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It is a broadly observed pattern that the non-recombining regions of sex-
limited chromosomes (Y and W) accumulate more repeats than the rest of
the genome, even in species like birdswith a lowgenome-wide repeat content.
Here, we show that in birds with highly heteromorphic sex chromosomes, the
W chromosome has a transposable element (TE) density of greater than 55%
compared to the genome-wide density of less than 10%, and contains over
half of all full-length (thus potentially active) endogenous retroviruses
(ERVs) of the entire genome. Using RNA-seq and protein mass spectrometry
data, we were able to detect signatures of female-specific ERV expression. We
hypothesize that the avianW chromosome acts as a refugium for active ERVs,
probably leading to female-biased mutational load that may influence female
physiology similar to the ‘toxic-Y’ effect in Drosophila males. Furthermore,
Haldane’s rule predicts that the heterogametic sex has reduced fertility in
hybrids. We propose that the excess of W-linked active ERVs over the rest of
the genome may be an additional explanatory variable for Haldane’s rule,
with consequences for genetic incompatibilities between species through
TE/repressor mismatches in hybrids. Together, our results suggest that the
sequence content of female-specific W chromosomes can have effects far
beyond sex determination and gene dosage.

This article is part of the theme issue ‘Challenging the paradigm in sex
chromosome evolution: empirical and theoretical insights with a focus on
vertebrates (Part II)’.
1. Introduction
Many organisms exhibit a genetic sex determination system where a pair of
sex chromosomes guides sex development [1]. There are two major genetic sex-
determining systems: the XY system with male heterogamety (XX females and
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XY males) and the ZW system with female heterogamety
(ZW females and ZZ males), whereby the Y and W are the
sex-limited chromosomes (SLCs).

Sex chromosomes generally evolve from a pair of auto-
somes [2] that acquire a sex-determining locus and locally
suppressed recombination around that locus [3,4]. The non-
recombining region may remain very small, keeping the two
sex chromosomes largely homomorphic. Conversely, in hetero-
morphic sex chromosomes, the non-recombining region may
expand over time until only a small pseudo-autosomal
region remains recombining,while the rest of the SLCdiverges,
degenerates or loses genes, and accumulates repeats [5]. The
evolution of the non-recombining region of the SLC is mostly
shaped by its low recombination rate. Its associated low effec-
tive population size drastically decreases the efficacy of
selection [6] (i.e. accentuating the effects of drift and linked
selection) and makes these chromosomes vulnerable to the
accumulation of slightly deleterious mutations (e.g. through
Muller’s ratchet andHill–Robertson interference mechanisms),
such as repeats [3,7].

Because of their low gene content and high repeat density,
SLCs were thought to not have any effect beyond sex determi-
nation and gonadal development, remaining largely
understudied or even absent in the majority of the genome
assemblies and studies [8]. However, recent studies on SLCs,
especially in humans and other model organisms, have shown
that they play roles in human diseases [9,10], male infertility
[11], determining sex-specific traits [12], shaping the genome-
wide heterochromatic landscape [13], exerting epistatic effects
[14–16], reproductive isolation [17] and suppressing meiotic dri-
vers on other chromosomes (e.g. through RNAi pathways) [18].

While Y chromosomes of mammals and flies have recently
received considerable attention, the evolutionary implications
ofW chromosomes in any organism are still poorly understood.
Here, we provide, to our knowledge, the first evidence that the
avian W chromosome is not merely a graveyard of repetitive
elements but a refugium of potentially active transposable
elements (TEs) that probably have sex-specific implications.
Bird genomes are known to be repeat-poor with amean TE con-
tentof less than10% [19], but the first female assemblies basedon
short [20] or long reads [21–23] showed that the non-recombin-
ingW chromosome is over 50% repetitive and especially rich in
endogenous retroviruses (ERVs). By analysing reference-quality
genomes of six species spanning the avian Tree of Life fromboth
Paleognathae (emu with homomorphic sex chromosomes) and
Neognathae (chicken, Anna’s hummingbird, kākāpō, paradise
crow, zebra finch with heteromorphic sex chromosomes), we
demonstrate that the avian W has generally accumulated ERVs
and probably contains active ERVs as indicated by signatures
of transcription and translation ofW-linkedERVs.We, therefore,
hypothesize that the W is a sex-specific source of genome-
wide retrotransposition and genome instability, with the male/
female difference in ERVs dictating the degree of repercussions
on sex differences in physiology and reproductive isolation.
2. Results and discussion
(a) Enrichment of endogenous retroviruses on the W

