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ABSTRACT NKG2C is an activating NK cell receptor encoded by a gene having an
unexpressed deletion variant. Cytomegalovirus (CMV) infection expands a population
of NKG2C1 NK cells with adaptive-like properties. Previous reports found that carriage
of the deleted NKG2C2 variant was more frequent in people living with HIV (PLWH)
than in HIV2 controls unexposed to HIV. The frequency of NKG2C1 NK cells positively
correlated with HIV viral load (VL) in some studies and negatively correlated with VL
in others. Here, we investigated the link between NKG2C genotype and HIV suscepti-
bility and VL set point in PLWH. NKG2C genotyping was performed on 434 PLWH and
157 HIV-exposed seronegative (HESN) subjects. Comparison of the distributions of the
three possible NKG2C genotypes in these populations revealed that the frequencies of
NKG2C1/1 and NKG2C1/2 carriers did not differ significantly between PLWH and HESN
subjects, while that of NKG2C2/2 carriers was higher in PLWH than in HESN subjects,
in which none were found (P = 0.03, x 2 test). We were unable to replicate that car-
riage of at least 1 NKG2C2 allele was more frequent in PLWH. Information on the pre-
treatment VL set point was available for 160 NKG2C1/1, 83 NKG2C1/2, and
6 NKG2C2/2 PLWH. HIV VL set points were similar between NKG2C genotypes. The fre-
quency of NKG2C1 CD32 CD142 CD192 CD56dim NK cells and the mean fluorescence
intensity (MFI) of NKG2C expression on NK cells were higher on cells from CMV1

PLWH who carried 2, versus 1, NKG2C1 alleles. We observed no correlations between
VL set point and either the frequency or the MFI of NKG2C expression.

IMPORTANCE We compared NKG2C allele and genotype distributions in subjects who
remained HIV uninfected despite multiple HIV exposures (HESN subjects) with those in
the group PLWH. This allowed us to determine whether NKG2C genotype influenced
susceptibility to HIV infection. The absence of the NKG2C2/2 genotype among HESN
subjects but not PLWH suggested that carriage of this genotype was associated with
HIV susceptibility. We calculated the VL set point in a subset of 252 NKG2C-genotyped
PLWH. We observed no between-group differences in the VL set point in carriers of
the three possible NKG2C genotypes. No significant correlations were seen between
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the frequency or MFI of NKG2C expression on NK cells and VL set point in cytomega-
lovirus-coinfected PLWH. These findings suggested that adaptive NK cells played no
role in establishing the in VL set point, a parameter that is a predictor of the rate of
treatment-naive HIV disease progression.

KEYWORDS adaptive NK cells, HIV exposed seronegative, HIV load set point, injection
drug users, men who have sex with men, people living with HIV, human
immunodeficiency virus

Natural killer (NK) cells are cytotoxic lymphocytes that generate early immune
responses to virus-infected and cancer cells (1). The activation state of NK cells is

determined by the integration of signals received from activating and inhibitory recep-
tors (2, 3). Among the types of receptors present on NK cells are the NKG2 receptors,
which belong to the C-type lectin family. The genes encoding these receptors are
located in the 12p13 region of chromosome 12, within the NK receptor complex (4, 5).
The NKG2C activating receptor, like its inhibitory counterpart NKG2A, is expressed as a
heterodimer with CD94 (6). The ligand for NKG2C and NKG2A is HLA-E, a nonclassical
major histocompatibility complex class Ib (MHC-Ib) molecule, stabilized by peptides
derived from classical MHC-I antigens and HLA-G (7, 8). HLA-E molecules complexed
with epitopes from the human cytomegalovirus (CMV)-encoded viral protein UL40
leader sequences are ligands for NKG2C (9–12). Among CD56dim NK cells, NKG2C1 NK
cells are typically NKG2A2 (13, 14). The interaction of NKG2C with its ligands transmits
signals that activate cells bearing this receptor (7, 15).

Although NK cells are traditionally thought to be part of the innate immune system,
NKG2C1 NK cells, which often coexpress CD57, can undergo clonal expansion in
response to CMV infection (9, 13, 16, 17). Because the expansion of NKG2C1 cells
resembles that seen in adaptive immune responses, these NK cells are called adaptive
NK cells. Expanded adaptive NK cells frequently lack the signaling proteins Ewing’s sar-
coma’s/FLI-1 activated transcript-2 (EAT-2), spleen tyrosine kinase (SYK), and Fc«Rg, as
well as the transcription factor promyelocytic leukemia zinc finger (PLZF) (18, 19). This
is due to DNA methylation-dependent epigenetic modifications, which distinguish
adaptive from conventional NK cells. Adaptive NKG2C1 cells exhibit enhanced CD16-
dependent cytokine secretion due to epigenetic remodeling of the gamma interferon
(IFN-g) and tumor necrosis factor alpha (TNF-a) promoter regions (20–22).

