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ABSTRACT
The India-Asia collision is an outstanding smoking gun in the study of continental collision dynamics. How
and when the continental collision occurred remains a long-standing controversy. Here we present two new
paleomagnetic data sets from rocks deposited on the distal part of the Indian passive margin, which indicate
that the Tethyan Himalaya terrane was situated at a paleolatitude of∼19.4◦S at∼75Ma and moved rapidly
northward to reach a paleolatitude of∼13.7◦N at∼61Ma.This implies that the Tethyan Himalaya terrane
rifted from India after∼75Ma, generating the North India Sea. We document a new two-stage continental
collision, first at∼61Ma between the Lhasa and Tethyan Himalaya terranes, and subsequently at∼53−
48Ma between the Tethyan Himalaya terrane and India, diachronously closing the North India Sea from
west to east. Our scenario matches the history of India-Asia convergence rates and reconciles multiple lines
of geologic evidence for the collision.

Keywords: India-Asia collision, Tethyan Himalaya terrane, North India Sea, two-stage continental
collision

INTRODUCTION

The collision of India with Asia was one of the most
significant tectonic events of Earth’s history and had
a profound influence on deep physical and chemical
processes, paleogeography, climate and biodiver-
sity in Asia [1–6] (Fig. 1). During the past half
century, a series of geologic, geophysical and
geochemical studies [7–14] has contributed sig-
nificantly to our understanding of the timing and
process of the India-Asia collision. As a result,
chronological consensus exists that Asia-derived
sediments were deposited in the Tethyan Himalaya
at ∼60Ma, during the mid-Paleocene [15–17],
which is generally accepted as the initiation time of
India-Asia collision [9–14]. At least four competing
geodynamic models were proposed to discuss
the dynamic process of the India-Asia collision
(Supplementary Fig. 1): (i) the continental Greater
India model [18,19] successfully explains the
arrival of Asian sediments in the Tethyan Himalaya
at ∼60Ma, but the required ∼4500 km of post-

collisional convergence is significantlymore than the
shortening in the geologic records; (ii) the Greater
India Basin model [5,12] fulfils paleomagnetic and
plate kinematic criteria, explains the shortening,
accommodates ∼60Ma Tethyan Himalaya-Lhasa
collision, but invokes the opening and closure of
an oceanic basin between ∼120Ma and ∼25Ma
between the Tethyan Himalaya and India, of which
there is no accretionary geologic record present in
the Himalaya; (iii) the island arc-continent colli-
sion model [20] invokes an always small Greater
India which satisfies existing paleomagnetic, plate
kinematic criteria and fast India-Asia convergence
but fails to explain why Asian detritus reaches the
Tethyan Himalaya at ∼60Ma; and (iv) the India-
arc collision with the Xigaze backarc basin model
[13] has an always narrowGreater India constrained
by existing paleomagnetic and plate kinematic data,
which successfully explains the arrival of Asian
sediments in the Tethyan Himalaya at∼60Ma, but
invokes the opening and closure of a backarc basin
between the Tethyan Himalaya and Lhasa terrane
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Figure 1. Geologic and topographic maps of the study region. (a) Large-scale topographic map. (b) The geology of the Hi-
malaya, simplified from Yin [7]. (c) The studied Cailangba section, simplified from Chen et al. [32]. (d) The studied Sangdanlin
andMubala sections. IYTS, Indus-Yarlung Tsangpo Suture. STDS, South Tibet Detachment System.MCT,Main Central Thrust.
MBT, Main Boundary Thrust. MFT, Main Frontal Thrust.

of which there is no geologic record. In spite of
the competing character of these models, precise
determination of the timing and process of the con-
tinental collision between India and Asia is required
to provide reliable and independent evidence.

Paleomagnetism can effectively quantify paleo-
latitudes of plates [21] and has been widely used
to quantify the India-Asia collision process. Pa-
leomagnetic studies indicate that the Lhasa ter-
rane has been relatively stable in its location since
the Early Cretaceous at paleolatitudes of 10◦N–
20◦N [22–24]. In contrast, the paleomagnetic data
from Upper Cretaceous to Paleocene rocks of the
Tethyan Himalaya terrane suggest variable paleo-
latitudes (15◦S–10◦N) [25–28]. Conflicting results
are partly due to the remagnetization of limestones
in some previous studies, as suggested by Huang
et al. [29].