chromosome
We analysed six avian genomes spanning the avian Tree of
Life (figure 1a) and representing the current standard for
reference-quality genome assemblies [23,26]. Autosomes
had between 6 and 12% TEs on average (figure 1b; electronic
supplementary material, table S2 and S1) and the Z chromo-
some had similar or slightly higher TE densities (5–17%),
while the W chromosome stood out as having approximately
22–80% TEs (electronic supplementary material, table S2).
Notably, we also found the homomorphic W chromosome
of emu to be richer in TEs than the autosomes and Z
(22 versus 6.4 and 5.6%). Generally, the Z chromosome exhib-
ited a TE landscape more similar to the autosomes than to the
W chromosome, both regarding abundances and types of TEs
(figure 1b; electronic supplementary material, table S2). While
long interspersed elements (LINEs) from the Chicken Repeat
1 (CR1) superfamily were the dominant repeats on auto-
somes and Z (cf. [19,27]), ERVs were the major component
of the W chromosome and accounted for more than 50% of
the assembled chromosome itself (electronic supplementary
material, table S2).

ERVs are long terminal repeat (LTR) retrotransposons
deriving from germline-inherited retrovirus integrations and
exist mainly in two genomic forms [28,29]: (i) full-length
elements with terminal repeats (likewise called LTRs) flanking
its protein-coding genes necessary for retrotransposition; and
(ii) solo-LTRs resulting from homologous recombination
between the two flanking LTRs. Only full-length elements are
capable of autonomous retrotransposition. Using RETROTECTOR

and LTRHARVEST/LTRDIGEST [30–32], we annotated full-length
ERVs (fl-ERVs; electronic supplementary material, S2 and S3)
and detected a large proportion of fl-ERVs on the W chromo-
some compared to the rest of the genome (figure 1c and
table 1; electronic supplementary material, tables S3–S12).
Despite the fact that the W chromosome accounted only for
the 1–3% of the total length of assembled chromosomes
(figure 1c; electronic supplementary material, table S3), this
chromosome carried the same or higher numbers of fl-ERVs
than the autosomes altogether, with the exception of emu
with half the number onW than autosomes together (figure 1d
and table 1). The distribution of fl-ERVs deviated significantly
(χ2-test, p-values<0.01) from a random distribution across all
chromosomes (electronic supplementary material, table S4),
with an impoverishment of total ERV-derived bp on the auto-
somes (0–0.4 times fewer bp than expected) and an extreme
accumulation on the W (12–54 times more bp than expected;
electronic supplementary material, table S12). By contrast, we
identified a negligible amount of other full-length TEs per
genome (0–11 DNA transposons, 0–8 CR1 LINEs; electronic
supplementary material, table S4).

We propose a ‘refugium index’ (equation (4.1)) to quantify
the excess accumulation of TE-derived bp on an SLC relative to
the rest of the genome by comparing the observed and
expected abundance of TEs. Positive values of the refugium
index indicate an excess of TEs, while negative values a
depletion of TEs. Because only a subset of TE copies are usually
capable of (retro)transposition, we propose a ‘toxicity index’ as
a quantitative measure for the excess of intact TE copies in the
heterogametic versus homogametic sex through the presence
of an SLC (equation (4.2)). The excess is calculated by compar-
ing the number of full-length TEs in the diploid state in the two
sexes. The toxicity index indicates a non-toxic SLCwhen equal
to 0, toxicity of SLCswhen positive and toxicity of Z or Xwhen
negative. The term ‘toxicity’ pays tribute to the recently propo-
sed ‘toxic-Y’ hypothesis in Drosophila [13], which suggested
that an excess of Y-specific active TEs can lead to male-biased
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after [24] with schematic homomorphic or heteromorphic sex chromosomes [25]. (b) TE landscapes of autosomes and sex chromosomes as stacked bar plots.
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transposition and genome instability, together probably
detrimental to the genome and the organism. For birds, we cal-
culated the toxicity index as the excess of fl-ERVs carried by
diploid females compared todiploidmales (table 1), suggesting
that females with heteromorphic sex chromosomes carried
between 20 and 90% more fl-ERVs than males, and that even
the emu has 7–16%more fl-ERVs in females thanmales despite
largely homomorphic sex chromosomes [25,33]. We assume
this phenomenon to reflect that the non-recombining region
of the W, no matter how big or small, constantly accumulates
large quantities of new TEs. It is important to note that, given
thedifficulties in assembling SLCs evenwith long-read sequen-
cing technologies [8,23,26,34], the W chromosome models are
likely to be less complete than the other chromosomes. We
thus consider our W repeat annotations as well as indexes to
be conservative estimates for the true repeat content.