Some individuals do not express NKG2C at the NK cell surface due to homozygous
deletion of an ;16-kb genomic region that includes the nkg2c gene (also called klrc2),
which encodes NKG2C (23, 24). In several Caucasian populations and one Japanese
and Tanzanian population each, the frequency (percentage) of the NKG2C deletion
haplotype is close to 20%, with a homozygous deletion frequency of approximately
4% (22, 24–26). However, frequencies of the NKG2C deletion haplotype were found to
be as low as 10.3% in Mexican mestizos and as high as 36.8% in West African popula-
tions from the Gambia and Guinea-Bissau (26–28). NK cells expressing NKG2C have
been shown to play a role in the immune surveillance of CMV (17).

CMV infection also drives the expansion of NKG2C2 NK cells in people who are
NKG2C2/2 (29). NKG2C2 NK cells having an epigenetic footprint characteristic of
NKG2C1 adaptive NK cells are observed in NKG2C2/2 carriers (22). Comparisons of the
phenotypes and functions of adaptive NK cells from NKG2C2/2 with those from
NKG2C1/1 and NKG2C1/2 carriers found few differences, suggesting that the contribu-
tion of NKG2C to NK cell adaptation to CMV infection can be compensated for in NK
cells from NKG2C2/2 carriers in CMV-monoinfected as well as in HIV-CMV-coinfected
subjects (22, 30). In adaptive NK cells from NKG2C2/2 carriers, CD2 costimulation plays
an important role in compensating for the absence of NKG2C in antibody-dependent
responses (22).

HIV-CMV coinfection has been reported by many to drive the expansion of NKG2C1

NK cells over that seen in CMV-monoinfected persons (31, 32). Several studies have
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questioned whether NKG2C1 cells play a role in protection from HIV infection or in a
slower disease course in those infected. Supporting a role for the NKG2C2 variant in
susceptibility to HIV infection was the observation that the percentage of carriers of an
nkg2c2 allele in either the homozygous or heterozygous form was higher in HIV-
infected individuals than in HIV-uninfected individuals with no history of HIV exposure
(33). Whether NKG2C1 NK cells play a role in HIV control is unclear. Thomas et al.
showed that among HIV-infected persons, the proportion of individuals with a pre-
treatment plasma viral load (VL) of ,30,000 copies/ml was higher in carriers of the
NKG2C1/1 genotype than among those carrying an nkg2c2 allele (33). Contrasting with
the notion that the NKG2C1/1 genotype was associated with lower VL control was the
finding that the percentage of NKG2C1 NK cells from seven NKG2C1/1 carriers was pos-
itively correlated with a single pretreatment HIV VL (33). However, in two other studies,
the percentage of NKG2C1 NK cells was negatively correlated with VL in early infection
(34, 35).

Here, we compared NKG2C genotypes in people living with HIV (PLWH) enrolled in
the Montreal Primary HIV infection (PI) cohort with HIV-exposed seronegative (HESN)
subjects who remained HIV uninfected despite multiple high-risk HIV exposures. We
found that carriage of the NKG2C2/2 genotype was associated with increased HIV sus-
ceptibility. However, neither the NKG2C1/1 nor NKG2C1/2 genotype alone nor the com-
bination of both NKG2C1/2 and NKG2C2/2 genotypes was associated with changes in
HIV susceptibility. We observed no differences in VL set points between HIV-infected
carriers of the three possible NKG2C genotypes. We also observed no correlation
between VL set point and the percentage of NKG2C1 NK cells or the intensity of
NKG2C expression. Thus, carriage of an nkg2c2 allele does not appear to affect HIV VL
set point, which is a determinant of the rate of HIV disease progression.

RESULTS
PLWH and HESN populations differ in NKG2C2/2 genotype frequencies. Table 1

provides information on the racial/ethnic composition of the study population. Both
populations were composed mainly of Caucasians (92.9 and 88.5% for PLWH and HESN
participants, respectively) living in the same geographical region (Montreal, QC,
Canada). There were no significant between-group differences in their ethnic/racial

TABLE 1 Study population demographicsa

Population

No. (%) in population

P valuePLWH (n=434) HIV2 (n=157)
Sex
Males 408 (94.0) 141 (89.8)
Females 25 (5.8) 23 (14.6)

HIV exposure risk group
Sexually exposed 371 78
MSM 337 67b

Heterosexually exposed
Men 9 3
Women 25 8

IDUs 63 79
Low-risk control 11

Ethnicity
Caucasian 384 (88.5) 146 (92.9) 0.11
American/African black 19 (4.5) 4 (2.5) 0.25
Latino 27 (6.2) 5 (3.2) 0.19
Asian 4 (0.9) 2 (1.3) 0.76

aAbbreviations: PLWH, people living with HIV; MSM, men who have sex with men; IDUs, injection drug users.
bAt risk for sexual exposure.
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compositions (P. 0.11 for comparisons of Caucasians, Asians, Latinos, and American/
African Blacks by two-tailed x 2 tests).

