Table 3.
Univariate Logistic Regression | Multivariate Logistic Regression (LASSO) | |||
---|---|---|---|---|
Gene | Odds Ratio (95% CI), p-value | AUC | Coefficient | AUC |
TPSB2 | 0.650 (0.519, 0.814), p<0.0001 | 0.77 | 0 | - |
CPA3 | 0.627 (0.499, 0.787), p<0.0001 | 0.78 | −0.090 | 0.78 |
KIT | 0.796 (0.616, 1.029), p=0.08 | 0.60 | 0 | - |
GATA2 | 0.759 (0.616, 0.936), p=0.01 | 0.63 | 0 | - |
SOCS2 | 0.702 (0.566, 0.870), p=0.001 | 0.73 | 0 | - |
ENO2 | 0.845 (0.681, 1.048), p=0.13 | 0.58 | 0 | - |
GPR56 | 0.758 (0.582, 0.987), p=0.04 | 0.61 | 0 | - |
HDC | 0.673 (0.530, 0.854), p=0.001 | 0.70 | 0 | - |
Combinatorial gene metric | 0.282 (0.140, 0.568), p<0.0001 | 0.73 | - |
Notes: Univariate logistic regression models of eosinophilic inflammation outcome and individual gene expressions (ΔCt relative to the housekeeping gene β-actin). Multivariate regression analyses performed with LASSO (least absolute shrinkage and selection operator). Combinatorial gene metric based on ΔCt gene expression values. Bolding indicates significance (p-value <0.05).
Abbreviation: AUC, area under the curve.