the statistical 

moments of the computed coefficients. Six features from each of four GLDM based PDFs 

make this feature group, which has total 24 features.

The fourth group of features computes GLCM based texture feature. Based on the method 

proposed in the previous study [30], our CAD scheme generates a matrix of 44 textural 

features computed from GLCM matrix based on all GLCM based equations proposed in 

[19]. In this way any properties of the GLCM matrix proper for the classification purpose is 

granted. Hence, this group contains 44 features computed from the entire ROI.

The fifth group of features includes wavelet-based features. The Daubechies wavelet 

decomposition is accomplished on the original ROI (i.e., Figure 2(a)). Figure 3 shows a 

block diagram of the wavelet-based feature extraction procedure. The last four sub-bands 

of wavelet transform are used to build a matrix of four sub-bands in which principal 

components of this matrix are driven for feature extraction and computation. The computed 

features are listed in Table III. We also repeat the same process to compute wavelet-based 

feature from the segmented lesion (i.e., Figure 2(f)). As a result, this feature group includes 

26 wavelet-based image features.

Last, to address the differences between morphological and structural characteristics of 

benign and malignant lesions, another group of geometrical based features is derived and 

computed from the segmented lesion region. For this purpose, a binary version of the lesion, 

like what we showed in Figure 2 (e), is first segmented from the ROI area. Then, all the 

properties listed in Table IV are calculated from the segmented lesion region in the image 

using the equations reported in [31].

By combining all features computed in above 6 groups, CAD scheme creates an initial pool 

of 181 image features. Then, RPA is applied to reduce feature dimensionality and generate 

an optimal feature vector. For this purpose, we utilize sparse random matrix as the projection 
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function to achieve the criteria as defined in equation (7). Sparse random matrix is a memory 

efficient and fast computing way of projecting data, which guarantees the embedding quality 

of this idea. To do so, if we define s = 1/density, in which density defines ratio of non-zero 

components in the RPA, the components of the matrix as random matrix elements (RME) 

are:

RME =

− s
ncomponents

, ∕2s
1

0 , witℎ probability 1 − ∕s
1

s
ncomponents

, ∕2s
1

(11)

In this process, we select ncomponents, which is the size of the projected subspace. As 

recommended in [32], we consider number of non-zero elements to the minimum density, 

which is: ∕ n_features
1 .

E. Development and Evaluation of Machine Learning Model

After processing images and computing image features from all 1,197 ROIs depicting 

malignant lesions and 1,302 ROIs depicting benign lesions, we build machine learning 

model to classify between malignant and benign lesions by taking following steps or 

measures. Figure 4 shows a block diagram of the machine learning model along with the 

training and testing process. First, although many machine learning models (i.e., artificial 

neural networks, K-nearest neighborhood network, Bayesian belief network, support vector 

machine) have been investigated and used to develop CAD schemes, based on our previous 

research experience [14], we adopt the support vector machine (SVM) to train a multi

feature fusion based machine leaning model to predict the likelihood of lesions being 

malignancy in this study. Under a grid search and hyperparameter analyses, linear kernel 

implemented in SVM model can achieve a low computational cost and high robustness in 

prediction results as well.

Second, we apply the RPA to reduce the dimensionality of image feature space and map to 

the most efficient feature vector as input features of the SVM model. To demonstrate the 

potential advantages of using RPA in developing machine learning models, we build and 

compare 5 SVM models, which using all 181 image features included in the initial feature 

pool, and embedding 4 other feature dimensionality reduction methods including (1) random 

projection algorithm (RPA), (2) principle component analyses (PCA), (3) nonnegative 

matrix factorization (NMF), and (4) Chi-squared (Chi2).