To this end, we conducted paleomagnetic and
rock magnetic analyses on two key successions
that were deposited on the distal northern part of
the Indian passive margin (Tethyan Himalaya ter-
rane), where Upper Cretaceous oceanic red beds
(CORBs) are exposed in the Cailangba A and B
sections (28.9◦N, 89.2◦E) in the Gyangze area and
Upper Cretaceous to Paleocene red siliceous shales
are well-exposed and well-studied in the Sangdanlin
(29.3◦N, 85.3◦E) andMubala (29.3◦N, 84.7◦E) sec-
tions in theSaga area [15–17,30–32] (Fig. 1, Supple-
mentary Note 1 and Supplementary Figs 2 and 3).
All these strata were interpreted to be deposited on
the lower continental slope, representing the most
distal northern continental margin of India. Our re-
sults provide independent evidence of the paleo-
latitudinal positions of the Tethyan Himalaya ter-
rane in the late Cretaceous and mid-Paleocene and
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Figure 2. SEM observations and rock magnetic properties from the Cailangba (sample CL043-1), Sangdanlin (sample SE12-1) and Mubala (sample
MB4-8) sections. (a−c) Scanning electron microscopy backscatter electron images. (d−f) Hysteresis loops after high-field slope correction with hys-
teresis parameters indicated. (g−i) Component analysis of coercivity distributions with green, blue and red lines indicating the low coercivity (IRML)
component, high coercivity (IRMH) component and the sum of these components (sum), respectively. Open circles indicate raw IRM gradient data (raw
data).

unequivocally elucidate the timing, location and
geodynamic models of the India-Asia collision.

RESULTS
Scanning electron microscopy
Two different types of hematite grains were found
in the thin sections of the Cailangba and Sangdanlin
samples (Fig. 2a and b). One type has a particle size

range of 5−15μmwith rectangular, triangular, sub-
circular and irregular shapes.This type of hematite is
interpreted as detrital in origin. The other type has
a particle size range of ∼1 μm, presenting a sub-
hedral to euhedral regular morphology, either dis-
tributed along fractures or grown in pores.This type
of hematite is interpreted as chemical (authigenic)
in origin.We conclude that themagnetic mineral as-
semblage of these samples consists of both detrital
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and chemical hematite grains. The Mubala samples
reveal only the large particle component and contain
only detrital hematite grains (Fig. 2c).

Rock magnetism
All the selected samples display rectangular hystere-
sis loops (Fig. 2d−f), which are typical of hematite.
The isothermal remanent magnetization (IRM) ac-
quisition curves show that the magnetic remanence
is not saturated at the maximum applied field of
1.5T.The remanent coercivity (Bcr) values (defined
with respect to 1.5 T) are as large as 575−837 mT.
All these results are characteristic of a magnetiza-
tion dominated by high-coercivity hematite. How-
ever, component analyses of coercivity distributions
[33] show different assemblages of hematite grains.

For the Cailangba and Sangdanlin samples, two
components with different coercivities were distin-
guished by the IRM component analysis (Fig. 2g
and h). Component 1 with median acquisition field
(BL1/2) of 246−316 mT, which contributes about
15% to the saturation isothermal remanentmagneti-
zation (SIRM), is interpreted as fine-grained chemi-
cal hematite. Component 2 with median acquisition
field (BH1/2) of 692−955 mT, which contributes
about 85% to SIRM, is interpreted as coarse-grained
detrital hematite. For the Mubala samples, the pre-
dominant component with median acquisition field
(BH1/2) of up to 1288 mT (Fig. 2i), which con-
tributes 91% to the SIRM, is also interpreted as
coarse-grained detrital hematite.

Paleomagnetism
Stepwise thermal demagnetization reveals three
magnetic components for specimens of the
Cailangba and Sangdanlin sections (Fig. 3a–f): a

low-temperature component (LTC, 80–300◦C),
a middle-temperature component (MTC, 300–
650◦C) and a high-temperature component (HTC,
650–680◦C); and only two components for spec-
imens of the Mubala section (Fig. 3g–i): an LTC
(80–300◦C) and an HTC (600–680◦C).

