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Abstract

Machine learning encompasses a set of tools and algorithms which are now becoming popular in 

almost all scientific and technological fields. This is true for molecular dynamics as well, where 

machine learning offers promises of extracting valuable information from the enormous amounts 

of data generated by simulation of complex systems. We provide here a review of our current 

understanding of goals, benefits, and limitations of machine learning techniques for computational 

studies on atomistic systems, focusing on the construction of empirical force fields from ab-initio 

databases and the determination of reaction coordinates for free energy computation and enhanced 

sampling.
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1. Introduction

The atomistic representation of physical systems offers a precise description of matter. 

Simplified models based on coarse-grained (CG) representations offer an alternative that can 

significantly aid in the understanding of the physical properties of the systems under 

consideration. Such representations can also be used as a surrogate model for enhanced 

sampling methods (e.g. sampling large conformational changes using reduced models).

Both in the case of biochemical systems as well as in materials, a CG description can be 

based on distance metrics for structural clustering (1), as well as on reaction coordinates: for 

instance, the conformational changes of a complex molecule can be modeled by a few key 

functions of the atomic positions, while a phase transition can be described by a change of 

the average atomic coordination or box shape. In condensed matter physics, atomic 

descriptors are employed to summarize the key features of atomic configurations in order to 

predict forces and energies (2, 3).

In the past, reaction coordinates were defined using empirical methods and chemical 

intuition, while more systematic approaches were employed for the definition of atomic 

descriptors (4, 5). During the last decade, the return and rise of Machine Learning (ML) 

techniques have initiated many efforts focusing on automating the definition of reaction 

coordinates or descriptors that are able to successfully describe the underlying atomic 

systems (6–9). The employed methods, both supervised and unsupervised, vary. The most 

commonly used methods for the identification of reaction coordinates include Principal 

Component Analysis (PCA) (10), diffusion maps (11, 12), and auto-encoders (13–16). For 

atomic descriptors, common choices are based on a judicious use of adjacency matrices and 

their generalizations, or on a large set of feature vectors based on a set of basis functions.

We are witnessing many current attempts for automatically devising intuition-free collective 

variables, in particular for drug discovery applications (13, 17). Although the initially very 

high hopes raised by numerical potentials are now mitigated, there have been quite a few 

systematic studies on the quality of the descriptors obtained by these approaches (18, 19).

A recent CECAM (Center Européen de Calcul Atomique et Moléculaire) discussion 

meeting1 brought together a diverse audience of 29 participants from various scientific 

fields, including chemistry, drug design, condensed matter physics, materials science, and 

mathematics, to exchange about state-of-the-art techniques for automatically building 

coarse-grained information on molecular systems. In particular, we believe that the 

viewpoint and experience of condensed matter physicists in devising atomic descriptors 

could prove useful insights in devising reaction coordinates in a more systematic way. 

Mathematics offer, in this framework, a common language for the discussion. One 

distinctive feature of this CECAM meeting is that the emphasis was on the technical details 

of the underlying numerical methods. In the current review, we discuss the following 

highlights of the meeting:

1See the conference website: https://cermics-lab.enpc.fr/cecam_ml_md/
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• Machine learning force fields and Potential of Mean Force. ML techniques 

have been recently employed in the development of force field (FF) parameters 

based on quantum-mechanical calculations. More generally, ML techniques can 

be used to define a surrogate model of any quantity that could be obtained from a 

quantum chemical calculation, as a function of atomic coordinates (e.g. NMR 

chemical shieldings, IR dipole moments, ...), making it possible to obtain an 

accurate estimate of experimental observables. Such models are beginning to 

find merit due to their accuracy and versatility. In Section 2, we review the 

factors that play an important role in the accuracy and transferability of a force 

field. Specifically, we report the importance of the input database and the choice 

of the regression method for the force field construction. The use of prior 

physico-chemical knowledge in this construction of ML potentials is also 

discussed.

• Dimensionality reduction and identification of meaningful collective 
variables. Another important issue discussed during the CECAM meeting is the 

dimensionality reduction and the identification of meaningful CVs using ML 

techniques (see Section 3). We considered the case when this identification relies 

on a database which covers the full configuration space of the system under 

study (obtained for instance by high temperature sampling, steered molecular 

dynamics, etc), and the case when the data is restricted to a metastable state. 

Once a reaction coordinate is found, the question of devising a good effective 

model along this coordinate can also be addressed using machine learning 

techniques: either approximate free energies (for example by potentials involving 

only 2, 3 or 4 body interactions), or approximate the terms in the effective 

dynamics, namely the drift, diffusion coefficient, metric tensor and memory 

terms, for example using projections à la Mori-Zwanzig.

• Applications of machine learning techniques in biological systems and drug 
discovery. In Section 4, we discuss some “real world” applications, where MD 

simulations coupled with ML techniques enable us to understand the biological 

complexity at the atomic and molecular levels and provide us with interesting 

insights about the thermodynamic and mechanistic behaviour of biological 

processes. In particular, we highlight some examples of ML approaches applied 

in clustering and construction of Markov state models, we describe how ML 

methods facilitate enhanced sampling protocols through the use of efficient CVs 

and we mention some possible applications in the drug discovery process. These 

examples illustrate the current state and potential of the field of ML in the study 

of biological systems and drug discovery.

We close the review with some perspectives in Section 5.

2. Machine learning force fields and Potential of Mean Force

Interactions between atoms are often modeled using empirical potentials with some 

prescribed functional forms, as suggested by physical considerations. This provides 

computationally cheap (with a cost scaling linearly with the number of atoms) but somewhat 
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inaccurate potentials. On the contrary, ab-initio approaches provide more reliable, less 

uncertain force fields, at the expense however of a large computational cost (typically 

scaling as the number of electrons to the power 3). The promise of machine learning for 

force field computations is to predict forces and energies with accuracy arbitrary close to the 

level of ab-initio approaches (20), but with a much smaller computational cost and scaling as 

a function of the number of atoms. Ideally, these force fields should be able to describe 

chemical reactions. This is typically done in practice by setting up a database of 

configurations with associated forces and energies, summarizing atomic configurations 

through some descriptors of the local environment, and predicting the forces and energies 

from these descriptors through a function which has been trained by some (non-linear) 

regression procedure to provide good results on the database. The resulting potential is 

called a “numerical potential”.

There are three different factors to discuss the success of ML methods, whose relative 

importance depend on the aims of the user: accuracy, computational cost, and transferability. 

The latter concept means that a numerical potential computed for a given material in a given 

thermodynamic range, can be used outside the fitting domain – for instance because it is 

used for other materials and systems than the ones it was trained on, and/or in a different 

thermodynamic range than the one considered for the configurations in the database.

We first discuss in this section elements on the choice of the database, see Section A. We 

next present various choices for the descriptors and for associated ML regression methods, 

see Section B. We then discuss in Section C how to incorporate physical insights in order to 

improve ML techniques, and we give some perspectives in Section D. We end the section by 

mentioning how ML approaches can also be used to derive CG potentials, see Section E: in 

this perspective, empirical force fields for all atom models are seen as the reference (they are 

the counterpart of ab-initio databases in this context), and effective force fields describing 

the interaction of coarse-grained variables are sought.

A. Setting up a database.

One of the key factors that affects the accuracy and transferability of a force field is the 

database used for its construction. This database defines the envelope of confidence 

(applicability domain) for the potential as the subsequent regression method is efficient in 

interpolation. It is often the case that a numerical potential has a poor transferability. 