Third, to increase size and diversity of training cases, as well as reduce the potential bias in 

case partitions, we use a leave-one-case-out (LOCO) based cross-validation method to train 

SVM model and evaluate its performance. All feature dimensionality reduction methods 

discussed in the second step are also embedded in this LOCO iteration process to train the 

SVM. This can diminish the potential bias in the process of feature dimensionality reduction 

and machine learning model training as demonstrated in our previous study [33]. When the 
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RPA is embedded in the LOCO based model training process, it helps generate a feature 

vector independent of the test case. Thus, the test case is unknown to both RPA and SVM 

model training process. In this way, in each LOCO iteration cycle, the trained SVM model is 

tested on a truly independent test case by generating an unbiased classification score for the 

test case. As a result, all SVM-generated classification scores are independent of the training 

data. In addition, other fold cross-validation methods (i.e., N = 3, 5, 10) are also tested and 

compared with LOCO method in the study.

Fourth, since majority of lesions detected in two ROIs from CC and MLO view 

mammograms, in the LOCO process, two ROIs representing the same lesion will be grouped 

together to be used for either training or validation to avoid potential bias. After training, 

ROIs in one remaining case will be used to test the machine learning model that generates 

a classification score to indicate the likelihood of each testing ROI depicting a malignant 

lesion. The score ranges from 0 to 1. The higher score indicates a higher risk of being 

malignant. In addition to the classification score of each ROI, a case-based likelihood score 

is also generated by fusion of two scores of two ROIs representing the same lesion depicting 

on CC and MLO view mammograms.

Fifth, a receiver operating characteristic (ROC) method is applied in the data analysis. Area 

under ROC curve (AUC) is computed from the ROC curve and utilized as an evaluation 

index to evaluate and compare performance of each SVM model to classify between the 

malignant and benign lesions. Then, we also apply an operating threshold of T = 0.5 on the 

SVM-generated classification scores to classify or divide all testing cases into two classes of 

malignant and benign cases. By comparing to the available ground-truth, a confusion matrix 

for the classification results is determined for each SVM. From the confusion matrix, we 

compute classification accuracy, sensitivity, specificity, and odds ratio (OR) of each SVM 

model based on both lesion region and case. In the region-based performance evaluation, all 

lesion region are considered independent, while in the case-based performance evaluation, 

the average classification score of two matched lesion regions (if the lesions are detected 

and marked by radiologists in both CC and MLO view) is computed and used. In this study, 

all pre-processing and feature extraction steps to make the matrix of features are conducted 

using MATLAB R2019a package.

III. RESULTS

Figure 5 shows a malignant case as an example in which the lesion center is annotated by 

radiologists in both CC and MLO view mammograms. Based on the marked center, we 

plot two square areas on two images in which image features are computed by the CAD 

scheme. Using the whole feature vector of 181 image features, the SVM-model generates 

the following classification scores to predict the likelihood of two lesion regions on two 

view images being malignant, which are SCCview = 0.685, and SMLOview = 0.291. The case

based classification score is SCase = 0.488. When using the feature vectors generated by the 

RPA, the SVM-model generates two new classification scores of these two lesion regions, 

which are SCCview = 0.817, and SMLOview = 0.375. Thus, the case-based classification score 

is SCase = 0.596. As a result, using the SVM model trained using all 181 image features 

misclassifies this malignant lesion into benign when an operating threshold (T = 0.5) is 
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applied, while the SVM model trained using the embedded RPA increases the classification 

scores for both lesion regions depicting on CC and MLO view images. As a result, it is 

correctly classified as malignant with the case-based classification score greater than the 

operating threshold.

Table V summarizes the performance of using the original features computed in 6 categories 

to classify between the malignant and benign lesions. As shown in this table, using the 

group of statistical features yields the highest classification accuracy among 6 categories 

of features. Figure 6 shows a curve indicating the variation trend of the AUC values of 

the SVM models trained and tested using different number of features (ranging from 50 to 

100) generated by the proposed RPA. The trend result indicates that using a reduced feature 

dimensionality with 80 features, the SVM yields the highest AUC value of 0.84.

Table VI shows and compares the average number of the input features used to train 

5 SVM models with and without embedding different feature dimensionality reduction 

methods, lesion region-based and case-based classification performance of AUC values. 