The sample-mean directions of the LTCs be-
fore tilt correction are close to the present geomag-
netic field direction of the sampling area, indicat-
ing that the LTCs are of viscous origin (Table 1
and Supplementary Figs 4−6).TheMTCswere iso-
lated from the Cailangba and Sangdanlin sections
(Table 1 and Supplementary Figs 4 and 5). The
HTCs were isolated from 127, 56 and 30 specimens
at the Cailangba, Sangdanlin and Mubala sections,
respectively (Fig. 3j−l, Table 1 and Supplementary
Table 1).

The HTCs were not isolated from some in-
dividual specimens of the Sangdanlin section
(Supplementary Fig. 7). In these cases, it is possible
that a chemical remanent magnetization, gener-
ated through oxidation of magnetite by orogenic
hydrothermal fluids, has overprinted the primary de-
trital remanent magnetization completely [34,35].
The HTCs are considered the primary magnetiza-
tion in all our sections; they are carried by detrital
hematite and show dual polarities (Supplementary
Figs 2 and 3).

Reliability of the paleomagnetic data
For the Cailangba A and B sections, the fold
tests failed because the strata at two sections
are uniformly dipping. However, the HTCs from
the Cailangba B section display both normal and
reverse polarities (Supplementary Fig. 2 and Sup-
plementary Table 1), which pass the bootstrap
reversal test (B class) [36]. The HTC sample-
mean declinations of the Sangdanlin section differ

Table 1. Mean directions. N, number of samples used to calculate mean direction; Dg and Ig (Ds and Is), directions in geographic (stratigraphic) coor-
dinates; kg/ks, best estimate [66] precision parameter for the mean direction in geographic (stratigraphic) coordinates; α95g/α95s, the radius of cone at
95% confidence level about the mean direction in geographic (stratigraphic) coordinates.

Sections
Magnetic

components N Dg Ig kg α95g Ds Is ks α95s

Cailangba LTC, 80–300◦C 185 1.6 42.4 40.3 1.7 358.5 4.7 41.6 1.6
MTC, 300–650◦C 165 162.3 −18.5 28.5 2.1 162.0 18.4 21.6 2.4
HTC, 650–680◦C 127 8.8 11.6 35.6 2.1 10.3 −25.9 35.6 2.1

Sangdanlin LTC, 80–300◦C 101 358.6 40.8 19.4 3.3 5.3 7.0 20.7 3.2
MTC, 300–650◦C 96 180.6 −16.1 70.0 1.7 180.6 16.9 69.1 1.7
HTC, 650–680◦C 56 271.3 −39.7 34.0 3.3 253.3 −18.9 39.7 3.1

Mubala LTC, 80–300◦C 31 3.1 46.4 19.2 6.1 179.2 57.5 17.6 6.3
HTC, 600–680◦C 30 154.5 53.9 76.5 3.0 165.3 −18.0 127.1 2.3
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significantly from those of the Mubala section, but
the inclinations trend to the same value after tilt cor-
rection (Fig. 3 and Supplementary Fig. 8). Using the
method of maximum likelihood estimation [37] to
calculate the sample-mean inclination, the precision
parameter k value increased from 26.9 (in situ) to
82.8 after tilt correction, indicating that the rema-
nences have a pre-folding origin.Although separated
by 60 km, the Sangdanlin Formation strata at the
two studied sections reveal the same sedimentary fa-
cies.The anisotropy of magnetic susceptibility result
suggests that the Sangdanlin section experienced
71◦ counterclockwise rotation with respect to the
Mubala section (SupplementaryNote 2 and Supple-
mentary Fig. 9b and d). After correction for this lo-
cal rotation, positive fold tests are achieved for the
sample-mean direction of these two sections, yield-
ing Ds = 176.3◦, Is = −18.8◦, k= 35.8, α95 = 2.6◦,
N = 86 after tilt correction (Supplementary Note
3 and Supplementary Fig. 10). Moreover, the dual
polarity data of the Sangdanlin section (Supplemen-
tary Fig. 3 and Supplementary Table 1) also pass
the reversal test (B class) [36]. All these lines of ev-
idence suggest that the mean directions of HTCs of
the Cailangba, Sangdanlin and Mubala sections are
of pre-folding origin and most likely primary.