Our results suggest that the avian W chromosome is acting
as a refugium for intact and thus potentially active TEs, particu-
larly ERVs, which may have numerous implications. We thus
propose the ‘refugium hypothesis’ for SLCs in general: the
accumulation of TEs on the SLC leads to an excess of intact
TEs in the heterogametic sex, with a toxic effect absent from
the SLC-lacking homogametic sex. This sex-specific toxic
effect may manifest itself as sex-biased mutational load, geno-
mic instability, ageing and genetic incompatibilities as a result
of SLC-linked TE activity and heterochromatin dynamics
(explained below). To quantify and test the refugium hypoth-
esis in any sex chromosome system of interest, we introduced
two indexes above: the refugium index to measure the density
of TE-derived bp on the SLC relative to the remaining chromo-
somes; and the toxicity index to measure the number of
intact TEs (i.e. full-length copies of LTRs, LINEs and DNA
transposons) in the heterogametic sex relative to the other sex.

(b) Transcription and translation of W-linked
endogenous retroviruses

Considering the exceptionally high number of W-linked fl-
ERVs, we tested whether the avian W chromosome harbours
a potentially active load of ERVs specific to females. In the
absence of available retrotransposition assays for birds, we
regarded the transcription and translation of W-linked ERVs
as proxies of their activity. We identified W-linked single-
nucleotide variants (SNVs) within ERVs by mapping genome
re-sequencing data from male and female individuals, as well
as female transcriptome data, to consensus sequences of our
repeat library (electronic supplementary material, S5). We con-
sider this to be a conservative subset ofW-linked SNVs because
we required each SNV to be present in all females and absent
in all males per species. However, the paradise crow dataset
that contained only one male probably gave rise to false posi-
tive W-linked SNVs. We then traced the presence of ERV
proteins in the male and female proteome data available for
white leghorn chicken.

We analysed zebra finch, paradise crow, chicken and emu
for W-linked SNVs in genome re-sequencing and RNA-seq
data mapped against ERV consensus sequences. In each
species, we found between 52 and 332 ERV subfamilies with
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W-linked SNVs (table 2), with ERVL subfamilies being the
most represented (electronic supplementary material, table
S13) and found evidence for the transcription of between 12
and 182 ERV subfamilies in female gonads or female pectoral
muscle (table 2; electronic supplementary material, table
S13). Our estimates of transcribedW-linked ERVs are probably
just the tip of the iceberg, because we expect to identify
W-linked SNVs only if those ERVs have not yet spread in the
genome (e.g. very recent variants) or if they accumulated
exclusively on the W chromosome (e.g. fl-ERVs only existing
as solo-LTRs on other chromosomes). Alongside ERVs, we
also identified W-linked SNVs in CR1 LINEs and DNA
transposons (electronic supplementary material, table S13).
Although there is evidence for their transcription, their scarcity
of full-length elementsmakesCR1LINEs andDNA transposons
an unlikely source of mutational load for females.

Next, we analysed the overall RNA expression level of
ERVs in male and female gonads of emu, chicken and zebra
finch via RNA-seq read mapping to genomic regions anno-
tated as LTR or ERV fragments by REPEATMASKER (figure 2a).
Overall, females expressed such ERVs more highly than
males, with the single Z chromosome of females showing
expression levels that matched the two male Z chromosomes.
This pattern contrasts with incomplete dosage compensation
of Z-linked genes in birds indicated by the usual twofold
higher expression level of Z-linked genes in males [35,36].
Assuming that some of these ERVs are full-length and capable
of retrotransposition, female gonads would thus be exposed to
a greatermutational load. Furthermore,manyof the autosomal
and Z-linked ERVs showed differential expression towards
females (electronic supplementary material, figure S1).