The numbers and percentages of PLWH and HESN subjects carrying the wild-type
(nkg2c1) and deletion (nkg2c2) alleles and the three NKG2C genotypes are shown in Table 2.
The allele percentages were similar in both populations. The distribution of the three NKG2C
genotypes NKG2C1/1, NKG2C1/2, and NKG2C2/2 at this locus did not deviate statistically
from the Hardy-Weinberg equilibrium (HWE) in PLWH (P = 0.09 by x 2 test), while it did in
the HESN subjects (P = 0.003 by x2 test). When the proportions of NKG2C1/1, NKG2C1/2,
and NKG2C2/2 genotypes were compared in PLWH and HESN subjects, there was a signifi-
cantly higher frequency of NKG2C2/2 individuals among PLWH than HESN subjects (odds ra-
tio [OR], 8.60; 95% confidence interval [CI], 0.50 to 146; P = 0.04 by two-tailed Fisher’s exact
test), while the proportions of NKG2C1/1 and NKG2C1/2 genotypes in these two populations
did not differ significantly (Table 2). Thomas et al. previously reported that HIV-uninfected
persons at low risk for infection were significantly more likely than PLWH to carry the
NKG2C1/1 genotype, suggesting that carriage of at least 1 NKG2C2 variant was associated
with higher HIV susceptibility (33). Comparisons of the PLWH and HESN subjects revealed no
between-population differences for either the NKG2C1/1 or combined NKG2C1/2 NKG2C2/2

genotypes. In summary, carriage of the NKG2C2/2 genotype was associated with higher sus-
ceptibility to HIV infection.

Risks for HIV transmission include sexual exposure to and needle sharing with
PLWH. As the PLWH and HESN populations included individuals who were at risk for
sexual exposure, as well as injection drug users (IDUs), we investigated whether there
was evidence that carriage of NKG2C2/2 genotype was linked to HIV susceptibility by
mucosal or parenteral exposure. Of the sexually exposed (SE) subjects, 371 were PLWH

TABLE 2 NKG2C allele and genotype frequencies in people living with HIV and HIV-exposed seronegative subjectsa

NKG2C allotype/genotype

Frequency of allele or genotype
in population

OR 95% CI P valuePLWH HESN
All, n 434 157
Allele frequency, %
nkg2c1 80.5 80.9 1.0 0.5–2.1 1.00
nkg2c2 19.5 19.1

Genotype frequency, no. (%)
NKG2C1/1 276 (63.6) 97 (61.8) 1.1 0.7–1.6 0.70
NKG2C1/2 147 (33.9) 60 (38.2) 0.8 0.6–1.2 0.38
NKG2C2/2 11 (2.5) 0 8.6** 0.5–146.0** 0.04*
NKG2C1/2 1 NKG2C2/2 158 (36.4) 60 (38.2) 0.9 0.6–1.5 0.70

Sexually exposed, n 371 78
Allele frequency, %
nkg2c1 81.4 78.2 1.21 0.6–2.4 0.72
nkg2c2 18.6 21.9

Genotype frequency, no. (%)
NKG2C1/1 240 (64.7) 44 (56.4) 1.4 0.9–2.3 0.20
NKG2C1/2 124 (33.4) 34 (43.6) 0.6 0.4–1.1 0.09
NKG2C2/2 7 (1.9) 0 3.2** 0.2–57.2** 0.61*

IDUs, n 63 79
Allele frequency, %
nkg2c1 75.4 83.5 0.6 0.3–1.2 0.21
nkg2c2 24.6 16.5