Magnetostratigraphy
TheHTCs in theCailangba and Sangdanlin sections
display both normal and reverse polarities, which
we use to construct magnetic polarity sequences of
the sections that can be subsequently correlated to
the geomagnetic polarity time scale (GPTS) [38]
to better estimate the age of the rocks (Supplemen-
tary Figs 2 and 3 and Supplementary Table 1). The
magnetic polarity zones correlate very well with the
GPTS, which also implies a primary origin of the
magnetic remanences.

The lower and middle parts of the Cailangba
B section were dated to be 76.2–75.7Ma by
planktonic foraminifers, which yielded a middle
Campanian age for the Cailangba B section (Sup-
plementary Fig. 2) [32]. Hence, the reverse polarity
R1 and normal polarity N2 magnetozones in the
Cailangba B section are correlated to chron C32r.2r
(74.3–74.0Ma) and the upper part of chron C33n
(79.9–74.3Ma), respectively. The single normal
polarity N1 magnetozone of the Cailangba A
section is correlated to the upper part of chron
C33n (79.9–74.3Ma). As a result, the CORBs in
the Cailangba A and B sections represent the time
interval of 76.2–74.0Ma by magnetobiostratig-
raphy (Supplementary Fig. 2 and Supplementary
Table 1).

For the Sangdanlin section, biostratigraphic con-
straints are available from sub-units 9−13 that were
dated to be in Paleogene radiolarian zones RP4–
RP6 (62.8−56.9Ma) at low latitude (Supplemen-
tary Fig. 3) [17]. The nannofossil biostratigraphy
of the overlying Zheya Formation corresponds to
the upper part of the Paleocene calcareous nanno-
fossil zone 7 (CNP7: 59.93−58.27Ma), and cor-
relates robustly with the upper part of chron C26r
of Ocean Drilling Program Site 1262 [17,39]. De-
trital zircon geochronology data from sub-units
14–16 show the youngest peak at 58.1 ± 0.9Ma
(Supplementary Fig. 3) [17], which is consistent
with thedetrital zircon age results (∼60−59Ma) re-
ported by DeCelles et al. [15] and Wu et al. [16].
Based on these independent age constraints, we cor-
relate normal polarity N1 magnetozone to chron
C27n (62.5−62.2Ma) and reverse polarity R1mag-
netozone to chron C26r (62.2−59.2Ma), respec-
tively (Supplementary Fig. 3 and Supplementary
Table 1). As a result, the Sangdanlin Forma-
tion is interpreted to have been deposited during
62.5−59.2Ma.

Inclination shallowing test and
correction
Inclination shallowing may be induced by depo-
sitional and post-depositional compaction in red
beds and other sediments [40]. The sampled beds
of late Cretaceous Cailangba A and B sections are
uniform and the amount of sampled beds exceeds
100. Elongation/inclination (E/I) correction [40]
and IRM anisotropy-based inclination shallowing
correction [41] are independent, but both yield a
shallowing factor of ∼0.7 (Supplementary Note 4,
Supplementary Figs 11 and 12, and Supplementary
Table 2).After inclination shallowing correction, the
sample-mean inclinationof theCailangba section in-
creased from 25.9◦ to 35.0◦, giving what we propose
to be a high-quality Late Cretaceous paleopole of
40.8◦N/256.3◦E, A95 = 1.8◦, with a paleolatitude of
19.4◦ ± 1.8◦S.

Considering the number of sampled beds of the
Sangdanlin section, only IRM anisotropy-based in-
clination shallowing correction [41]was used for the
red siliceous shales of the Sangdanlin and Mubala
sections. Using the anisotropy-based mean value of
∼0.7 as the inclination shallowing factor (Supple-
mentary Note 4, Supplementary Fig. 13 and Sup-
plementary Table 3), the sample-mean inclination
of the Sangdanlin andMubala sections (Supplemen-
tary Fig. 10) increased from 18.8◦ to 26.0◦, giving
a paleopole of 74.0◦N/278.5◦E, A95 = 2.5◦, with a
paleolatitude of 13.7◦ ± 2.5◦N.
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DISCUSSION
Primary versus secondary magnetizations
in the Tethyan Himalaya terrane
Attempts at paleomagnetic reconstructions for the
India-Asia collision zone are commonly hampered
by rocks that contain secondary remagnetization
overprints, but that these data have been interpreted
to be primary [29]. We show that red rocks of
the Tethyan Himalaya terrane contain both sec-
ondary components, carried by chemical hematite
(our MTC component), and primary components,
carried by detrital hematite (our HTC component).