Finally, we analysed protein mass spectrometry data of
white leghorn chicken gonads [37] with MAXQUANT [38] for
the presence of TE-relatedproteins and found a higher quantity
of more of these proteins expressed in females than in males as
indicated by a highH/L SILAC ratio (figure 2b; electronic sup-
plementary material, S6). Together, these results demonstrate
that some W-linked ERVs are transcribed and that females
have more ERV translation than males, and that W chromo-
somes thus feature fl-ERVs potentially able to retrotranspose.
Given our present data, we cannot distinguish whether this
higher ERV translation stems solely from the W chromosome
but it is plausible that the presence of an SLC causes a higher
TE activity (similarly to what happens in Drosophila [13]).
(c) Sex-biased implications for mutational load
SLCs have been largely considered inert chromosomes with
few effects beyond sex determination and gonadal develop-
ment because of their low gene content (e.g. only 13 genes on
Drosophila Y [39] and 28 genes on chicken W [21]). However,
accumulating evidence shows that SLCs can have additional
effects [12,40,41]. For example, it is important to highlight
that the Y-linked regulatory variation within populations of
Drosophila can have genome-wide epistatic effects [14–16,42].
This Y-linked regulatory variation cannot be explained
simply by regulatory variation of the protein-coding genes
and it has been proposed that the variability in Y repetitive con-
tent and structural variation are responsible for re-shaping the
genome-wide heterochromatin landscape [43]. This hypothesis
is known as the heterochromatin sink model, suggesting that
large heterochromatin blocks on SLCs act as a sink for the het-
erochromatin machinery and thereby reduce the efficiency of
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Table 2. Number of female-specific and thus W-linked SNVs relative to ERV consensus sequences detected at the genomic and transcriptomic levels for each
species. (More details about SNVs in ERVs, LINEs and DNA transposons are in the electronic supplementary material, table S13.)

species
no. of W-linked
SNVs in ERVs

no. of ERV subfamilies
with W-linked SNVs

no. of transcribed
SNVs in ERVs

no. of transcribed
ERV subfamilies

Dromaius novaehollandiae 764 58 82 12

Gallus gallus

(red junglefowl)

2088 52 671 28

Gallus gallus

(white leghorn)

6385 166 3534 102

Lycocorax pyrrhopterus 1591 198 42 21

Taeniopygia guttata 15 012 332 3306 182
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heterochromatin maintenance elsewhere relative to the
SLC-lacking sex [13,43].