Genotype frequency, no. (%)
NKG2C1/1 36 (57.1) 53 (67.1) 0.6 0.3–1.3 0.29
NKG2C1/2 23 (36.5) 26 (32.9) 1.2 0.6–2.3 0.72
NKG2C2/2 4 (6.3) 0 12.0** 0.6–277.7** 0.04*

aAbbreviations: PLWH, people living with HIV; HESN, HIV-exposed seronegative; OR, odds ratio; 95% CI, 95% confidence interval; IDUs, injection drug users. Asterisks indicate
statistical significance measured by Fisher’s exact test (*) with Haldane’s correction (**).
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and 78 were HESN, with genotype distributions shown in Table 2. The NKG2C genotype
distributions diverged from HWE in both the SE PLWH and HESN subjects (P = 0.045
and P = 0.001, respectively, by x 2 tests). When the proportions of NKG2C1/1, NKG2C1/2,
and NKG2C2/2 genotypes were compared in SE PLWH and HESN subjects, no significant
between-group differences were observed. Of the 63 PLWH and 79 HESN IDUs evaluated
for NKG2C genotypes, the genotype distribution in both populations was in HWE (P = 0.9
and P = 0.07, respectively, by x 2 tests). The proportion of NKG2C2/2 genotypes was sig-
nificantly higher among injection drug-using PLWH than HESN subjects (OR, 12; 95% CI,
0.6 to 277.7; P = 0.04 by Fisher’s exact test); the proportions of NKG2C1/1 and NKG2C1/2

genotypes in the IDU PLWH and HESN subpopulations did not differ significantly from
each other (Table 2). In summary, carriage of the NKG2C2/2 genotype was significantly
associated with higher HIV susceptibility in IDUs but not in SE subjects.

NKG2C cell surface expression is genotype dependent. We next compared the
percentages of NKG2C1 cells and the intensities of NKG2C expression on CD56dim NK cells
from carriers of the three NKG2C genotypes. As CMV infection drives the expansion of
NKG2C1 NK cells (9, 13, 31), for this analysis, we included only subjects who were CMV1

from whom cells were available for staining. Cells from 32 NKG2C1/1, 19 NKG2C1/2, and 6
NKG2C2/2 PLWH and 43 NKG2C1/1and 18 NKG2C1/2 HIV2 subjects were tested. Figure 1A
shows the strategy used to gate on live singlet CD32 CD142 CD192 CD56dim NK cells,
which is the predominant population expressing NKG2C (36). From these, NKG2C1 cells
were gated on. Figure 1B shows that CMV1 PLWH who were NKG2C1/1 and NKG2C1/2

had a higher percentage of NKG2C1 NK cells than did NKG2C2/2 carriers, with medians of
45.5% (interquartile range [IQR], 33.5 to 67.5%) and 30.1% (IQR, 7.41 to 44.63%) for
NKG2C1/1 and NKG2C1/2 carriers, respectively, and background levels of 2.7% (IQR, 1.04 to
5.14%) for NKG2C2/2 carriers (P, 0.001 and P, 0.05 for comparisons of NKG2C1/1 and
NKG2C1/2 carriers with NKG2C2/2 carriers by Dunn’s posttests). In a subanalysis comparing
NKG2C1/1 with NKG2C1/2 carriers, we found that the percentage of NKG2C1 CD56dim NK
cells was significantly higher in CMV1 PLWH who were NKG2C1/1 than in NKG2C1/2 car-
riers (P, 0.05 by Mann-Whitney test). For intensity measurements, we examined the
mean fluorescence intensity (MFI), the median fluorescence intensity, and the fold change