Recently Yang et al. [42] also reported paleomag-
netic results from red beds in the Sangdanlin section,
with a direction (defined through 500−660◦C) of
Dg = 177.0◦, Ig = −14.1◦, k= 19.4, α95 = 5.6◦ be-
fore tilt correction, and Ds = 178.7◦, Is = +9.5◦,
k = 20.8, α95 = 5.4◦ after tilt correction. This is
similar to the sample-mean direction of the MTCs
carried by secondary chemical hematite (defined
through 300−650◦C) of the Sangdanlin specimens
in this study (Table 1 and Supplementary Fig. 5),
and thus, we argue, cannot be used to reconstruct
the India-Asia collision. The MTCs were probably
acquired due to the folding and thrusting during a
later tectonic episode of the Himalayan orogeny.

Timing and position of the collision
between the Tethyan Himalaya and Lhasa
terranes
Although numerous paleomagnetic studies have
been conducted on both the Lhasa and Tethyan Hi-
malaya terranes over the past decades, the derived
paleolatitudes remain highly variable and thus con-
troversial. In this study, we evaluate the Cretaceous
and Paleogene paleomagnetic data from the Lhasa
terrane based on the stringent criteria proposed by
van der Voo [43]. We especially focus on data from
red beds with inclination shallowing properly cor-
rected, and from volcanic rocks with secular varia-
tion (PSV) averaged. A total of 19 paleomagnetic
poles (five for Early Cretaceous, eight for Late Cre-
taceous and six for Paleogene time) passed these
criteria and were selected to estimate paleolatitude
changes of the Lhasa terrane fromCretaceous to Pa-
leogene (Supplementary Fig. 14 and Supplementary
Table 4). The small-circle fitting method [44] was
applied to fit the selected Lhasa terrane paleomag-
netic poles at a reference point (29.3◦N, 85.3◦E).

Our review of the Lhasa data accepts five reli-
able Early Cretaceous poles and eight Late Creta-
ceous poles that give co-latitudes of 75.9◦ ± 5.9◦N
and 76.6◦ ± 2.5◦N, respectively, indicating paleo-

latitudes of 14.1◦ ± 5.9◦N in the Early Cretaceous
and 13.4◦ ± 2.5◦N in the Late Cretaceous for the
Lhasa terrane; these are equivalent within errors. In
contrast, paleomagnetic directions of some Upper
Cretaceous and Paleocene limestones (Zongpu and
Zongshan formations) yield lower paleolatitudes,
ranging from 15◦S to 10◦N [25–28] (Supplemen-
tary Table 4).We hypothesize that these anomalous
data are probably the result of a secondary chemi-
cal remanent magnetization [29]. In conclusion, the
combined 13 reliable Cretaceous poles give a co-
latitude of 76.3◦ ± 2.2◦N, indicating a paleolatitude
of 13.7◦ ± 2.2◦Nin theCretaceous for theLhasa ter-
rane (Supplementary Fig. 14a).

Our new paleomagnetic results from the
Cailangba section indicate that the Tethyan Hi-
malaya terrane was at a paleolatitude of 19.4◦ ±
1.8◦S during the Late Cretaceous at a reference
point (29.3◦N, 85.3◦E) (Figs 4 and 5). This indi-
cates that it was separated from the Lhasa terrane by
33.1◦ ± 2.8◦, equivalent to some 3641± 308 km.

Moreover, our literature review provides six re-
liable Paleogene poles resulting in a co-latitude of
74.3◦ ± 5.3◦N, indicating a paleolatitude of 15.7◦

± 5.3◦N for the Lhasa terrane in the Paleogene
(Supplementary Fig. 14b). This is similar to the
Cretaceous result for the Lhasa terrane and we
conclude that the southernmargin of the Asian plate
remained in a relatively stable position since the
Early Cretaceous.