Therefore, for condensed matter systems, the database should sample the region of interest, 

i.e., the thermodynamic conditions where the potential is going to be used. However, this 

representative part of the configurational space covers only a small fraction of the overall 

available space. Hence, a systematic exploration is impossible, and physical intuition is often 

used to constrain the search of new interesting configurations for learning. This makes the 

construction of the database a rather laborious process. A first application of ‘active 

learning’ in this process, also still hand made, is proposed by Artrith and Behler in Ref. 21: 

two different neural networks are optimized on the same database and, in case their 

predictions on a new configuration differ too much this configuration should be included in 

the database. Active learning, based on outlier detection (i.e., definition of a metric to detect 

parameters corresponding to some extrapolation) is now routinely employed during the 
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database construction (22). In this way, force field accuracy can be improved during the 

training procedure (23) and the domain of applicability could be extended (24). The bottom 

line is that ‘on the fly’ learning (25) enables to perform optimization and prediction at the 

same time (26). Typically, a trade-off has to be found between the transferability of a 

potential (its robustness to changes in the database) and its accuracy.

The representation of the database should also be meaningful: finding a proper space for this 

representation allows to define an envelope of confidence for the potential. When the 

potential is used, each new configuration can rapidly be plotted in this space to check if it 

belongs to the database envelope (applicability domain), i.e., if the potential is used in 

interpolation or in extrapolation. It then becomes a useful criterion for outlier detection.

What is globally accepted is that the methods should systematically be validated on test data, 

different from the training data. In any case, one should be very careful about the quality of 

the model for extrapolation.

B. Descriptors and regression methods.

We present in this section the technical approaches to fit a potential on a database. We 

distinguish the representation of the atomic configurations through descriptors, and the 

subsequent regression allowing to fit the parameters of the chosen model. Typically, a very 

simple descriptor, based on physical/chemical intuition or moment estimates for atomic 

densities, should be combined with a complex regression such as a neural network; on the 

other hand, more educated descriptors, for instance based on convolutional neural networks 

and a scattering transform (27), can be fed into quite simple (bi)linear regression models.

B.1. Representing atomic configurations.—It is almost never appropriate to use the 

Cartesian coordinates of atoms in a structure as the input of a machine-learning scheme (28), 

because Cartesian coordinates do not conform with the invariance of the target properties, 

e.g. permutation of the indices of identical atoms, rigid translations, rotations and 

reflections. For this reason, several different schemes have been devised to map atomic 

configurations onto vectors of features that fulfil these symmetry requirements. Usually, it is 

desirable for this mapping to be differentiable and smooth, particularly in applications where 

one needs to compute forces as the derivative of a machine-learning potential or CG force 

field.

One can roughly partition methods to represent atomic configurations into two classes. 

Descriptors are often highly simplified representations of a structure, usually of much 

smaller dimensionality than the number of degrees of freedom and incorporating some 

degree of chemical intuition, or a heuristic understanding of the behavior of the system 

being studied. Cheminformatics schemes to characterise the connectivity of a molecule, such 

as SMILES (29) strings, are useful when dealing with databases of organic compounds. 

Steinhardt parameters (30) are often used to characterize the coordination of liquids and 

solids. Backbone dihedral angles, or more complex indicators of secondary structure (31) 

can be utilized to discard information on the side chains of polypeptides. The dimensionality 

reduction that is intrinsic to this family of methods typically induce loss of information, 

which may be desirable (when it discards irrelevant details) or problematic: in the latter case, 
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it is often more effective to use a more complete description and then proceed with an 

automatic dimensionality reduction algorithm, some of which will be discussed in Section 3.

Representations, on the other hand, attempt to provide a complete description of a 

configuration. This family of features is typically used when building regression models for 

energy and properties. Most of the time (particularly for condensed-phase applications, but 

often also for isolated molecules) representations are not built for an entire structure, but are 

instead used to describe atom-centered environments. This is advantageous, because - by 

representing a structure as a collection of compact groups of atoms, and assuming that the 

overall property can be computed as a sum of local contributions - it becomes possible to 

train models that can be easily transferred between systems of different sizes, and from 

simple to more complex configurations. Many of these systematic representations - 

including e.g., SOAP (bi)spectrum (32), Behler-Parrinello symmetry functions (33), moment 

tensor potentials (18), FCHL kernels (34) - can be seen as projections on different basis of n-

body correlation functions (35), and offer a systematic and completely general way to 

describe atomic configurations, that can be applied equally well to condensed phases, gas-

phase molecules and polypeptides (36).

B.2. Choosing the regression method.—Once the atomic descriptor has been 

chosen, the choice of the regression method to determine the force field is crucial and 

greatly depends on the system under study (37). A distinction should be made between 

learning based on neural networks, and other regression methods based on kernels or 

(bi)linear methods. Training neural networks is a complex non-convex optimization problem 

in very high dimension (generally thousands of parameters are needed to parameterize the 

networks under consideration). Already the computation of the gradient of the objective 

function is non trivial and relies on clever numerical tricks, such as backpropagation. 

Kernel-based methods or (bi)linear regression techniques lead, on the other hand, to much 

better behaved optimization problems, which can even be solved analytically through some 

matrix inversion on the Euler equation defining the minimizer.

The choice of the regression method also determines whether error estimators are available. 

For example a variance can be associated with a prediction when a kernel method is used, 

whereas error quantification is harder using neural networks. Moreover, the robustness of the 

potential depends on the regression method and its associated regularization (used to 

alleviate overfitting issues). A simple (bi)linear method may be less accurate but more 

robust. It may also be sufficient if the descriptors already provide enough information on the 

system, as is the case for the descriptors obtained via convolutional neural networks in Ref. 

27.

In principle, both neural network (NN) and non-linear kernel regression models are 

sufficiently sophisticated to obtain a trustworthy representation of scalar potential-energy 

surfaces (PES) or vector force fields of arbitrary complexity. However, in practice, choices 

have to be made for the similarity measure between atomic configurations (in both kernel 

regression methods and NN) or for the architecture of the neural network. The optimal 

choices are not the same for different systems, i.e., descriptors/parameters that work well for 

solids are not easily transferable to biological molecules and vice versa. Hence, many ML 
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developments are currently specific to either organic molecules or materials. That being said, 

there is currently a growing interest in understanding the advantages and limitations of the 

different existing approaches (18, 27, 32, 33, 38–41) and developing truly general 

frameworks for learning complex PES or force fields that work seamlessly for both organic 

and inorganic matter.

B.3. Current methods and their performances.—We list some key methods in 

Table 1. The first successful ML approaches were developed to describe PES of defectless 

materials and their surfaces (32, 33, 38) with the goal to enable efficient and accurate 

Molecular dynamics (MD) of large supercells of elementary or binary materials. The Behler-

Parrinello NN approach (33) or the kernel-based GAP approach of Csanyi (32) are both able 

to achieve accuracies of 1–2 meV/atom for some solids (C, Si, Cu, TiO2, among others). 

There are several key differences between these two methods, the main ones being the NN 

vs kernel approach and the different similarity measures between atomic configurations. 

Both approaches typically require on the order of tens to hundreds of thousands reference 

calculations at the DFT level for constructing the training dataset, in order to achieve 1–2 

meV/atom accuracy. Recently, PES-fitting methods based on deep networks have also been 

developed (41, 42). These approaches often do not require any a priori definition of the 

similarity measure; they are instead able to learn the similarity measure from the training 

data.

Constructing ML models for organic molecules is a field that faces somewhat different 

challenges compared to ML models for solids and materials. While DFT calculations are 

often deemed to provide sufficiently accurate reference data for solids, this is not the case 

for organic molecules. The “gold standard” is coupled cluster CCSD(T) computations. 