Recently, the Y chromosome repeat content has been
linked to the destabilization and loss of heterochromatin,
which in turn is correlated to the shorter lifespan of the het-
erogametic sex [13,44]. By using Drosophila melanogaster
experimental lines with different Y dosages (XO males,
XXY females, XYY males), Brown et al. [13] showed that
the presence and number of Y chromosomes carried are cor-
related with shorter lifespans. It was thus suggested that the
Y itself is ‘toxic’ for the entire genome and organism, and
this toxicity is caused by the Y-linked load of active TEs
[13,45,46] whose expression is unleashed by heterochromatin
loss. Possibly, the dysregulation of TEs owing to heterochro-
matin loss is also associated with laminopathic diseases in
Drosophila and humans [47]. According to the refugium
hypothesis proposed here, we predict that in species with a
high toxicity index (i.e. excess of intact TEs on the SLCs
and/or paucity thereof in the rest of the genome), this
toxic effect will be more accentuated (figure 3a,b). The
toxic-Y hypothesis has been recently investigated from a
theoretical point of view in vertebrates with both XY and
ZW systems [48] and put in contrast with the classic
‘unguarded-X’ hypothesis [49–51], which proposes that the
expression of recessive mutations on X/Z chromosomes is
the cause of the shorter lifespan in the heterogametic sex.
It is important to note that reduced female lifespan in
birds has been documented in many species [52–55]. Sulta-
nova et al. [48] used the sizes of Y and W relative to X and
Z as a proxy for toxicity, i.e. assuming that smaller SLCs
are more repetitive. Although the correlation between the Y
size and relative lifespan in mammals was strong, the
authors did not find such a correlation for the W in birds.
We note that while SLC size relative to X/Z size might
indeed correlate negatively with the overall repeat content
(i.e. satellites and fragmented TEs), this might not necessarily
be informative for the number of intact TEs. Therefore, we
propose that our toxicity index could be a more suitable
proxy for toxicity because it considers the sex differences in
the load of intact and (potentially) active TEs. Among the
six birds compared here, emu and Anna’s hummingbird
would be those with the lowest and highest toxicity indexes,
and it remains to be tested if this indeed is a better predictor
of female lifespans.
(d) Sex-biased implications for genetic incompatibilities
In addition to TE mutational load and heterochromatin main-
tenance influencing organismal physiology, SLC-linked TEs
can also play an important role during hybridization. This
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Figure 3. Synthesis of the consequences of the refugium hypothesis on micro- (a,b) and macroevolutionary (c,d ) time scales. For simplicity, a schematic example of
avian sex chromosomes is shown, but we expect these consequences for any ZW or XY system with SLC-linked intact TEs. (a) Simplified karyotypes of male and
female birds indicating that the W chromosome is a TE refugium and heterochromatin sink. Grey circles: centromeres and heterochromatin blocks; red lines: intact
TEs; red arrows: TEs spreading away from the W chromosome; grey arrows: heterochromatin deposition on the W chromosome. (b) The ‘toxic’ effect of the gradual
de-repression of TEs during an organism’s lifetime is more accentuated in females carrying more intact TEs than males. The W-linked activity of intact TEs could
explain the shorter lifespan of the heterogametic sex. The toxicity of active TEs is represented by the increasing number of transcripts in red as a proxy for genome-
wide TE insertions. (c) Simplified karyotypes of two bird species with species-specific TEs (blue and orange lines) and sequence-specific TE repressors (blue star and
orange hexagon). Assuming a rapid accumulation and sequence turnover of TEs especially on the W, diverging species or populations may quickly acquire different
TE/repressor repertoires. (d ) Genetic incompatibility owing to the W chromosome in a female F1 hybrid between species 1 and species 2 of (c). Schematic example of
four possible meiotic products (oocytes) of the F1 hybrid, two of which lack the blue repressor of blue TEs because of meiotic recombination between the autosomes.
The TE/repressor mismatch may lead to de-repression of W-linked TEs in gametes or embryos and thereby a female-biased reduction in hybrid fitness.
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point may be not overly surprising in the context of Haldane’s
rule, which states that upon hybridization, if there is a sterile
or inviable sex, it will be the heterogametic one. Accumulating
evidence suggests that hybrid genome stability can be
compromised during mitosis and meiosis by species-specific
differences in heterochromatin landscapes leading to uncon-
trolled TE activity (reviewed by Serrato-Capuchina & Matute
[56]). Furthermore, species-specific families of repeats can
induce lagging chromatin at cell division during early
embryogenesis (when heterochromatin is first established),
leading to chromosome mis-segregation and F2 hybrid
embryo death [57]. In the context of the refugium hypothesis,
it is important to consider that new and active TEs are one of
the main targets of heterochromatinization [58,59], and SLCs
could be a source for both sex-specific and species-specific
heterochromatin differences.
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TEs generally evolve very rapidly in their sequence and
usually only few elements remain intact and capable of trans-
position [60]. In addition, many TE repressor systems are in a
sequence-specific arms race (e.g. piRNAs or KRAB-zinc
finger proteins [58,61,62]); therefore, TE sequences and their
repressors can both diverge rapidly between populations and
species. Because SLCs rapidly evolve and accumulate repeats
[5,18], SLCs are probably sex-specific refugia of species-specific
active TEs. Hybrid incompatibility owing to TE/repressor
mismatches can arise when new TE families are introduced
into a naive genomic background (lacking specific repressors),
which can lead to the uncontrolled proliferation of such TEs,
followed by gene disruption, genome instability [63] and
hybrid dysgenesis [17]. TE/repressor mismatches can already
occur during meiosis in the F1 hybrids, when recombination
can separate the repressor from the controlled TEs (figure 3c,d )
[64]. Although this scenario can occur in both sexes, we expect
that in species with a high number of intact TEs on the SLCs
relative to the rest of the genome (i.e. high toxicity index,
highly heteromorphic SLCs), there are more chances for a mis-
match between a repressor and intact TEs on the SLCs than for
other chromosomes (figure 3d ).

For the birds analysed here, theW chromosome is probably
the main source for genome-wide new TE insertions because it
contains 16–50% of all intact TEs in a diploid female. Further-
more, potential TE/repressor mismatches stemming from the
W chromosome would also reinforce the observation of
reduced mitochondrial (maternally inherited as the W) intro-
gression during hybridization in birds [65]. Mitonuclear
incompatibilities, i.e. mismatches between mitochondrial and
nuclear alleles, play a disproportionate role in both intra-species
and hybrid incompatibilities [66–69]. In ZW systems, these
mitonuclear incompatibilities may be even more exacerbated
because of the co-inheritance with the SLCs, and especially
when SLCs feature active repeats. Thus, in addition to the pres-
ervation of dosage-sensitive genes [21,70], the W represents a
reservoir of many different and intact TEs that, through their
potential for de-repression in hybrids, may constitute an
additional explanatory variable for Haldane’s rule.
3. Conclusion
We suggest that the avian W chromosome, no matter how het-
eromorphic or homomorphic, is a refugium for TEs and
specifically fl-ERVs, some of which are expressed and thus
potentially capable of retrotransposition. This pattern should
be generalizable for all birds given our broad sampling of
Palaeognathae, Galloanserae and Neoaves. We propose that
ERVs are continuously shaping W evolution and are one of the
major contributors of structural changes of this chromosome. If
so, it is reasonable to speculate that ERVs have played a relevant
role in the expansion of the non-recombining region of theW (cf.
[71]), for example, by contributing to the heterochromatinization
of euchromatic regions through new ERV insertions.