When embedding a feature dimensionality reduction algorithm, the size of feature vectors in 

different LOCO-based SVM model training and validation cycle may vary. Table VI shows 

that average number of features are reduced from original 181 features to 100 or less. When 

using RPA, the average number of features is 80. From both Table VI and Figure 7, which 

show and compare the corresponding AUC values and ROC curves, we observe that a SVM 

model trained using an embedded RPA feature dimensionality reduction method produces 

the statistically significantly higher or improved classification performance including a case

based AUC value of 0.84±0.01 as comparing to all other SVM model (p < 0.05) including 

the SVM trained using the initial feature pool of 181 features and other SVM models 

embedded with other three feature dimensionality reduction methods namely, principle 

component analyses (PCA), nonnegative matrix factorization (NMF) and Chi-squared (Chi2) 

in the classification model training process. In addition, the data in Table VI and ROC curves 

in Figure 7 also indicate that the case-based lesion classification yields higher performance 

than the region-based classification performance, which indicates that using and combining 

image features computed from two-view mammograms has advantages.

Table VII presents 5 confusion matrices of lesion case-based classification using 5 SVM

models after applying the operating threshold (T = 0.5). Based on this table, several lesion 

classification performance indices like sensitivity, specificity, and odds ratio are measured 

and shown in Table VIII. This table also shows that the SVM model trained based on the 

feature vector generated by the RPA yields the highest classification accuracy comparing to 

the other 4 SVM models trained using feature vectors generated either based on other three 

feature dimensionality reduction methods or the original feature pool of 181 features.

Table IX shows and compares the classification results using four different cross-validation 

methods (N = 3, 5, 10 and LOCO). The results show two trends of performance decrease 

and standard deviation increase (in both AUC and accuracy) as the number of folds 

decreases from the maximum folds (LOCO) to the smallest folds (N = 3). This indicates that 

using LOCO yields not only the highest performance, but also probably highest robustness 

due to the smallest standard deviation.
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Additionally, to assess the reduction of feature redundancy after applying RPA, we create 

a feature correlation matrix, corr(i,j) with the number of M features. Then, we compute a 

mean absolute value of the correlation matrix:

mean of correlation = 1
M × M ∑

i, j = 1

M
∣ corr(i, j) ∣ (12)

Two mean values of correlation computed from two correlation matrices generated using the 

feature space (or pools) before and after applying RPA are 0.49 and 0.31, respectively, which 

indicates that feature correlation coefficients after using RPA is reduced. Thus, using RPA 

can reduces not only dimensionality of feature space, but also redundancy of the feature 

space.

Last, the computational processing tasks of applying RPA to generate optimal features 

and train the SVM model are performed using a Dell computer (Processor: Intel(R) Xeon 

CPU E5-1603 v3, 2.8 GHz, and 16 GB RAM) and Python-based software package. For 

cross validation process we use Sklearn-model library. For example, in the 10-fold cross 

validation, the average computation time to complete one cross-validation iteration is 

approximately 38.12 seconds.

IV. Discussion

Mammography is a popular imaging modality used in breast cancer screening and early 

cancer detection. However, due to the heterogeneity of breast lesions and dense fibro

glandular tissue, it is difficult for radiologists to accurately predict or determine the 

likelihood of the detected suspicious lesions being malignant. As a result, mammography 

screening generates high false-positive recall rates and majority of biopsies are approved 

to be benign [34]. Thus, to help increase specificity of breast lesion classification and 

reduce the unnecessary biopsies, developing CAD schemes to assist radiologists more 

accurately and consistently classifying between malignant and benign breast lesions remains 

an active research topic [35]. In this study, we develop and assess a new CAD scheme 

of mammograms to predict the likelihood of the detected suspicious breast lesions being 

malignant. This study has following unique characteristics as comparing to other previous 

CAD studies reported in the literature.