FIG 1 Evaluation of the frequency of NKG2C1 NK cells and mean fluorescence intensity (MFI) of NKG2C expression. (A) Shown is the gating strategy used
to detect the frequency and MFI of NKG2C expression. Peripheral blood mononuclear cells were stained for viability and cell surface CD3, CD56, CD14,
CD19, and NKG2C. CD32 CD142 CD192 CD56dim NK cells were gated on from the live singlet lymphocyte gate. From these, we determined the frequencies
of NKG2C1 CD56dim NK cells and MFI of NKG2C expression on NK cells. The y axes show the frequency (B), MFI (C), and fold change over background in
the MFI (D) of NKG2C expression on CD56dim NK cells from CMV1 people living with HIV (HIV1 CMV1) carrying the NKG2C1/1 (n= 32), NKG2C1/2 (n=19),
and NKG2C2/2 (n= 6) genotypes and from CMV-monoinfected (HIV2 CMV+) individuals carrying the NKG2C+/+ (n = 43) and NKG2C+/2 (n = 18) genotypes.
Each point represents a single individual. Bar graph heights and error bars represent medians and interquartile ranges for the group. FSC-A, forward scatter
area; SSC-A, side scatter area; LD, live/dead; FSC-H, forward scatter height; Pk-w, P value for the Kruskal-Wallis test used to analyze the significance of
differences between groups: *, P , 0.05; ***, P , 0.001; ****, P , 0.0001.
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over background in the MFI of NKG2C staining. The latter measure controls for between-
experiment variations in MFI. Since values for mean and median fluorescence intensities
did not differ substantially, we only report MFI values here. The MFI of NKG2C expression
from NKG2C1/1, NKG2C1/2, and NKG2C2/2 carriers were 4,562 (IQR, 2,813 to 7,175), 1,870
(IQR, 671 to 3,061), and 269.6 (IQR, 212.8 to 325.3), respectively (Fig. 1C). NKG2C expression
was higher on CD56dim NK cells from NKG2C1/1 carriers than on those from NKG2C2/2 car-
riers (P, 0.001 by Dunn’s posttests). NK cells from NKG2C1/1 carriers expressed higher lev-
els of NKG2C than those from NKG2C1/2 carriers (P, 0.05 by Dunn’s posttest). The fold
change in MFI over background for NKG2C expression intensity was also significantly
higher on NK cells from NKG2C1/1 than NKG2C1/2 CMV1 PLWH carriers (Fig. 1D). We also
investigated the percentage of NKG2C1 CD56dim NK cells and the intensity of NKG2C
expression on these cells from CMV-monoinfected subjects. Although the percentage of
NKG2C1 NK cells was higher on cells from NKG2C1/1 than NKG2C1/2 carriers (11.8% [IQR,
3.77 to 28.7%] and 7.23% [IQR, 4.08 to 15.75%], respectively), as were the MFI and fold
change in MFI intensity of NKG2C expression on CD56dim NK cells, the difference did not
achieve significance (Fig. 1B to D). Figure 1B D to D also show that the percentage of cells,
MFI, and fold change in MFI over background of NKG2C expression were significantly
higher among CD56dim NK cells from NKG2C1/1 carriers who were CMV1 PLWH than
among NKG2C1/1 and NKG2C1/2 cells from CMV-monoinfected persons (P, 0.006 for all
by Mann-Whitney tests).

NKG2C genotypes and HIV VL set point. VL set points in pretreatment PLWH are
measures of HIV progression associated with time to AIDS, CD4 counts of ,200 cop-
ies/ml of plasma, and death (37, 38). When all NKG2C-genotyped PLWH for whom infor-
mation on the VL set point was available were included, we found no significant differ-
ences between NKG2C genotypes in the VL set points (P = 0.26 by Kruskal-Wallis test)
(Fig. 2).

We next investigated whether the percentage of NKG2C1 CD56dim NK cells and/or the
intensity of NKG2C expression correlated with the pretreatment VL set point. Forty-three
NKG2C-genotyped CMV1 PLWH with a known HIV VL set point were included in this analy-
sis: 21 NKG2C1/1, 16 NKG2C1/2, and 6 NKG2C2/2 HIV1 CMV1 subjects. Neither the percent-
age nor the intensity of NKG2C expression (MFI or fold change over background in NKG2C
MFI) was significantly correlated with VL set point when all observations were considered
together or when results were stratified according to NKG2C genotype (Spearman’s correla-
tion tests) (Fig. 3A to L) As adaptive NK cells are typically also CD571, we also tested
whether there was a correlation between the percentage of NKG2C1 CD571 CD56dim NK
cells and HIV VL set point. Figure 4A shows the strategy used to gate on NKG2C1 CD571

CD56dim NK cells. No significant correlation was observed between these parameters

FIG 2 Log10 viral load (VL) set points in people living with HIV (PLWH) carriers of the NKG2C1/1,
NKG2C1/2, and NKG2C2/2 genotypes. Shown are violin plots of the median and interquartile range of
the treatment-naive log10 VL set point in each NKG2C genotype group. The number of subjects
included in each group is shown above each data set. A Kruskal-Wallis test was used to assess the
significance of between-group differences in log10 VL set point.
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for all NKG2C genotypes or for results stratified by NKG2C genotype (Spearman’s test)
(Fig. 4B to E).

As others have shown, the percentage of NKG2C1 NK cells was significantly negatively
correlated with the percentage of NKG2A1 NK cells. This was the case for all genotypes to-
gether and for the NKG2C1/1 and NKG2C1/2 genotypes specifically (Fig. 5A). Figure 5B
shows the strategy used to gate on NKG2A1 NKG2C2 CD56dim NK cells. As for NKG2C1

and NKG2C1 CD571 CD56dim NK cells, the percentage of NKG2A1 NKG2C2 CD56dim NK
cells did not correlate with the VL set point when results from all subjects were examined
together or when results from NKG2C1/1 and NKG2C2/2 carriers were examined sepa-
rately. For NKG2C1/2 carriers, a negative correlation was observed (r = 20.49, P=0.04)
(Fig. 5D). However, application of a Bonferroni correction for multiple correlations reduced
the significance of the correlation below the level of significance.