Quantum-chemical CCSD(T) calculations are however computationally expensive and it is 

only possible to carry hundreds of such calculations even for simple molecules such as 

aspirin. Early successful non-linear PES models were based on permutationally-invariant 

polynomials (PIP) (39). More recent developments include the so-called gradient-domain 

machine learning (GDML) approach (7, 40) for constructing molecular force fields. The 

GDML approach learns an explicit force field and obtains the PES via integration, instead of 

the more conventional approach to learning a PES and then taking its gradient to drive MD. 

This has two advantages: (i) the usage of an explicit Hessian kernel that provides the 

maximum flexibility, minimizes noise and prevents artifacts between forces and energies in 

the learning process; (ii) a significant gain in data efficiency, since globally accurate force 

fields for small molecules (accuracy of 0.2 kcal/mol and 1 kcal/mol/Å) can now be 

constructed using only a few hundred molecular conformations for training. This data 

efficiency currently enables the construction of essentially exact force fields for molecules 

with up to 30–40 atoms (7).

C. Synergy between physics, chemistry, mathematics and ML approaches.

ML approaches used to construct accurate PES and force fields have already been successful 

and have enabled simulations of molecules and materials that were previously considered 

impossible. Ultimately, it would be worthwhile to achieve an optimal balance between 

physics-based models and ML approaches to enable not only faster and more accurate 
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simulations, but also obtain insights into interactions of complex quantum-mechanical 

molecules and materials. For example, the GAP, Behler-Parrinello, GDML, and PIP 

approaches discussed above already incorporate translational, rotational, and permutational 

symmetries of molecules and materials in their internal representation of atomic interactions. 

Such symmetries were also made precise in the mathematical literature (18). In addition, by 

learning simultaneously energy and forces such that the latter are (minus) the gradient of the 

former, all of these methods enforce exactly energy conservation.

However, many more physical symmetries can and should be incorporated in ML 

approaches. For example, exact constraints are known for asymptotic forms of atomic 

interaction potentials. Also, some analytic and empirical results are known for series 

expansions of interatomic potentials. Finally, there are mathematical results which provide 

rigorous statements on the behavior of the potential energy functions in terms of the locality 

of the interactions (19). The incorporation of such prior knowledge could improve the 

efficiency and accuracy of ML potentials and ultimately also lead to novel analysis tools that 

offer new insights into the complex nature of atomic interactions (44).

It is also worth noting that electronic interactions in complex molecules and materials can be 

rather long-ranged. For example, electrostatic interactions and plasmon-like electronic 

fluctuations in molecules and nanostructures can lead to interatomic potentials extending to 

at least 20–30 nanometers (45, 46). Most current ML models explicitly or implicitly cut off 

interactions at an interatomic distance of 5–6 Å. Hence, by construction, these ML 

approaches are not able to capture interactions extending over larger length scales. For this 

reason, it is ultimately necessary to couple ML approaches that excel at capturing complex 

short-range chemical bonding with explicit physics-based approaches to non-covalent 

interactions. It is important to note that such physics-based models can also employ ML 

approaches to learn short-range interaction parameters based on datasets of electrostatic 

moments and polarizabilities. The recently developed IPML approach lies the foundation for 

unifying ML force fields and physics-based interatomic potentials (47). An alternative 

approach based on the definition of structure representations that incorporate long-range 

correlations with the correct asymptotic behavior (48) can simplify the simultaneous 

description of the multiple length scales contributing to molecular interactions.

D. Perspectives for ML approaches to the determination of force fields.

We gather in this section some mathematical and numerical perspectives, as well as open 

problems, on ML methods for force fields:

• A first perspective is the use of ML to learn the difference between already 

acceptable empirical force fields and DFT models, as some form of 

preconditioning. Such an approach greatly depends on the regression method. 

For example, for kernel methods, it has been shown that a potential can be built 

on top of pre-existing two-body and three-body classical potentials, improving 

the overall accuracy (49, 50). On the contrary, fitting differences between a good 

classical potential and an ab-initio potential with a linear regression yields very 

poor results, since the difference is small (almost noisy) and rugged (not 

smooth). It is observed that a simpler starting guess, such as the Ziegler–
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Biersack–Littmark potential (51), yields better results, since this increases the 

numerical stability and improves the accuracy.

• A question related to the robustness of these learning techniques is whether it 

would make sense to optimize potentials on a Pareto curve, where various 

properties of interest are weighted in different manners in the cost function. 

Indeed, the optimization is usually performed on a multi-objective cost function 

(including energy, force, stress, and sometimes bond distances, ...). The so-

obtained potential is a result of the user arbitrary choice of the weighting 

parameters – infinitely many ‘optimal’ potentials can be obtained depending on 

the choice of the weights. The naturally rising question here is: is it possible to 

have a unified way of defining cost functions?

• An important practical concern is the sensitivity of the learnt parameters 

relatively upon the data (for instance depending on the fraction of elements used 

for training vs. testing).

• Another more theoretical question is: What is the numerical stability induced by 

machine learning potentials on the time integration of Hamiltonian dynamics and 

its variations? Indeed, some preliminary results suggest that machine learning 

potentials may be smoother than current empirical potentials.

• For reasons which remain to elucidate, predicting intensive (as opposed to 

extensive) properties seems to be very challenging.

E. Bottom-up coarse-graining force fields: From PESto FES.

A classical particle-based coarse grained (CG) simulation model, where several atoms are 

grouped together, can be viewed as a reduction of the dimensionality of the classical phase 

space (see Figure 1). It requires the determination of an effective Hamiltonian that allows the 

model to explore the phase space in the same way as an atomistic simulation would. Thus, in 

the so-called bottom up coarse-graining strategies, the interactions in the CG model are 

devised such that an accurate representation of a (known) atomistic sampling of the 

configurational phase space (mapped to the CG representation) is achieved. These methods 

use the underlying multidimensional potential of mean force (PMF) derived from the 

atomistic simulation data as parameterization target, i.e., they try to reproduce a (typically 

high-dimensional) free-energy surface (FES) as opposed to a PES. Naturally, this is of 

particular relevance to the simulation of soft matter problems such as liquid state systems, 

soft materials and biological systems, where entropic effects, disorder and heterogeneity 

dominate the overall properties of the system.

Free energies and potentials of mean force are not a direct output of a MD simulation. They 

can be calculated by Boltzmann inversion of a (high-dimensional) probability density 

distribution obtained from sampling configurations in phase space or from mean forces 

acting on the interaction sites in the CG representation. In the past, several bottom-up 

coarse-graining methods have been derived which - while all aiming for an effective 

Hamiltonian that approximates a multidimensional PMF/FES - differ in terms of both the 

actual parameterization target (multidimensional PMFs/probability density distributions, 
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structure functions as low-dimensional representations of these PMFs; mean forces in the 

direction of selected CVs or relative entropies) and the type of CG interactions which are 

typically represented by low-dimensional potentials, i.e., pair interactions, or three-body 

interactions) (54–58). Since these coarse-graining methods derive interactions from 

atomistic reference simulations, they are intrinsically data driven. Consequently, ML-based 

approaches yield new types of reference atomistic data and new types of CG interactions and 

parameterization methods. On the one hand, ML methods can be used to determine 

dimensionality-reduced representations of the phase space and to derive or validate CG 

models by matching the sampling of a (relatively complex) FES as opposed to low-

dimensional target functions/properties. On the other hand, ML methods can also be 

employed to identify suitable CVs that describe the states and the dynamics of a system, 

which can then either be directly used in the CG potentials or be employed to identify 

optimal CG representations and learn CG interactions. This is discussed at length in Section 

3.