We hope that the refugium and toxicity indexes proposed
here will help testing these hypotheses in avian W chromo-
somes, and SLCs in general. The toxicity index measures the
excess of intact TEs on an SLC, which represents the potential
for genome-wide sex-specific mutational load as well as sex-
specific genome instability. On the short time scale of individ-
uals, a high toxicity index could lead to larger physiological
differences between the two sexes [13]. In the long term, e.g.
between populations and species, the accumulation of TEs as
measured by the refugium index can have effects on reproduc-
tive isolation through TE/repressor mismatches, similar to the
situation in Drosophila [17,57]. It is important to underline that
the toxicity of SLCs should be linked to the number of intact
TEs rather than to the general repetitiveness of the chromo-
some. Furthermore, the refugium and toxicity indexes can be
useful to predict and test hybrid incompatibilities, in addition
to measuring the genetic distance between nuclear and mito-
chondrial genes [72]. We predict that with the increasing
availability of genome assemblies based on long reads, these
indexes will find applicability across SLCs in general. For
birds and their W chromosomes, the possible toxic effect of
the W on lifespan requires additional tests in vivo that exclude
the effects of the phenotypic sex (e.g. developing systems simi-
lar to the four core genotypes in mice [73] or the attached-X/
attached-X–Y karyotypes in Drosophila [74,75]) and account
for confounding ecological factors (e.g. intense sexual
competition and predations especially of males).

To conclude, SLCs are not merely refugia for repeats
with usually neutral or slightly deleterious effects on SLCs
themselves, but SLC-linked intact TEs may have genome-wide
effects that could effectively turn SLCs into ‘toxic wastelands’.
4. Material and methods
(a) Samples, DNA, RNA and proteome data
Weused the female reference-quality genome assemblies of chicken
(Gallus gallus; GCA_000002315.5; galGal6a), paradise crow
(Lycocorax pyrrhopterus; GCA_014706295.1) [23], emu (Dromaius
novaehollandiae; GCA_016128335.1) [76], Anna’s hummingbird
(Calypte anna; GCA_003957555.2; bCalAnn1_v1.p) [26], kākāpō
(Strigops habroptila; GCA_004027225.2; bStrHab1.2.pri) [26] and
zebra finch (Taeniopygia guttata; GCA_009859065.2; bTaeGut2.
pri.v2) [26]. All these six assemblies have chromosome models
and we carried out all analyses considering only using assembled
chromosomes, i.e. discarding unplaced contigs and scaffolds.

For chicken, Illumina genome re-sequencing libraries were
collected for two females and three males of Gallus gallus gallus
(red junglefowl) from [77] (originally uploaded on NCBI as of
undetermined sex) and a female library of Gallus gallus bankiva
(red junglefowl from Java) from [78]. The sexes of the individuals
from [77] were determined using the SEXCMD with default sex
markers [79]. Red junglefowl RNA-seq libraries of a female
(ovary) and of a male (testes) were retrieved from [80]. We also
collected publicly available data for the chicken breed white leg-
horn, i.e. Illumina genome re-sequencing libraries of one female
and three males from [78,81], RNA-seq libraries and protein mass
spectrometry libraries for five ovaries and five testes [37].

Forparadise crow,weusedone10XGenomicsChromium linked-
read library of DNA from a pectoral muscle sample of a female from
[23]. We also newly generated such data for three females and one
male using the same methods [23] and generated RNA-seq data
from female pectoral muscle (preserved in RNAlater). RNA was
extracted with phenol-based phase separation using the TRIzol
reagent (ThermoFisherScientific) following the standardprotocol rec-
ommended by the supplier, followed byDNase treatment for 30 min
using the DNA-free DNA removal kit (ThermoFisher Scientific).
Sequencing librarieswere prepared according to the TruSeq stranded
total library preparation kit with RiboZero Gold treatment (Illumina,
Inc., catno. 20020598/9).Paired-reads (150 bp)were sequencedon the
NovaSeq SP flowcell (Illumina, Inc.).