DISCUSSION

In this report, we assessed whether the NKG2C genotype distributions differed in a
population of recently HIV-infected individuals compared to subjects who remained
uninfected despite multiple documented exposures to HIV. We found that the
NKG2C2/2 genotype was more frequent among PLWH than HESN subjects. None of the
157 HESN subjects tested carried this genotype, which was present in 11 of 434
(2.53%) of PLWH. The distributions of NKG2C genotypes did not differ in the PLWH and
HESN subpopulations who were exposed to HIV mucosally, while the NKG2C2/2 geno-
type was more frequent in parenterally exposed PLWH than in HESN individuals. These

FIG 3 Correlation between log10 VL set point and frequency of NKG2C1 NK cells, mean fluorescence intensity (MFI) of NKG2C expression and fold change
in NKG2C MFI over background in cells from HIV1 CMV1 NKG2C1/1, NKG2C1/2, and NKG2C2/2 carriers. Correlations between the frequency (A to D) MFI (E
to H) of NKG2C expression and fold change in NKG2C MFI over background (I to K) on NK cells from CMV1 PLWH with log10 VL for carriers of all NKG2C
genotypes tested (A, E, and I) and stratified by NKG2C1/1 (B, F, and J), NKG2C1/2 (C, G, and K), and NKG2C2/2 (D and H) genotypes. The number of
subjects tested, the correlation coefficients (r), and the P values for each correlation are shown in the top left corner of the graphs.
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findings suggest that the NKG2C2/2 genotype is associated with a higher risk of HIV
infection. The PLWH population included individuals who remained treatment naive
long enough to calculate a post-acute infection, pretreatment plasma VL set point.
When this parameter was compared in carriers of the three NKG2C genotypes, we
found no between-genotype differences in VL set point. Furthermore, neither the per-
centage of NKG2C1 NK cells, MFI, nor fold change over background of the MFI of
NKG2C expression on these cells correlated with VL set point in the CMV1 PLWH.

There exists a variation in chromosome 12 where a 16-kb genomic region that
includes the nkg2c gene is either present or entirely absent (23, 24). Genotyping of the
mainly Caucasian study population described in this article found that the frequency
of the nkg2c2 variant was close to 20% in both the PLWH and HESN populations and
the frequency of the homozygous NKG2C2/2 genotype was 2.53% in PLWH. The
nkg2c2 allele frequency and the distribution of NKG2C genotypes in the PLWH are in
line with those reported for several populations of European extraction, as well as in a
Japanese population and an East African Tanzanian population (22, 24–26, 33). The al-
lele frequency of nkg2c2 was lower (10.3%) in a population of Mexican mestizos and
higher (29.3 to 36.7%) in West African populations from the Gambia and Guinea-Bissau
(26–28) In contrast with what we found in PLWH, we observed no NKG2C2/2 carriers
among 157 HIV-uninfected persons at risk for HIV exposure, a difference that was stat-
istically significant. The non-Caucasian ethnic composition of the study populations
was balanced between PLWH and HESN subjects. However, if only Caucasians were
included in the analysis, proportional between-group differences in the percentage of
the NKG2C2/2 genotype fell below the level of significance (P = 0.1). This may be due
to the smaller sample sizes. It was not possible to compare the proportional between-
group differences in the percentages of the NKG2C2/2 genotype for the other ethnic-
ities included in the study populations due to the small numbers of subjects in these
subgroups.

The NKG2C genotype distributions in the PLWH and the uninfected population
described here differed from those reported by Thomas et al. (33). They compared the

FIG 4 Correlation between log10 (VL) viral load set point and frequency of NKG2C1 CD571 NK cells from CMV1 PLWH carrying the three possible NKG2C
genotypes. (A) From the live singlet lymphocyte gate, CD56dim CD32 CD142 CD192 NK cells were gated on. From these NKG2C1 CD571 NK cells were
gated onto assess the frequency of these cells among CD56dim NK cells. Correlations between the frequency of NKG2C1 CD571 (B to E) CD56dim NK cells
with log10 viral load set point from for CMV1 PLWH carrying all NKG2C (B), NKG2C1/1 (C), NKG2C1/2 (D), and NKG2C2/2 (E) genotypes. The number of
subjects tested, the correlation coefficients (r), and the P values for each correlation are shown in the top left corner of the graphs.
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NKG2C genotype distribution in 433 PLWH with that in 280 controls who had no his-
tory of HIV exposure (33). They found NKG2C2/2 subjects among their HIV-uninfected
population, while we did not. They reported a significant association between carriage
of an nkg2c2 allele (i.e., combined NKG2C1/2 and NKG2C2/2 carriers) with HIV infection
and that there was a higher proportion of NKG2C1/1 carriers among uninfected con-
trols than among PLWH. The main difference between the population reported by
Thomas et al. and the one described here was the composition of the HIV-uninfected
population. In the study by Thomas at al., the control population was not HIV exposed
and thus was at a low risk for HIV infection. While it is possible that some of the people
at high risk for HIV exposure we included remained HIV uninfected by chance, they
represent a group that is likely to have a higher level of resistance to HIV infection than
the HIV-uninfected population described by Thomas et al. The inclusion of HESN partic-
ipants allowed us to explore more directly whether NKG2C genotypes were associated
with HIV susceptibility. This may account for the discrepancy between our results and
those reported by Thomas et al. regarding which NKG2C genotypes were associated
with HIV susceptibility.