Following the methodology of inferring all-atom potential energy functions from 

corresponding quantum mechanical data, John and Csanyi have extended the Gaussian 

Approximation Potential (GAP-CG) approach to coarse-graining of simple liquid systems 

(59). In this case, the many-body PMF is described via local multibody terms, based on local 

descriptors and multidimensional functions which are determined by Gaussian process 

regression from atomistic training data (instantaneous collective forces or mean forces). In a 

similar vein, Zhang et al. developed a scheme, called the Deep Coarse-Grained Potential 

(DeePCG), which uses a NN to construct a many-body CG potential for liquid water (60). 

The network is trained with atomistic data in a manner similar to the force matching in the 

multi-scale coarse-graining method (61), and in such a way that it preserves the natural 

symmetries of the system. While the described two methods are related to the force-

matching type of bottom-up coarse-graining and use ML to significantly extend the 

complexity of the CG interactions, Lemke and Peter follow a different strategy (52). A NN 

is used to extract high-dimensional FES from atomistic MD simulation trajectories. The NN 

is trained to predict conformational free energies by creating a classification problem 

between real MD conformations and fake conformations of a known distribution. With such 

a classification based procedure it is possible to train the NN to return probability densities 

without requiring any binning or normalization – which circumvents the problem of binning 

in high dimensional space (62). By using the NN probability densities directly in a Monte 

Carlo type of sampling of conformations, a (relatively) high-dimensional FES is thus used as 

effective CG Hamiltonian. This NN network model was successfully tested for several 

homo-oligopeptides (53). By employing a convolutional NN architecture, the NN model 

could be simultaneously trained on data of different chain lengths and could even make 

meaningful predictions for polymers with chain lengths different from the ones in the 

training data. Thus, such an approach is promising for the simulation of polymer systems 

where naturally training data are restricted to chain lengths that are shorter than the intended 

polymers.

Coarse-graining of potential energy functions into free energy type interactions has a well 

founded statistical interpretation. A difficult question is however whether some dynamical 

properties are also preserved in this coarse-graining process, and to which extent.
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3. Dimensionality reduction and identification of collective variables

The objective of this section is to discuss various techniques to identify collective variables. 

After some general considerations in Section A, we first present the main two ideas to build 

collective variables in Section B, namely looking for high-variance or slow degrees of 

freedom. We then discuss how this can be used to enhance the sampling of the canonical 

ensemble on the example of diffusion maps in Section C, before discussing dynamical 

aspects in Sections D and E.

A. General considerations.

Molecular systems are characterized by the fact that their long-time dynamical behavior is 

typically governed by a small number of emergent collective variables (CVs) (63–65). These 

collective modes arise from cooperative couplings between the constituent atoms induced by 

interatomic forces (e.g., covalent bonds, electrostatics, van der Waals interactions) and 

possibly external fields (e.g., electric fields, hydrodynamic flows), and which render the 

effective dimensionality of the system far lower than that of the full-dimensional phase space 

in which the system Hamiltonian and equations of motion are formulated (64, 65). In a 

dynamical systems sense, the long-time evolution of the system is restrained to a low-

dimensional attractor or intrinsic manifold and its dynamics over these time scales may be 

described within the Mori-Zwanzig projection operator formalism as evolving within a 

subspace of slow collective variables to which the remaining degrees of freedom are 

effectively slaved (64).

Traditional unbiased MD is not able to efficiently explore the whole kinetic landscape with 

time scales spanning over orders of magnitude, from picoseconds to milliseconds. In this 

scenario, one relies on extensive simulations together with some clever strategy to escape 

metastable states. Such a strategy can only be devised if one is able to identify what defines 

a “long-lived” state, which is equivalent to discovering meaningful collective variables 

(CVs) or reaction coordinates (66). The methods described below aim at finding these CVs 

or states. As will become clear later, depending on the objective, the focus may be different: 

gain insight/intuition on the system, bias to exit metastable states, compute a free energy 

profile, set up a coarse-grained dynamics simulation, cluster/classify configurations, etc.

B. Data-driven discovery of high-variance and slow collective variables.

The inherently multi-body and emergent nature of the CVs means that they are exceedingly 

challenging to intuit for all but the most trivial systems, and data-driven techniques present a 

powerful means to systematically estimate them from molecular simulation data. The origins 

of this data-driven approach can be traced back to pioneering work in the early 1990’s by 

Toshiko Ichiye and Martin Karplus (67), Angel Garcia (68) and Andrea Amadei, Antonius 

Linssen and Herman Berendsen (69) who applied PCA to molecular simulations of protein 

folding. Since that time there has been an explosion of interest in the use of data science and 

machine learning techniques to estimate CVs from molecular simulation data and the 

subsequent use of these CVs to inform new understanding, perform molecular design, and 

guide enhanced sampling.
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Data-driven CV discovery typically employs unsupervised learning techniques that seek 

low-dimensional parameterizations of the geometry of the data in the high-dimensional 

phase space of atomic coordinates (70). This procedure can usually be cast as an 

optimization problem that maximizes some objective function, or equivalently minimizes 

some loss function, over the data. The techniques can be categorized into linear and 

nonlinear methods. Linear techniques are restricted to discovering CVs that are linear 

combinations of the input features, whereas nonlinear techniques can discover more general 

nonlinear functional relations. The more powerful and general nonlinear techniques are 

typically better suited to the estimation of the complex emergent CVs in molecular systems, 

but linear techniques should not be discounted since they are typically more robust, 

interpretable, and less data hungry, and can also admit nonlinearities through feature 

engineering or the kernel trick (71). The importance of the choice of features in which the 

molecular system is represented to the CV discovery tool should not be underestimated. 

Feature sets that contain and foreground the important molecular behaviors and respect 

fundamental symmetries (e.g., translation, rotation, permutation) can be critical to the 

success of CV discovery (particularly in the case of linear techniques), whereas poor choices 

that mask or discard essential information or contain spurious symmetries can easily 

produce poor performance. What constitutes a good choice of feature set is strongly system 

dependent and is typically reliant on some combination of intuition, experience, and 

exploratory trial-and-improvement. We refer for example to Ref. 72 for a discussion on the 

importance of the choice of the representation of the data.

Although the details and specifics differ, most CV discovery techniques can be placed in one 

of two categories: those that seek high-variance CVs and those that seek slow CVs (see 

Figure 2).

High variance CVs maximally preserve the configurational variance in the high-dimensional 

data upon projection into the low-dimensional space spanned by these CVs. Slow (i.e., 

maximally autocorrelated) CVs define a low-dimensional space that maximally preserves 

the long-time kinetics of the system. Frequently the slow and high-variance collective modes 

are related, but this is not always the case. Importantly, the estimation of slow CVs requires 

data arranged in time series (e.g., MD trajectories) whereas the estimation of high-variance 

CVs can be applied to data sampled without temporal ordering (e.g., Monte Carlo 

trajectories). Notice however that methods exist to recover dynamical information according 

to some artificial dynamics (e.g. reversible purely diffusive dynamics) upon non-time 

ordered data to render it amenable to temporal analysis techniques (73).

Let us also mention that recent advances in deep reinforcement learning (DRL) in robotics 

opens up new avenues for deploying DRL to atomic and molecular systems. In all DRL 

algorithms, a reward function, state and action space should be defined. In atomic systems, 

state space can be atomic coordinate, action space can be the movement of atoms, and 

reward can be defined as energy. DRL can be suitable replacement for finding transition 

paths and can potentially be used to strengthen the string or nudged-elastic-band method 

(74, 75).
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Before giving more details about the high-variance and slow CVs, let us mention that a 

widespread definition of an optimal scalar-valued reaction coordinate in the rare event-field 

is the committor function, i.e., in a system with two metastable states, the probability that a 

given atomic configuration will evolve towards the products before reaching the reactants. 