First, previous CAD schemes of mammograms computed image features from either the 

segmented lesion regions or the regions with a fixed size (i.e., squared ROIs to cover 

lesions with varying sizes). Both approaches have advantages and disadvantages. Due to 

the difficulty to accurately segment subtle lesions with fuzzy boundary, the image features 

computed from the automatically segmented lesions may not be accurate or reproducible, 

which reduces the accuracy of the computed image features to represent actual lesion 

regions. When using the fixed ROIs (including most deep learning based CAD schemes 

[17, 36]), although it can avoid the potential error in lesion segmentation, it may lose and 

reduce the weight of the image features that are more relevant to the lesions due to the 

potential heavy influence of irregular fibro-glandular tissue distribution surrounding the 
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lesions with varying sizes. In this study, we tested a new approach that combines image 

features computed from both a fixed ROI and the segmented lesion region. In addition, 

comparing to the most of previous CAD studies as surveyed in the previous study, which 

used several hundreds of malignant and benign lesion regions [37], we assemble a much 

larger image dataset with 1,847 cases or 2,499 lesion region (including 1,197 malignant 

lesion regions and 1,302 benign lesion regions). Despite using a much larger image dataset, 

this new CAD scheme yields a higher classification performance (AUC = 0.84±0.01) as 

comparing to AUC of 0.78 to 0.82 reported in our previous CAD studies that using much 

smaller image dataset (<500 malignant and benign ROIs or images) [17, 38]. Thus, although 

it may be difficult to directly compare performance of CAD schemes tested using different 

image datasets as surveyed in [37], we believe that our new approach to combine image 

features computed from both a fixed ROI and the segmented lesion region has advantages 

to partially compensate the potential lesion segmentation error and misrepresentation of 

the lesions related image features, and enable to achieve an improved or very comparable 

classification performance.

Second, since identifying a small, but effective and non-redundant image feature vector 

plays an important role in CAD development to train machine learning classifiers or models, 

many feature selection or dimensionality reduction methods have been investigated and 

applied in previous studies. Although these methods can exclude many redundant and 

low-performed or irrelevant features in the initial pool of features, the challenge of how to 

build a small feature vector with orthogonal feature components to represent the complex 

and non-linear image feature space remains. For the first time, we in this study introduce the 

RPA to the medical imaging informatics field to develop CAD scheme. RPA is a technique 

that maximally preserves the distance between the sub-set of points in the lower-dimension 

space. As explained in the Introduction section, in the lower space under preserving the 

distance between points, classification is much more robust with low risk of overfitting. This 

is not only approved by the simulation or application results reported in previous studies, 

it is also confirmed by this study. The results in Table VI show that by using the optimal 

feature vectors generated by RPA, the SVM model yields significantly higher classification 

performance in comparison with other SVM models trained using either all initial features or 

other feature vectors generated by other three popular feature selection and dimensionality 

reduction methods. Using the RPA boosts the AUC value from 0.72 to 0.78 in comparison 

with the original feature vector in the lesion region-based analysis, and from 0.74 to 0.84 in 

the lesion case-base evaluation, which also enhances the classification accuracy from 69.3% 

to 75.2%, and approximately doubling the odds ratio from 4.85 to 8.86 (Table VIII). Thus, 

the study results confirm that RPA is a promising technique applicable to generate optimal 

feature vectors for training machine learning models used in CAD of medical images.

Third, since the heterogeneity of breast lesions and surround fibro-glandular tissues 

distributed in 3D volumetric space, the segmented lesion shape and computed image features 

often vary significantly in two projection images (CC and MLO view), we investigate and 

evaluate CAD performance based on single lesion regions and the combined lesion cases if 

two images of CC and MLO views were available and the lesions are detectable on two view 

images. TABLE VI shows and compares lesion region-based and case-based classification 

performance of 5 SVM models. The result data clearly indicates that instead of just selecting 
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one lesion region for likelihood prediction, it would be much more accurate when the 

scheme processes and examines two lesion regions depicting on both CC and MLO view 

images. For example, when using the SVM trained with the feature vectors generated by the 

RPA, the lesion case-based classification performance increases 7.7% in AUC value from 

0.78 to 0.84 as comparing to the region-based performance evaluation.