Our new paleomagnetic results provide so far the
most reliable and accurate constraint on the paleo-
latitude of the northern margin of the Indian con-
tinent, indicating a position at 13.7◦ ± 2.5◦N dur-
ing the mid-Paleocene. This demonstrates that the
paleolatitude of the TethyanHimalaya terrane over-
lapped within errors with that of the Lhasa terrane,
supporting the hypothesis that the continental col-
lision between the Tethyan Himalaya and Lhasa
terranes must have occurred at a paleolatitude of
∼14◦N at∼61Ma (Figs 4 and 5).

Geodynamics of the India-Asia collision
The paleolatitudinal difference of the Tethyan
Himalaya terrane in the Late Cretaceous
(19.4◦ ± 1.8◦S) and the mid-Paleocene
(13.7◦ ± 2.5◦N) indicates an anomalously high
speed of ∼260.1 mm/year during the interval
∼75Ma to ∼61Ma. A much slower speed of
∼99.6 mm/year was obtained for India by calcu-
lating the apparent polar wander path (APWP)
of India during the interval 80−60Ma for the
same reference point (29.3◦N, 85.3◦E) [45]. This
large magnitude difference of northward motion
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Figure 4. Geodynamic evolution of the India-Asia continental collision showing the paleogeographic patterns: (a) ∼75Ma,
(b) ∼61Ma, (c) ∼53Ma and (d) ∼48Ma. Our ∼75-Ma paleogeographic pattern (a) is consistent with the paleogeographic
reconstructions of the western margin of the Australian continent based on the sub-continent’s pre-breakup position within
Gondwana and on the present-day bathymetry of the Indian Ocean to the west of Australia [67]. The Australian and Antarctic
continents in (a) were reconstructed in the Gondwana framework only for determining the size of eastern Greater India. BNSZ,
Bangong-Nujiang suture zone. WZFZ, Wallaby-Zenith fracture zone. The black stars indicate the reference point (29.3◦N,
85.3◦E) when calculating the extension of Greater India in this study.

implies that after ∼75Ma the Tethyan Himalaya
terrane rifted away from India. The rifting may have
been induced by the melting of the lower half of
the Indian passive continental margin lithosphere
with upwelling of the Reunion plume [46,47]. This
plume is currently located at the latitude of ∼21◦S,
very close to the paleolatitude of 19.4◦ ± 1.8◦S
for the distal Indian passive continental margin at
∼75Ma. In addition, this fast terrane movement
may have been further accelerated by the long-time
subducting slabofNeo-Tethyanoceanic lithosphere

beneath the southern part of the Asian continent,
which resulted in metamorphism of basaltic rock
to eclogite facies in the lower lithosphere [48,49]
and hence dragged the Tethyan Himalaya from
India.The combined effects of the above-mentioned
processes likely generated a pull-apart basin during
∼75−61Ma, which we invoke as the ‘North India
Sea’ (Figs 4 and 5).This scenario is slightly different
from the Greater India Basin model, in which a
basin was formed by N-S extension in the early
Cretaceous [5,12].
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Our new paleomagnetic data indicate
that the first collision between Tethyan Hi-
malaya and Lhasa occurred at ∼61Ma at a
paleolatitude of ∼14◦N. Considering that the pa-
leolatitude of the southern Asian margin remained
almost constant from early Cretaceous to the
Paleogene (Supplementary Fig. 14), the central part
of the North India Sea had a latitudinal width of
2134± 521 km (19.4◦ ± 4.7◦) at∼61Ma (Fig. 4b),
which is estimated by the size difference of Greater
India between ∼75 and ∼61Ma for the reference
point (29.3◦N, 85.3◦E). In terms of tectonic struc-
ture, there is a paleolatitudinal difference of 7.6◦

between the western and central parts of the Indian
passive margin, which is estimated based on the
paleolatitude difference obtained by the APWP of
India for the reference points (28.3◦N, 85.3◦E) and

(34.5◦N, 73.3◦E) at∼61Ma [45].The western part
of the North India Sea had a latitudinal width of
1298± 521 km (11.8◦ ± 4.7◦) at∼61Ma (Fig. 4b).
Then India continued to drift northward. Based on
India’s northward drift rates, calculated from its
APWP during the intervals 70−60Ma, 60−50Ma
and 50−40Ma [45], it took 7.6 + 3.0/−2.9 Myr
to close the western part and 13.3 + 4.7/−3.8 Myr
to close the central part of the North India Sea.
The second collision between India and Tethyan
Himalaya from its western part to central part is thus
expected to have occurred diachronously between
∼53Ma and∼48Ma (Figs 4c and d).