Such probability can in principle be estimated by generating a huge number of MD 

simulations from each configuration of interest: even if such a procedure cannot be applied 

in practice to the whole configuration space, the committor represents an ideal reaction 

coordinate in some sense (we refer the reader to (76) or (77, p.126) for example) and 

provides tests and optimization strategies for candidate CVs (5, 17, 76, 78–80).

B.1. High-variance CV estimation.—The best known high-variance CV estimation 

technique is PCA (10), also known as the Karhunen-Loève transform (81–84), or proper 

orthogonal decomposition (85, 86). This approach discovers an orthogonal transformation of 

the input data to define a hyperplane approximation that preserves most of the variance in 

the data. Popular nonlinear techniques for high-variance CV estimation include kernel and 

nonlinear PCA (87–90), independent component analysis (ICA) (91), multidimensional 

scaling (92), sketch map (93) locally linear embedding (LLE) (94, 95), Isomap (96–98), 

local tangent space alignment (99), semidefinite embedding / maximum variance unfolding 

(100), Laplacian and Hessian eigenmaps (101, 102), and diffusion maps (11, 103). These 

approaches differ in their mathematical details, but can be broadly conceived of as nonlinear 

analogs of principal component analysis that pass curvilinear manifolds through the data to 

define nonlinear projections into a low-dimensional subspace spanned by the learned CVs. 

Specialized techniques for molecular simulations that integrate iterative high-variance CV 

discovery and accelerated sampling of configurational space have been developed in recent 

years (13–15, 104–114).

The techniques described above can be coupled with enhanced sampling methods, which use 

the uncovered CV’s to help the system leave metastable states. In this case, one actually 

relies on CV estimates based on partial sampling (73). Let us describe a few methods in that 

direction.

Diffusion-map-directed MD (DM-d-MD) uses diffusion maps to identify CVs spanning the 

range of explored system configurations and then initializes new simulations at the frontiers 

of this domain to drive sampling of new system configurations (113, 114). Intrinsic map 

dynamics (iMapD) employs diffusion maps to construct a nonlinear embedding of the high 

dimensional simulation trajectory and then uses boundary detection algorithms with a local 

principal components analysis to extrapolate into new regions of phase space at which to 

seed new simulations (105). The Smooth And Nonlinear Data-driven Collective Variables 

(SandCV) approach identifies nonlinear CVs using Isomap, expands them within basis 

functions centered on a small number of landmark points, and then passes this 

parameterization to the adaptive biasing force accelerated sampling technique to drive 

sampling along these coordinates (109). Molecular enhanced sampling with autoencoders 

(MESA) employs autoencoding neural networks to discover nonlinear CVs for enhanced 

sampling without the need for approximate basis function expansions (13, 14). Reweighted 

Autoencoded Variational Bayes for Enhanced Sampling (RAVE) employs variational 

autoencoders to discover nonlinear CVs that are compared at the level of their probability 
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distributions with an ensemble of physical candidate variables to identify physical 

coordinates for accelerated sampling (15). REinforcement learning based Adaptive samPling 

(REAP) employs reinforcement learning to identify the dynamically-varying relative 

importance in driving exploration of configurational space of each CV within a candidate set 

and then adaptively seeds new simulations from configurations with high reward functions 

(104).

B.2. Slow CV estimation.—The identification of slow CVs is valuable and informative 

from many perspectives. From a mechanistic perspective, these CVs reveal the collective 

modes that dictate the metastable states of the system and the transitions between them. 

From a design perspective, they can offer a blueprint for the structural, thermodynamic, and 

dynamic properties of the system. From an enhanced sampling perspective, they provide 

good variables in which one can apply biases to accelerate barrier crossing and improve 

exploration of configurational phase space.

A number of approaches have been proposed to analyze MD time series to estimate slow 

CVs. The theoretical basis for these techniques is founded in the variational principle of 

conformational dynamics (VAC) (115), or in the (extended) dynamical mode decomposition 

((E)DMD) (116, 117) that, respectively, frame the recovery of the slow CVs as a variational 

optimization or regression problem (16, 118). Shortly, VAC estimates the slowest modes as 

linear combinations of a priori defined basis functions of the input coordinates. In Time-

lagged independent component analysis (TICA) these basis functions are the coordinates 

themselves (115, 119–125). In Markov state models, the slow CVs are approximated in a 

basis of indicator functions defined over the data (118, 126) (see also the recent special issue 

Ref. 127 for the latest developments on Markov state models). Perron cluster analysis can be 

used to reduce the large number of states uncovered by clustering methods along the 

trajectory, to a few metastable states, see Ref. 128–130. Combining TICA with the kernel 

trick yields kernel TICA (kTICA) that is capable of approximating the slow CVs with 

nonlinear functions of the input features (115, 131). Deep canonical correlation analysis 

(DCCA) (132), the variational approach for Markov processes nets (VAMPnets) (133), and 

state-free reversible VAMPnets (SRV) (134) all employ Siamese neural networks to learn 

nonlinear featurizations of the input coordinates as basis functions with which to 

approximate the slow CVs. Time-lagged autoencoders (TAEs) employ time-delayed 

autoencoding neural networks to learn slow CVs into which the molecular trajectory can be 

projected (i.e., encoded) and also used to predict the system state at the next time increment 

(i.e., decoded) (16). Variational dynamics encoders (VDEs) are similar to TAEs but employ 

a variational as opposed to traditional autoencoding architecture that introduces stochasticity 

into the decoding of the learned CVs (135, 136).

Enhanced sampling can be conducted in the learned slow CVs in a similar manner to that in 

the high-variance CVs, but the application of artificial biasing potentials perturbs the true 

system dynamics and subsequent applications of slow CV estimation techniques to the 

biased data must compensate for this effect (137–139).
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C. Enhanced sampling using local and global diffusion maps.

Using the illustrative example of diffusions maps, we discuss in this section how to use the 

proposed reaction coordinate to enhance sampling and somehow perform some extrapolation 

procedure. Diffusion maps are a dimensionality reduction technique which allows for 

identifying the slowly-evolving principal modes of high-dimensional molecular systems (11, 

12). It does so by computing an approximation of a Fokker-Planck operator on the trajectory 

point-cloud sampled from a probability distribution (typically the Boltzmann-Gibbs 

distribution corresponding to prescribed temperature). The construction is based on a 

normalized graph Laplacian matrix. In an appropriate limit, the matrix converges to the 

generator of overdamped Langevin dynamics. The spectral decomposition of the diffusion 

map matrix thus yields an approximation of the continuous spectral problem on the point-

cloud (140) and leads to natural CVs.

Since the first appearance of diffusion maps (11), several improvements have been proposed 

including local scaling (141), variable bandwidth kernels (142) and target measure maps 

(TMDmap) (143). The latter scheme extends diffusion maps on point-clouds obtained from 

a surrogate distribution, ideally one that is easier to sample from. Based on the idea of 

importance sampling, it can be used on biased trajectories, and improves the accuracy and 

application of diffusion maps in high dimensions (143).