Last, although the study has tested a new CAD development method using a RPA to 

generate optimal feature vector and yielded encouraging results to classify between the 

malignant and benign breast lesions, we realize that the reported study results are made on 

a laboratory-based retrospective image data analysis process with several limitations. First, 

although the dataset used in this study is relatively large and diverse, whether this dataset 

can sufficiently represent real clinical environment or breast cancer population is unknown 

or not tested. All FFDM images were acquired using one type of digital mammography 

machines. Due to the difference of the image characteristics (i.e., contrast-to-noise ratio) 

between FFDM machines made by different vendors, the CAD scheme developed in this 

study may not be directly and optimally applicable to mammograms produced by other types 

of FFDM machines. However, we believe that the concept demonstrated in this study is 

valid. Thus, the similar CAD schemes can be easily retrained or fine-tuned using a new 

set of digital mammograms acquired using other different types of FFDM machines of 

interest. Second, in this retrospective study, the image dataset has a higher ratio between the 

malignant and benign lesions, which is different from the false-positive recall rates in the 

clinical practices. Thus, the reported AUC values may also be different from the real clinical 

practice, which needs to be further tested in future prospective clinical studies. Third, in the 

initial pool of features, we only extracted a limited number of 181 statistics, textural and 

geometrical features, which are much less than the number of features computed based on 

recently developed radiomics concept and technology [3, 4]. Thus, more texture features 

can be explored in future studies to increase diversity of the initial feature pool, which may 

also increase the chance of selecting or generating more optimal features. Additionally, 

many deep transfer learning models have been recently tested as feature extractors in 

medical imaging field, which produce much larger number of features than the radiomics 

approaches. Thus, whether using RPA can also help significantly reduce dimensionality of 

these feature extractors to more effectively and robustly train or build the final classification 

layer of the deep leaning models should be investigated in future studies.

V. Conclusions

In summary, due to the difference between human vision and computer vision, it is often 

difficult to accurately identify a small set of optimal and non-redundant features computed 

by the CAD schemes of medical images. In this study, we investigate feasibility of applying 

a new approach based on the random projection algorithm (RPA) to generate the optimal 

feature vectors for training machine learning models implemented in the CAD schemes 

of mammograms to classify between malignant and benign breast lesions. Study results 

indicate that applying this RPA approach creates a more compact feature space that can 

reduce feature correlation or redundancy. By comparing with other three popular feature 

dimensionality reduction methods, the study results also demonstrate that using RPA enables 

to generate an optimal feature vector to build a machine learning model, which yields 
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significantly higher classification performance. In addition, since building an optimal feature 

vector is an important precondition of building optimal machine learning models, the new 

method demonstrated in this study is not only limited to CAD schemes of mammograms, it 

can also be adopted and used by researchers to develop and optimize CAD schemes of other 

types of medical images to detect and diagnose different types of cancers or diseases in the 

future
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Fig. 1. 
Example of 4 extracted ROIs with the detected suspicious soft-tissue masses (lesions) in 

ROI center. a,b) 2 ROIs involving malignant lesions and c,d) 2 ROIs involving benign 

lesions.
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Fig. 2. 
Example to illustrate lesion segmentation, which include a) the original ROI, b) absolute 

difference of ROI from low-pass filtered version, c) combination of (a) and (b) which 

gives the suspicious regions better contrast to the background, d) output of morphological 

filtering, e) blob with the largest size is selected (a binary version of the lesion), and f) 

finally segmented lesion area. It is output of mapping (e) to (a).
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Fig 3. 
Wavelet based feature extraction. Wavelet decomposition is applied three times to make the 

images compress as possible. Then PCA is adopted as another way of data compression.
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Fig 4. 
Illustration of the overall classification flow of the CAD scheme developed and tested in this 

study.
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Fig 5. 
A malignant case annotated by radiologists in both CC and MLO views. The annotated mass 

is squared in each view.
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Fig. 6. 
A trend of the case-based classification AUC values generated by the SVM models trained 

using different number of features (NF) generated by the RPA.
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Fig. 7. 
Comparison of 10 ROC curves generated using 5 SVM models and 2 scoring (region and 

case-based) methods to classify between malignant and benign lesion regions or cases.
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TABLE I

Case number and percentage distribution of patients age and mammographic density rated by radiologists 

using BIRADS guidelines.