We stratified both PLWH and HESN subjects into those whose route of HIV infec-
tion/exposure was mucosal (SE) versus parenteral (IDU). When SE and IDU PLWH and
HESN subjects were compared separately, we observed that the frequency of the

FIG 5 Correlation between log10 VL set point and frequency of NKG2A1 NKG2C2 CD56dim NK cells from CMV1 PLWH carrying the three possible NKG2C
genotypes. Correlations between the frequency of NKG2C1 CD56dim and NKG2A1 CD56dim NK cells from CMV1 PLWH for carriers of all NKG2C (A), NKG2C1/1

(B), and NKG2C1/2 (C) genotypes. The number of subjects tested, the correlation coefficients (r) and the P values for each correlation are shown in the inset
at the top left corner of each graph. (D) Shown is the strategy used to gate on CD56dim CD32 CD142 CD192 NK cells, from which NKG2A1 NKG2C2 cells
were gated onto assess their frequency among CD56dim NK cells. Correlations between the frequency of CD56dim NKG2A1 NKG2C2 NK cells with log10 VL set
point from for CMV1 PLWH carrying all NKG2C (E), NKG2C1/1 (F), NKG2C1/2 (G), and NKG2C2/2 (H) genotypes. The numbers of subjects tested, the correlation
coefficients (r), and the P values for each correlation are shown in the top left corner of the graphs.
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NKG2C2/2 genotype was significantly higher in the IDU PLWH than HESN subjects,
while this frequency did not differ significantly between SE PLWH and those at risk for
sexual exposure to HIV. Many factors influence the per-act risk of HIV transmission,
including the VL of the transmitting partner, the route of exposure, the presence of
genital ulcers, circumcision, and the frequency of exposure, among others (39, 40). The
SE PLWH and high risk for HIV exposure subpopulations were mainly men who have
sex with men (MSM). Of these, all reported unprotected receptive (where the receptive
partner was HIV seronegative) anal intercourse. This route of exposure averages at least
a 10-fold higher risk of transmission per act than unprotected insertive anal or vaginal
intercourse and a per-act risk that is close to that of injection drug use (41–44).

What accounts for the frequencies of the NKG2C2/2 genotype not differing signifi-
cantly between SE PLWH and those at risk for mucosal HIV exposure is unknown. The
level of exposure to HIV may be a factor if a higher proportion of HIV-transmitting part-
ners of SE than IDU HESN populations are on antiretroviral treatment (ART). In the
context of NKG2C1 cells, the biology of HIV transmission by injection versus sexual ex-
posure may be a factor. Parenteral exposure involves the introduction of needles con-
taminated with HIV-infected cells and/or virions into the circulation. Transmitted HIV-
infected cells will express HLA-E, the ligand for NKG2C, and downmodulate HLA-A, -B,
and -C, the ligands for inhibitory killer immunoglobulin-like receptors also present on
NKG2C1 cells (2, 3, 7, 8, 36). The integration of these signals promotes NKG2C1 NK cell
activation that may contribute to HIV clearance prior to the establishment of a produc-
tive infection. In this setting, the absence of NKG2C1 cells in NKG2C2/2 carriers may be
linked to heightened HIV susceptibility in those who became infected. In the case of
sexual exposure, HIV-infected cells or virions must cross mucosal barriers to access the
NKG2C1 NK cells in the circulation. Our knowledge of NKG2C1 NK cells at mucosal gen-
ital/anal sites is limited. NK, tissue-resident NK (TrNK), and NK-like innate lymphoid cells
are present in tissues, including in the female genital tract (45, 46). The NK receptor
profile of these cells differs from that of circulating NK cells, making it challenging to
evaluate their stage of maturity, their ability to interact with HIV-infected cells, and the
consequences of such an interaction in the context of what is known about circulating
NK cells. Whether NK-like cells at portals of HIV entry express NKG2C is unknown. A
study of the transcriptomic and protein expression patterns of TrNK cells in lung muco-
sal tissue did not report expression of NKG2C, while this receptor was shown to be
expressed on adaptive NK cells in the liver, although these NK cells had distinct NK cell
receptor profiles from those in the circulation (46, 47). If NKG2C1 NK cells were absent
at the portals of HIV entry, it would reduce the relevance of NKG2C genotypes in mod-
ulating infection risk through a mucosal route. In sum, more information on the NK cell
landscape at mucosal portals of HIV entry would aid in understanding the discrepancy
between the percentage of NKG2C2/2 carriers in SE versus IDU PLWH and HESN
subjects.