Several algorithms have used diffusion maps to learn the CVs adaptively and thus enhance 

the dynamics in the learned slowest dynamics (13, 105, 113, 114). These methods are based 

on iterative procedures whereby diffusion maps are employed as a tool to gradually uncover 

the intrinsic geometry of the local states and drive the sampling toward unexplored domains 

of the state space, either through sequential restarting (114) or pushing (105) the trajectory 

from the border of the point-cloud in the direction given by the reduced coordinates. All 

these methods try to gather local information about the metastable states to drive global 

sampling. In (73), the authors focused on the construction of diffusion maps within a 

metastable state by formalizing the concept of a local equilibrium based on the quasi-
stationary distribution (144). This local equilibrium guarantees the convergence of the 

diffusion map within the metastable state. Moreover, the work provides the analytic form of 

the operator obtained when metastable trajectories are used within diffusion maps.

Finally, since the collective variables provided by diffusion maps are only defined on the 

sampled point cloud, one must apply extrapolation approaches. These might be very noisy 

and, more importantly, lose their meaning outside the convex hull of the point cloud. As a 

remedy, diffusion maps could be used as a tool to select collective variables from a database 

of physical reaction coordinates, similarly to (17), providing more physical insight into the 

abstract collective variables. This approach would allow to evaluate the CV outside the point 

cloud and provide more physical meaning into the abstract collective variables.

The local-global perspective has motivated a method allowing on-the-fly identification of 

metastable states as an ensemble of configurations along a trajectory, for which the diffusion 

map spectrum converges. Secondly, an enhanced sampling algorithm based on QSD and 

diffusion maps has been proposed. For the latter, the main idea is a sample from the QSD 

allowing to build high-quality local CVs (within the metastable state) by considering the 
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most correlated physical CVs to the diffusion coordinates. Once the best local CVs have 

been identified, one can use existing methods as metadynamics to enhance the sampling, 

effectively driving the dynamics to exit the metastable state. The authors in (73) demonstrate 

this idea on a toy-model example showing improved sampling over the standard approach.

Diffusion maps can also be used to a compute the committor function (145), which provides 

dynamical information about the connection between two metastable states and can be used 

as a reaction coordinate. Markov state models (MSM) can in principle be used to compute 

committor probabilities (146), but high dimensionality makes grid-based methods 

intractable. Similar work in this direction was done by (145, 147, 148). Diffusion-maps, 

especially the TMDmap (143), can be used for committor computations in high dimensions. 

The low computational complexity aids in the analysis of molecular trajectories and helps to 

unravel the dynamical behaviour at various temperatures.

As a future work, the quality of the diffusion map approximation could be improved by 

introducing more sophisticated kernels or point-cloud approximations similarly to (145). 

Also, diffusion maps could be extended to the approximation of generators of the 

underdamped Langevin dynamics.

D. Extracting dynamical information from trajectory data.

Once good CVs or metastable states have been identified, these can be used to extract 

dynamical information. Let us describe in this section the approach followed by Thiede et al. 
(147), which is based on a Galerkin projection of the infinitesimal generator.

The approach in (147) builds on the MSM and related frameworks (115, 117, 128, 149–

154). Dynamical statistics of interest are cast as solutions to equations involving the 

generator, i.e., the operator that describes the evolution of functions of the dynamics over 

infinitesimal times. Although the full generator cannot be determined in general, the 

equations can be solved by a Galerkin approximation. In this approximation, the dynamical 

statistic of interest is expanded in terms of a basis, and its generator equation is reduced to a 

linear form. The contributing matrix elements (inner products of basis elements and the 

generator) can be estimated from short MD trajectories. A key challenge is to generate basis 

sets consistent with the boundary conditions. Thiede et al. (147) considered two basis sets: 

indicator functions that reprise MSMs and diffusion maps (11). The latter showed promise 

for capturing smoothly varying dynamical statistics, such as committors and mean first-

passage times with fewer basis functions, but the efficiency of a given basis is likely to be 

problem specific. Because the dynamical Galerkin approximation framework generalizes the 

notion of transition between states, the sampled configurations can be replaced by short 

trajectory segments. This allows treating memory that arises from incomplete description of 

the system by delay embedding (155, 156). This is an appealing alternative to extending the 

lag time in an MSM because it does not sacrifice time resolution. Going forward, it will be 

interesting to investigate whether variational methods akin to those for elucidating time 

scales (115, 133) can be developed to permit representation of the dynamical statistics in 

terms of nonlinear functions.
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E. Tackling both Markovian and non-Markovian cases: Free energy, friction and mass 
profiles extracted from short MD trajectories using Langevin models.

In principle, the high-dimensional dynamics of a system composed by many atoms, when 

projected onto one (or a few) CV, can be modeled by a generalized Langevin equation (157, 

158). Such stochastic differential equations contain several ingredients: a mass, a drift term 

corresponding to the mean force (gradient of the free energy landscape), a friction and a 

noise. Projecting on a low-dimensional space yields, in general, non-Markovian dynamics, 

except in the presence of time scale separation between CVs and bath coordinates and at 

coarse time resolution (157).

Clearly, the construction of optimal Langevin models along meaningful reaction coordinates 

is appealing from several viewpoints (159). On one side, the complex many-body dynamics 

is approximated by an equation that preserves physical intuition and is cheap to integrate. 

On the other side, exact kinetic rates - free from transition state theory approximations - 

between metastable states can be accessed more easily, by exploiting brute-force Langevin 

simulations or more elaborate methods (160). Compared to Markov state models, Langevin 

models are not restricted to Markovian dynamics and do not require the discretization of 

configuration space and the choice of a lag time, which are customary sources of errors.

For all these reasons, several algorithms have been developed to recast MD data into low-

dimensional Langevin models (161–172). Usually, with these techniques, the terms of the 

Langevin equation are estimated employing very long equilibrium MD trajectories that 

ergodically sample the whole relevant free energy landscape. Of course such data are seldom 

available in complex applications featuring rare events, strongly limiting the scope to the 

case of barriers smaller than a few kBT. Tackling the more general case of limited sampling 

and non-equilibrium MD trajectories is much more involved (173).

A possible and simple solution to this challenge - especially in the context of rare events - 

has been proposed in Ref. 174: the parameters of a generalized Langevin equation are 

optimized by minimizing the error between MD and Langevin probability distributions 

P(x, ẋ, t) along the reaction coordinate x. Such out-of-equilibrium distributions are estimated 

from a set of short unbiased trajectories initiated close to a barrier top (with random thermal 

velocities) and allowed to relax into the adjacent free energy minima, in the spirit of 

committor analysis (a preliminary exploration of putative transition state structures can be 

nowadays performed at a moderate cost using, e.g., the prejudice-free techniques of Ref. 

175–177).

Employing both benchmark models and solvated proline dipeptide as a test case, numerical 

evidence indicates that ~100 short trajectories (of few picoseconds in the typical case of a 

small solute in water) encode all the information needed to reconstruct free energy, friction, 

and mass profiles (174). This approach, suitable also for high barriers of tens of kBT and 

non-Markovian dynamics, provides the thermodynamics and kinetics of activated processes 

in a conceptually direct way, employing only standard unbiased MD, at a competitive cost 

with respect to existing enhanced sampling methods. Furthermore, the systematic 

construction of Langevin models for different choices of CVs starting from the same initial 

data could help in reaction coordinate optimization.
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4. Application of machine learning techniques in biological systems and 

drug discovery

Two of biology’s biggest challenges are the prediction of protein structure based on its 

amino acid sequence, i.e., protein folding, as well as the dynamical conformational changes 

of the three-dimensional structure of proteins, i.e., protein dynamics. Beyond the actual 

problem of protein folding, which was recently set at a different basis after the breakthrough 

from AlphaFold and the impressive one million time faster Artificial Intelligence (AI) 

solution by AlQuraishi (178), the prediction of protein dynamics and mechanism of action is 

possible through the use of MD simulations.