For zebra finch, we used Illumina genome re-sequencing
libraries of four females and four males from [82], and RNA-seq
libraries of two ovaries and one testis from [83,84].
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Finally, for emu, we collected Illumina genome re-sequencing
libraries of two females and two males from [85–87], and
RNA-seq libraries for seven ovaries and five testes from [86,88].

More details and accession numbers for all the libraries
and genomic sequences used here can be found in the electronic
supplementary material, table S1.

(b) Repeat annotation
To best annotate repeats in all six avian species, we made sure to
have species-specific repeat predictions for each. The repeat
libraries of chicken, paradise crow and zebra finch were already
manually curated elsewhere [23,89,90] while species-specific
repeat libraries did not exist for emu, Anna’s hummingbird and
kākāpō. Therefore, we de novo characterized repetitive elements
in these last three species using REPEATMODELER2 [91] and manually
curated those sequences labelled as ‘LTR’ and ‘unknown’ following
the samemethod as in [23].We also inspected consensus sequences
with unusual classification for being avian repeats like many DNA
transposon superfamilies [19]. We then concatenated the newly
curated libraries with the avian consensus sequences from Repbase
[92], hooded crow [93], blue-capped cordon bleu [94], collared fly-
catcher [95] and paradise crow [23], and used this final library to
mask all six genomes with REPEATMASKER [96]. The new repeat
libraries and notes on their classification are given in the electronic
supplementary material, S7.

(c) Quantity of endogenous retrovirus transcription and
their differential expression

We used Illumina RNA-seq reads from adult gonads from emu,
chicken and zebra finch (electronic supplementary material, table
S1) mapped against genomic copies/fragments annotated as LTR
or ERV by REPEATMASKER to quantify ERV transcription levels
and investigate whether the ERVs were differentially expressed
across available tissues. For these species, three to five biological
replicates for every tissue were used.

Raw RNA-seq data were quality controlled using FASTQC [97]
and trimmed with TRIMGALORE [98] using default settings, then
mapped to the respective reference genomes using STAR [99].
The alignment was filtered by running featureCounts function
from the package SUBREAD v2.0.0 in paired-end mode [100], and
only uniquely mapping reads were retained.We provided feature-
Counts with a filtered REPEATMASKER .out file containing only
repeat copies annotated as LTR or ERV. Per-genome counts were
obtained using read counts and lengths of corresponding ERVs.
DESEQ2 1.20.0 [101] implemented in the R Bioconductor package
was used for relative quantification of the ERV transcripts and
for calculating the TPM (transcripts per million), giving a normal-
ized ERV expression level. Male reads that mapped to the W
chromosome represented low counts andwere, therefore, removed
during the normalization step. The values from replicates of each
sample were averaged for the final plots of ERV expression. To
identify biased ERVs per chromosome type (i.e. autosomes, Z
andW),we compared adult gonads frommale and female individ-
uals. The statistical analysis of differentially expressed ERVs was
performed using DESEQ2. All p-values were adjusted ( padj)
using the Wald test. The degree of bias was determined by the
log2 fold-change (log2FC) difference between conditions. There-
fore, the ERVs with log2FC > 0 and log2FC < 0 together with a
padj < 0.05 were considered as biased ERVs in the conditions.

(d) Full-length transposable element detection and
abundance

Here,we define full-length TEs as possible (retro)transposition-com-
petent elementswith relatively complete structures and thepotential
to produce transcripts. We identified fl-TEs in all the six avian
genomes by adopting different methods for DNA transposons,
LINEs (e.g. CR1) and LTR retrotransposons (ERVs). For DNA trans-
posons andLINEs,we first identified open reading frames (ORFs) in
the insertions annotated by REPEATMASKER, then translated such
ORFs and aligned with RPS-BLAST [102] against a custom Pfam
[103] database containing transposon-related proteins (similar
approach to [104]). ORFs fromLINEs of at least 600 bp that spanned
90% of both endonuclease and reverse transcriptase domains were
considered as full-length elements. Likewise, ORFs belonging
to DNA transposons of at least 1 kb that spanned 90% of the
transposase protein domain were considered full length.