Subgroup Malignant
Cases

Benign
Cases

Density BIRADS 1 25 (3.9%) 58 (6.9%)

2 186 (28.8%) 262 (31.1%)

3 401 (62.3%) 502 (59.5%)

p-value = 0.576 4 32 (5.0%) 21 (2.5%)

Age of Patients (years old) A < 40 11 (3.4%) 71 (8.4%)

40 ≤ A < 50 109(19.2%) 158(18.7%)

50 ≤ A < 60 167(25.6%) 285(33.8%)

60 ≤ A < 70 180(24.4%) 192(22.8%)

70 ≤ A 177(27.4%) 137(16.3%)
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TABLE II

List of the computed Features on ROI Area

Feature
category

Feature Description

Density related 
features

1.Mean, 2. variance, 3. skewness, 4. kurtosis, 5. entropy, 6. correlation, 7. energy, 8. root mean square level, 9. 
uniformity, 10. max, 11. min, 12. median, 13. range, 14. mean absolute deviation, 15. Contrast, 16. homogeneity, 17. 
smoothness, 18. inverse difference movement, 19. suspicious regions volume, 20. standard deviation.
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TABLE III

List of Wavelet-based Features

Feature
category

Feature Description

Wavelet-based features 1. Contrast, 2. Correlation, 3. Energy, 4. Homogeneity, 5. Mean, 6. Standard deviation, 7. Entropy, 8. Root mean 
square level, 9. Variance, 10. Smoothness, 11. Kurtosis, 12. Skewness, 13. IDM
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TABLE IV

List of Geometrical Features

Feature
category

Feature Description

Geometrical based 
features

1. Area, 2. Major Axis Length, 3. Minor Axis Length, 4. Eccentricity, 5. Orientation, 6. Convex Area, 7. Circularity, 8. 
Filled Area, 9. Euler Number, 10. Equivalent Diameter, 11. Solidity, 12. Extent, 13. Perimeter, 14. Perimeter Old,15. 
Max Feret Diameter,16. Max Feret Angle,18. Min Feret Diameter,19. Min Feret Angle, 20. Roundness Ratio
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TABLE V

Accuracy of the SVM models for case-based classification based on six different categories of the original 

features.

Feature category Number of features Accuracy (%)

Statistical features 60 66

GLRLM 7 59

GLDM 24 56

GLCM 44 61

Wavelet based 26 60

Geometrical based 20 63
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TABLE VI

Summary of average number of image features used in 5 different SVM models and classification performance 

(AUC) based on both region and case-based lesion classification. p value compares results of each model to 

the last one (RPA) as the optimal one.

Feature
sub-groups

Number of
features AUC p

value

Original features, region based 181 0.72 0.004

Original features, case based 181 0.74 0.005

NMF, region based 100 0.73 0.005

NMF, case based 100 0.77 0.023

Chi2, region based 76 0.73 0.005

Chi2, case based 76 0.75 0.015

PCA, region based 83 0.75 0.011

PCA, case based 83 0.79 0.041

RPA, region based 80 0.78 0.035

RPA, case based 80 0.84 ---

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heidari et al. Page 33

TABLE VII

Five Confusion matrices of case-based lesion classification using 5 different SVM models to classify between 

benign and malignant cases.

Feature
Group Predicted Actual

Positive
Actual

Negative

Original features
Positive 399 212

Negative 245 631

NMF
Positive 406 173

Negative 238 670

Chi2
Positive 405 194

Negative 239 649

PCA
Positive 436 197

Negative 208 646

RPA
Positive 452 177

Negative 192 666
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TABLE VIII

Summary of the lesion case-based classification accuracy, sensitivity, specificity, and odd ratio of using 5 

SVMs trained using different groups of optimized features.

Feature
sub-
group

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Odds
Ratio

Original features 69.3 62.0 75.0 4.85

NMF 72.4 63.1 79.5 6.61

Chi2 70.9 63.0 77.1 5.67

PCA 72.8 68.0 76.6 6.87

RPA 75.2 70.2 79.0 8.86
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TABLE IX

Summary of the case-based lesion classification for the Proposed method (RPA) under different cross 

validation (CV) techniques.

CV AUC Accuracy

LOCO 0.84±0.04 75.2±4

10-fold 0.83±0.05 74.0±4

5-fold 0.82±0.07 73.1±5

3-fold 0.80±0.10 70.8±9
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