Our proposed North India Sea hypothesis and
associated two-stage continental collision between
India and Asia consistently explain the history of
the India-Asia convergence rates (Fig. 5), which
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were established by the relative plate motions be-
tween India-Africa and India-Antarctica [47] that
show five phases of the convergence history. For ex-
ample, the rapid acceleration from ∼80 mm/year
at ∼70Ma to ∼180 mm/year at ∼63Ma (phase
2) is roughly synchronous with the opening of
the North India Sea due to upwelling of the Re-
union plume [46,47], and the subsequent rapid
slowdown from ∼180 mm/year at ∼63Ma to
∼110 mm/year at ∼61Ma (phase 3) is roughly
synchronous with the progressive closure of the
Neo-Tethyan Ocean and the convergence between
Tethyan Himalaya and Asia. The moderate ac-
celeration from ∼110 mm/year at ∼61Ma to
∼130 mm/year at ∼53Ma (phase 4) corresponds
to the shrinkage of the North India Sea, and the no-
ticeable slowdown from∼130 mm/year at∼53Ma
to ∼50 mm/year at ∼48Ma (phase 5) is fully con-
cordant with the diachronous closure of the North
India Sea from its western to central parts (Fig. 4c
and d and Fig. 5).

Our scenario generally agrees with the two-
stage closure of a double subduction system, that
is, an island arc-continent collision followed by
the subsequent arc/continent complex-continent
collision [50−52] consistent with the history of
India-Asia convergence rates. However, our paleo-
magnetic data suggest that the island arc-continent
collision should have occurred before ∼61Ma,
which is supported by the suggestions that the Ko-
histan arc had attached to Asia before or at∼70Ma
[12,13].

Multiple lines of geologic evidence from the
Tibetan Plateau support the ∼53−48Ma-collision
between the Tethyan Himalaya and India. For ex-
ample, the northernmost sub-Himalaya terrane ac-
quired detritus derived from Asia at ∼55Ma, sug-
gested by detrital zircon U-Pb geochronology from
the lower EoceneMargalla Hill Limestone of north-
ern Pakistan [53], and the central part of Lesser
Himalaya terrane acquired detritus derived from
the Tethyan Himalayan thrust belt at no later than
∼45Ma [54,55]. Results of both studies are in good
agreement with the diachronous collision scenario.
Our collision model also explains the gradual cessa-
tion ofmarine sedimentation fromwest to east in the
Tethyan Himalaya (52–50Ma in the Zanskar area;
43–41Ma in the Tingri-Gamba area and∼35Ma in
the Düela area) (Fig. 1b) [10,56].

Independent evidence from Eocene−Oligocene
rocks of the Tethyan Himalaya showing crustal
shortening, rapid exhumation and magmatism, and
the Greater Himalaya documenting deep tectonic
burial, high-grade metamorphism and anatexis, and
the Indian craton experiencing earliest foreland

basin development, connects the TethyanHimalaya
with the northern Indian craton at∼48Ma [11,15].
Moreover, the∼53−48Ma-collision agewould also
explain the∼30◦ clockwise rotation between 52 and
48Ma in the Gonjo Basin, east-central Tibet [57],
and the significant enhancement of sediment accu-
mulation rates at ∼52−48Ma in the Gonjo Basin
[57] andat∼54−52Ma in theHohXilBasin, north-
central Tibet [58]. The ∼53−48Ma collision and
subsequent continuous convergence between In-
dia and Asia may also have caused Himalayan up-
lift and associated erosional exhumation, explaining
the lack of Eocene- to Oligocene-age sedimentary
rocks in the Himalayan region [7,10]. Finally, the
∼53−48Ma-collision clarifies the major switch in
sedimentation pattern over the Bengal Basin, char-
acterized by a rapid increase in the influx of detritus
from the Himalayas in the middle Eocene [59].