Inorder todetect andquantify fl-ERVs,weusedRETROTECTOR [30]
as well as LTRHARVEST [31] together with LTRDIGEST [32]. RETROTECTOR

results were filtered for scores over 300 and presence of 50-LTR and
3’-LTR, as well as ORFs with complete or partly complete gag, pol
and env genes as previously described in [30,105]. LTRHARVEST results
were filtered for false positive using LTRDIGEST in combination
with hiddenMarkov models profiles of LTR retrotransposon-related
proteins downloaded from Pfam [103] and GyDB [106].

(e) Identification of single-nucleotide variants of
W-linked endogenous retroviruses and their
transcription and translation

To verify the hypothesis that the W chromosome is a refugium of
intact and potentially active ERVs, we identified W-linked SNVs
within ERVs and traced their transcription in RNA-seq data
and translation in protein mass spectrometry data wherever
possible. W-linked ERV transcription was analysed in G. gallus,
L. pyrrhopterus and T. guttata (electronic supplementary material,
table S1). ERV translation was analysed in G. gallus white leg-
horn breed [37]. RNA-seq and proteome libraries selected for
this analysis were from gonad tissue with the exception of
L. pyrrhopterus for which the RNA-seq data were generated
from female pectoral muscle.

To identify W-linked SNVs from male/female read mapping,
we used the WhatGene pipeline developed by Ruiz-Ruano
et al. [107] for SNV analyses of B chromosomes and germline-
restricted chromosomes [108] where we mapped male and female
genome re-sequencing reads to the consensus sequences of our
repeat library. We considered variants to be W-linked if they were
present in all females but absent in males. We then checked for the
presence of theseW-linked variants in the RNA-seq data always fol-
lowing the WhatGene pipeline. Variants that were called W-linked
from genomic data but were present in male transcriptomic data
were discarded as false positives owing to sample size.

To check for the presence of ERV-related proteins in white
leghorn chicken proteome data, we extracted the ORFs from
ERV consensus sequences and translated them into peptides
using ORFFINDER [109]. The peptide sequences were used as
query database for MAXQUANT 1.6.17.0 [38]. We used the exper-
imental parameters described in [37] (electronic supplementary
material, S5); search results were filtered with a false discovery
rate of 0.01. Second peptides, dependent peptides and match
between runs parameters were enabled.

( f ) Refugium index and toxicity index
To test whether intact TEs are uniformly distributed throughout
the genome, we compared the observed total number of fl-ERVs
(assuming that the numbers of other intact TEs are negligible in
avian genomes [19]) on autosomes and sex chromosome to their
expected values with a χ2-test with 2 degrees of freedom. We cal-
culated the expected values of TE densities on the chromosomes
by assuming a uniform density of these elements across chromo-
somes (electronic supplementary material, tables S3 and S4).
Next, we calculated the refugium and toxicity indexes, which
are described below for SLCs in general.
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The refugium index (equation (4.1)) calculates the percentage
of excess or depletion of observed TE-derived bp (%TEobs) with
respect to the genome-wide average of the total TE-derived bp of
a haploid genome assembly (%TEexp). We recommend estimating
TE densities in REPEATMASKER or similar homology-based annota-
tions using a species-specific repeat library combined with
libraries of related species in Repbase or similar databases:

refugium index ¼ %TEobs �%TEexp

%TEexp
: ð4:1Þ

The refugium index indicates whether an SLC shows an
excess (RI > 0) or a depletion of TEs (RI < 0). Furthermore, the
refugium index can be estimated for any chromosome of interest,
considering all TEs together or specific TE groups separately.

The toxicity index (equation (4.2)) calculates the excess of
intact TEs present in the heterogametic sex with respect to the
homogametic sex. Here, 2nhom and 2nhet are the total numbers
of intact TEs in the diploid state in the homogametic sex (2 ×
autosomes + 2 × Z or X) and the heterogametic sex (2 × auto-
somes + 1 × Z or X + 1 ×W or Y), respectively. We recommend
quantifying intact TEs as the sum of the number of full-length
LTR retrotransposons (incl. ERVs) in RETROTECTOR/LTRHARVEST

or similar structure-based approaches and the number of
copies spanning greater than 90% of the ORFs of DNA transpo-
sons (i.e. transposase) and LINEs (i.e. ORF1 or ORF2) in RPS-
BLAST or similar homology-based searches:

toxicity index ¼ 2nhet � 2nhom
2nhom

: ð4:2Þ

The toxicity index indicates whether there is no sex difference
in toxicity (TI = 0), toxicity of the W or Y chromosome (TI > 0) or
even toxicity of the Z or X chromosome (TI < 0). Consequently,
we expect the toxicity index to be applicable not only to XY
and ZW systems, but also XO systems.
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