Recent advances in computer hardware and algorithms have led to simulations of protein 

dynamics of size and time lengths that are intrinsic to biological processes. Dynamics of 

protein plasticity and drug binding/unbinding mechanisms are a few of the key processes 

that we would ideally like to capture through these large scale simulations. However, the 

analysis and interpretation of the large amount of data that are produced by these simulations 

is complex and should be carefully considered (179).

As discussed in Section B, despite the ever-growing time and length scales of simulations, 

unbiased MD is not able to explore the whole kinetic landscape of complex systems and 

carefully chosen, meaningful CVs can be used to represent the free energy surface of these 

systems in order to reveal the regions of low energy, i.e., stable and metastable states, as well 

as the barriers, i.e., transition states, between these regions (163, 169, 180). ML approaches 

have recently started being used for the discovery of meaningful CVs (14, 15, 133, 181, 

182), while iterative schemes where CVs are being updated based on new simulation data 

provide promising results for challenging systems (181, 183, 184).

In this section, we first present an example of dimensionality reduction for building a 

Markov State Model for the study of lysine methyltransferase SETD8 (see Section A). We 

next present some biological examples were adaptive MD/ML techniques can help gain 

access to non-crystallographic conformational states of disease-related proteins for drug 

discovery purposes (see Section B). In Section B.1, we discuss the possibility of 

conformational-specific targeting of proteins using their metastable states as target 

conformations, while in Section B.2 we give some examples were ML techniques applied in 

MD simulations can provide information about potential allosteric binding sites or protein 

activation mechanisms upon ligand binding.

A. Selection of efficient collective variables for MSMs: the example of SETD8.

Conformational changes in proteins span from thermal fluctuations of side chains and 

motions of active loops to major rearrangement of sub-domains, including unfolding and 

refolding processes (185). The ability to unveil the mechanisms underlying protein function 

requires quantifying the importance of these motions for the process of interest or, in other 

words, obtaining a representative ensemble of conformations.

Besides the relevance for devising enhanced sampling strategies, the discovery of CVs is 

decisive when analyzing simulation data sets by using, for instance, Markov State Models. 
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In this context, the conformational study of the protein methyltransferase SETD8, an 

epigenetic enzyme essential in the regulation of the cell cycle, was discussed in (183).

SETD8 is characterized by a dynamically rich behavior, which has proven to be essential in 

enzymatic catalysis (186). In (183) the authors combined experiments and simulation in an 

attempt to span the up-to-that-time unexplored configurational space of SETD8. Several new 

X-ray structures were obtained by trapping conformations with small-molecule ligands 

(187). These, in turn, were used to build hypothetical structures by manually combining 

fragments observed in experiments.

The set of initial configurations was used to seed independent MD simulations in explicit 

solvent, resulting in an extensive simulation database. The search of reaction coordinates 

was done in different spaces of residue-residue distances, logistic distances, and backbone 

dihedrals. These CVs, usually referred to as “features” in the MSMs literature, are arbitrary 

choices, that have been traditionally based on human intuition and heuristics (188). This is 

arguably the “achilles heel” of MSMs and has prompted the development of ML approaches 

to bypass human intervention (16, 133).

Although a set of features is already a space with much fewer dimensions than the full 

atomic coordinates, it is still a high dimensional system that cannot be handled with MSMs. 

This requires further dimensionality reduction, which can be done using, for instance, the 

time-lagged independent component analysis (tICA), discussed in Section B.2. CVs 

obtained by tICA are linear combinations of features that, in principle, encompass the 

variance of the data while providing time scale separation. These are attributes of 

meaningful CVs (182), which explains the consensus regarding tICA as a suitable strategy 

for building MSMs (119, 124, 188, 189). The stage regarding data representation ends with 

clustering the conformational snapshots into discrete states using unsupervised ML 

protocols, such as the k-centers and k-means methods (190).

Given the multiple subjective decisions involved in selecting features and algorithms to 

represent the database, MSMs building must be allied with validation strategies. In this 

context, Husic et al. (188) emphasize the importance of using a kinetically-motivated 

dimensionality reduction and cross-validation strategies to avoid over fitting. The study of 

SETD8 (183) uses both structural and kinetic criteria, and 50:50 shuffle-split cross-

validation scheme with random divisions of the data into training and test sets (see Figure 3). 

As a result of such an extensive validation, the specific study successfully quantified an 

ensemble of kinetically relevant macrostates which, in addition, were validated with 

experiments.

B. Machine learning-driven MD simulations in drug discovery.

The discovery of a new drug is a long, multi-step and expensive process. Any tool that can 

speed up any of the steps involved would have big implications down the entire drug 

discovery chain. Artificial intelligence is expected to significantly shape the future of many 

aspects of drug discovery during the forthcoming decades. It is already used to design 

evidence-based treatment plans for cancer patients, instantly analyze results from medical 
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tests to escalate to the appropriate specialist immediately, and most recently to conduct 

scientific research for early-stage drug discovery.

Proteins, the most common drug targets, are dynamic molecular machineries whose function 

is intimately linked to their conformations. Destabilization of the subtle equilibrium of 

protein conformations can lead to severe pathologies, like in the well-known cases of KRAS 

G12X oncogenic mutations and prion disease. In this context, knowledge of the 

conformational landscape of targeted proteins would provide an outstanding advantage for 

the design of novel and original compounds stabilizing specific conformations of the protein 

(191).

Experimentally, the protein conformational space is often limited to few conformations that 

have been prone to crystallize. The use of GPUs and massive computational resources has 

enabled for the in silico alternative, MD simulations, to gain an important place in the first 

steps of drug discovery. Nevertheless, MD is limited to a few hundreds of microseconds of 

simulation, which limits the conformational space exploration.

New molecular modeling approaches combining MD simulations and ML techniques can 

help gain access to these non-crystallographic conformational states of a target protein. This 

knowledge would allow focusing on specific conformations of the protein in order to alter or 

restore its function. ML techniques can enable us to identify patterns in simulation data, 

build models that explain the different conformational states of a target and predict potential 

target-specific solutions for their druggability (13, 15, 181, 182, 184, 192–195).

As discussed in Section A, good CVs can guide enhanced sampling MD simulations in order 

to gain insights into long timescale dynamics of biomolecular systems. The difficulty of the 

identification of such CVs and in most cases the complexity of their definition has limited 

the number of available software for this purpose. PLUMED is an open-source, community-

developed library that has been widely used in enhanced-sampling simulations of complex 

biological systems in combination with many MD engines, e.g., Amber, GROMACS, 

NAMD, and OpenMM (196–200). Most importantly, PLUMED can be interfaced with the 

host code using an API, accessible from multiple languages, including C++ and Python). 

This last functionality is important for adaptive protocols used for the identification of 

optimal CVs using iterative learning algorithms based on well developed ML libraries like 

Keras (201), TensorFlow (202), PyTorch (203) and Fastai (204). The MSM Builder package 

provides the user with software tools for predictive modeling of long timescale dynamics of 

biomolecular systems using statistical modeling to analyze physical simulations (205). Other 

tools that can be employed in MD/ML studies include among others MDTraj (206), ColVar 

module for VMD (192), OpenPathSampling (207).

B.1. Conformational-specific targeting of proteins using cryptic binding 
sites.—Drugs are traditionally designed to bind to the primary active site of their biological 

targets in order to induce a therapeutic effect. However, the high similarity between the 

orthosteric pockets among most of the protein families, leads in several cases to adverse 

effects. A new emerging direction in drug discovery is the use of alternative, transient, non-

orthosteric binding sites that are not apparent in the protein’s known crystallographic 
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conformations and where small molecules can bind and modulate the biological target’s 

function.