Shallow-marine strata of late Cretaceous−
Eocene or Paleocene−Eocene ages, widely dis-
tributed along the Lesser Himalaya in Pakistan
[53,60,61], India [62,63], Nepal [54,55] and the
eastern Himalaya [64], provide direct geologic
evidence for the existence of the North India Sea.
The Main Central Thrust zone could be the most
logical preserved location for the ancient rifting
zone and the required oceanic subduction zone.
Nevertheless, more multidisciplinary evidence from
geologic, geophysical and geochemical investiga-
tions is required to strengthen the abovementioned
geodynamic hypothesis and to accurately and
precisely delineate the spatio-temporal pattern of
the India-Asia collision process.

CONCLUSION
Our new paleomagnetic data have placed the
Tethyan Himalaya terrane, the northern margin
of the Indian plate, at paleolatitudes of ∼19.4◦S
and ∼13.7◦N during the intervals 76.2−74.0Ma
and 62.5−59.2Ma, respectively. This implies the
Tethyan Himalaya moved northward with an
anomalously high speed of∼260.1 mm/year, much
faster than the Indian craton, which experienced
a speed of ∼99.6 mm/year during the same time
period. We hypothesize that the Tethyan Himalaya
terrane rifted from India after ∼75Ma, generat-
ing the North India Sea. The northward drifting
Tethyan Himalaya terrane collided with Asia at
∼61Ma, and then amalgamated with India with
a diachronously closing North India Sea between
∼53Ma and ∼48Ma. This new two-stage collision
hypothesis between India and Asia provides crucial
constraints for continental collision dynamics,
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the uplift and deformation history of the Tibetan
Plateau, and paleogeography and biodiversity
patterns in Asia. Furthermore, our new findings
provide key boundary conditions for climatemodels
linking Himalaya-Tibetan orogenesis with global
climate change.

METHODS
Sampling
We collected samples from the Cailangba A and B
sections in theGyangze area, and theSangdanlin and
Mubala sections in the Saga area using a gasoline-
powered portable drill. A total of 230 samples were
drilled from theChuangdeFormationCORBs in the
Cailangba A and B sections with sampling intervals
of 0.1−0.3 m; 130 samples from 13 sites, from fine-
grained red siliceous shales and cherts in sub-units
12–13 of the Sangdanlin Formation in the Sangdan-
lin section; and43 samples from four sites, fromfine-
grained siliceous shales and cherts of the Sangdanlin
Formation in the Mubala section. To test the pos-
sibility of depositional and/or compaction-induced
inclination shallowing in the red beds, five and four
hand samples oriented on the strata bedding were
collected from the Cailangba and Sangdanlin sec-
tions, respectively. All core samples were oriented
with magnetic compass and sun compass, and then
were cut into standard specimens with a length of
2.2 cm in the laboratory for stepwise thermal de-
magnetization.The remaining sampleswere used for
rock magnetic measurements and scanning electron
microscopy (SEM) observations.

SEM observation
To better constrain the origin and microstructure
of the magnetic minerals, polished thin sections
were observed using optical microscopy and SEM.
Backscattered electron microscopy analyses were
conducted using a scanning electron microscope
(FEI Nova NanoSEM 450) with an energy disper-
sive spectrometer (Oxford X-MAX80).

Rock magnetism
In order to determine the magnetic remanence car-
riers in the CORBs of the Cailangba section, and the
red siliceous shales of the Sangdanlin and Mubala
sections, representative samples were selected for
rock magnetic measurements, including hysteresis
loops, IRM acquisition curves and backfield demag-
netization curves with a Princeton Measurements
CorporationMicroMag 3900 vibrating samplemag-

netometer up to amaximumfield of 1.5 T.Magnetic
components were analyzed using the methods of
unmixing [33].

Demagnetization of the natural remanent
magnetization
All specimens were subjected to stepwise thermal
demagnetization up to 670−690◦C at 25−50◦C
intervals from room temperature to 600◦C and at
5−10◦C intervals from 600◦C to 670−690◦C us-
ing a PGL-100 thermal demagnetizer developed at
the Paleomagnetism and Geochronology Labora-
tory (PGL). The remanence measurements were
made using a 2-G Enterprises Model 755 cryogenic
magnetometer installed in a magnetically shielded
space with background field of <300 nT. Demag-
netization results were evaluated by principal com-
ponent analysis [65]. The mean directions were
computed using classic Fisher statistics [66].

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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