By binding to non-orthosteric sites of proteins, allosteric inhibitors can also exhibit a better 

selectivity vs proteins from the same family, as illustrated by SAR156497, a highly selective 

inhibitor of Aurora kinases (208). Well known drugs on the market work through this kind 

of mechanism of action (e.g., Lapatinib or Imatinib), but this mechanism was described a 
posteriori. Moreover, there are approved allosteric modulator drugs such as Cinacalcet for 

the treatment of hyperparathyroidism and Maraviroc for the treatment of AIDS, as well as 

many candidates at different stages of development (209, 210). Another aspect in targeting 

non-orthosteric pockets in drug discovery relies on the fact that allosteric inhibitors will not 

compete with endogenous ligands for binding, which can be critical when such endogenous 

ligands have very strong affinity for their protein.

One of the successful efforts in this direction is the example of PI3Kα, where a novel non-

orthosteric pocket was identified using molecular dynamics (MD) simulations (211, 212). In 

(211), the authors used Functional Mode Analysis (213) and identified two dominant 

motions of PI3Kα that influence both the active and allosteric pockets and are distinct 

between the wild-type protein and its oncogenic counterpart. Current work aims at extending 

this approach to other protein targets, where neural networks are employed in order to 

establish the link between oncogenic mutations and the protein’s mode of action, with an 

ultimate goal to identify druggable mutant-specific conformations.

Beyond single protein conformations, multimeric protein assembly also appears as a 

challenging area where ML could play a role in drug discovery. The recent example on 

TNFα for instance shows the importance of how subtle changes in protein conformation can 

translate into a distorded trimeric assembly of TNFα, impacting downstream signaling of 

TNFR1. Small compounds stabilizing this asymmetrical TNFα trimer can then be designed 

to treat or prevent TNFα-related diseases (214).

B.2. Compound-specific effect of binding.—Another promising direction in the 

drug discovery process is the compound-specific effect of protein binding (215, 216). For 

example, a small organic compound can be used to boost the enzymatic activity of a protein 

enzyme or evaluate allosteric binders by the stabilization of its active conformation. In 

finding allosteric binding sites, ML algorithms such as k-means and Markov Models can 

significantly help in reducing the dimensions of drug binding events. The connections 

between statistical mechanics principles, such as Boltzmann Machines, and the discovery of 

the binding sites in proteins can be insightful. As an example, one can run thousands of 

small trajectories of drug binding and unbinding events and learn the reaction coordinates 

using tICA (time-independent Component Analysis) in order to find the possible allosteric 

binding sites (215). These trajectories can be generated using different initial seeds (both 

different locations and orientations) and may range from 50 ns to 500 ns.

In the activation pathway of many proteins such as G Protein Coupled Receptors (GPCRs), 

the conformational changes are subtle and are limited to the sequential motion of residue 

switches triggering a signal from ligand to intracellular motifs. Finding these intricate 
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motions in high dimensional space requires ML techniques to reduce the system’s 

dimensions (216). Among these methods, variational autoencoders (VAE) and tICA (sparse 

or kernel) can be used to achieve learning and finding the reaction coordinates for such 

complex proteins.

5. Concluding remarks and perspective

Let us conclude this review by presenting some global perspectives on the interactions 

between machine learning approaches and molecular simulation, which are common to all 

the situations we discussed – from devising numerical potentials based on ab-initio reference 

data to the identification of collective variables in actual simulation of biological proteins.

First, we have seen that the aims of the coarse-graining procedures may be very different in 

nature. From the material presented in this review, one can identify three major purposes: (1) 

a modeling objective: using machine learning techniques to improve models, for instance by 

better representing force fields and potential energy surfaces; (2) a numerical objective: 

improving the efficiency of numerical methods, for instance by devising good collective 

variables to be used in conjunction with enhanced sampling techniques, such as free energy 

biased sampling techniques; (3) a data analysis objective: providing an efficient post-

processing tool, as for instance a Markov state model to interpret the raw simulation data 

from molecular dynamics and identify states of interest. Concerning the choice of the 

learning methods, some common trends are shared by all methods, namely ensuring that one 

has access to a sufficiently rich database (sufficient variability of configurations for force 

fields, long reactive trajectories to identify CVs) and representing correctly the data (starting 

possibly with some putative CVs/descriptors, and then using some regression from there to 

sparsify/optimally combine these initial guesses). The precise choice of the learning method 

and the reduced model to work with, however, depend very much on the goal and priority of 

the user, and the system under consideration. The priority can be the accuracy (being as 

precise and as close as possible to some reference model, e.g., all-atom results when coarse-

graining, or reproducing DFT energies when constructing numerical potentials), the 
transferability (learning how to coarse-grain small systems and extending the method to 

larger ones, learning energies at a given temperature and using the potential at another one) 

or the CPU/GPU computational cost.

When using black box learning techniques, based for example on neural networks, a 

problem which is often raised is the interpretability of the result. This is discussed for 

example in (80) which attempts to reconcile machine learning models (specifically a neural 

network approach to optimal reaction coordinates) with physical insight by means of 

symbolic regression techniques, also known as genetic programming. Such techniques 

appear very promising for the future, being able to distill fundamental natural laws from 

numerical data (217).

Another important element is the reproducibility of the results: one should favor approaches 

which are easy enough to cross-check and to repeat on various architectures. This also 

requires the researchers to ensure that the coarse-graining technique they propose yield 

robust results. For example, the results should not depend on the initial weights in a neural 
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network, or on the sampled point used as inputs. Finally, this includes considering well 

established databases, or making databases available to other users/developers; and also 

relying on standard and well maintained packages when using external libraries.

One idea which would help setting up common benchmarks and/or agreeing on common 

aims/priorities would be to organize some competition or prediction contest, which should 

ideally be simple enough so that even small groups can participate since this requires 

agreeing on common goals. Setting up the rules of such a competition would already be 

quite an achievement. Another important idea would be to emphasize transferability in all 

approaches, and more systematically work with some databases of some sort and then test 

on different databases.
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Fig. 1. 
Particle-based coarse-graining: high dimensional free energy surfaces (FES) can be extract 

from atomistic data and used as a basis for CG models (52, 53).
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Fig. 2. 
Representative methods for CV identification. All related citations are in the main text.
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Fig. 3. 
Construction of conformational landscapes of apo- and SAM-bound SETD8 through 

diversely seeded, parallel molecular dynamics simulations and Markov state models.(a) 

Combinatorial construction of structural chimeras using crystallographically-derived 

conformations. (b) Workflow for dynamic conformational landscapes construction using 

MSM. For more information we refer the reader to the original publication 183. (Image 

source: Ref. 183. Use permitted under the Creative Commons Attribution License CC BY 

4.0., https://creativecommons.org/licenses/by/4.0/).
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Table 1.

Summary of some key learning methods for force field (FF) development.

Method Short description Ref.

Kernel-based Gaussian approximation 
potentials (GAP)

Combines a structural descriptor and a kernel establishing the link between structure 
and energy

32

Behler-Parrinello NN Feed-forward NNs for each atom. The potential energy is constructed as the sum of 
local atomic energies

33, 38

Deep NN (DTNN) No a priori similarity definition needed, similarity is learned 41, 42

Permutationally-invariant polynomials 
(PIP)

Uses polynomials of Morse variables in fitting PES 39, 43

Gradient-domain ML (GDML) Learns an explicit FF and obtains the PES via integration 7, 40
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