The reason underlying why none of the 157 HESN subjects carried the NKG2C2/2

genotype and how this may contribute to the maintenance of seronegative status de-
spite multiple HIV exposures are unknown. CMV infection drives the expansion of
adaptive NK cells (17, 29, 48). It is notable that NKG2C2 adaptive NK cells also expand
in CMV-infected NKG2C2/2 carriers (22, 36, 49, 50). Adaptive NKG2C2 and NKG2C1 NK
cells are found at similar frequencies in those who do not and those who do carry an
nkg2c1 allele, and these cells share phenotypic, epigenetic, and functional properties
that distinguish them from conventional NK cells (22, 30, 36, 49, 50). One of the differ-
ences between adaptive and conventional NK cells is that the former are more likely to
express CD2. CD2 is a major coactivating receptor found on NK cells and T cell subsets,
whose ligand is CD58 (LFA-3), which is expressed on many tissues (22, 51). CD2 is pres-
ent on a higher percentage of adaptive NK cells from NKG2C2/2 than NKG2C1 carriers
(51, 52). It compensates for the absence of NKG2C on adaptive NK cells from NKG2C2/2

carriers in a manner that contributes to the activation of these cells. Although signaling
through CD2 alone has little effect on adaptive NK cell activation, it synergizes with
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CD16 signaling, to potently activate NK cells to secrete IFN-g and TNF-a (22). It is
tempting to speculate that CMV infection provides the costimulatory signals (i.e., CD16
cross-linking by anti-CMV antibody Fc regions and CD2-CD58 interactions) to activate
adaptive NK cells. CMV has tropism for epithelial cells, fibroblasts, myeloid cells, and
endothelial cells, all of which express CD58 and thus have the potential to be adaptive
NK cell-interacting partners (53). CMV infection is a common infection, with a preva-
lence close to 40% in HIV-uninfected Canadians that increases with age (54–56). In
ART-naive PLWH enrolled in the Montreal PI cohort, the prevalence of CMV coinfection
is 84% (57). It would be interesting to investigate whether the higher frequency of the
NKG2C2/2 genotype in PLWH than in HESN subjects is linked to differential activation
of these NKG2C2 adaptive NK cells in PLWH than in HESN subjects due to factors such
as differential levels of CMV infection or other factors that affect NK cell activity in a
manner that influences HIV susceptibility.

We observed that the percentages of NKG2C1 NK cells in CMV1 PLWH and in CMV-
monoinfected persons differed according to NKG2C genotype. CMV infection drives the
expansion of NKG2C1 NK cells (9, 13, 31). This was the rationale for confining this analy-
sis to PLWH and HIV-uninfected subjects who were CMV seropositive. Cell surface
NKG2C percentage, MFI, and intensity of fold change over background in the MFI of
NKG2C expression results reported by others did not test for CMV serostatus, which if
negative, would preclude the expansion of NKG2C1 NK cells (33). In CMV-monoinfected
subjects, differences in the percentages and intensities of NKG2C expression between
NKG2C1/1 and NKG2C1/2 carriers were not significant. However, these values in CMV1

PLWH compared to CMV-monoinfected persons were higher for cells from carriers of
both NKG2C1/1 and NKG2C1/2 genotypes, as has been seen by others (31, 32, 58).

Treatment-naive VL set point is associated with the rate of HIV disease progression,
as measured by time to CD4 counts of ,200/mm3, AIDS, and death (37, 38). We found
no significant correlations between either the percentage of NKG2C1 CD56dim NK cells
or the intensity of NKG2C expression on NK cells and the VL set point. This was also the
case for correlations between the percentage of NKG2C1 CD571 and NKG2A1 CD56dim

NK cells and the VL set point. These results differ from those of others who correlated
the percentage of NKG2C1 cells with single VL measures in ART-naive individuals.
Thomas et al. found a positive correlation between these parameters, although their
analysis only included 7 untreated subjects in the chronic phase of infection (33). In
contrast, Ma et al. found a negative correlation between the percentage of NKG2C1 NK
cells and concurrent VL in 22 treatment-naive PLWH infected at least 120 days,
which corresponded to the VL set point (34). Gondois-Rey et al. also found a negative
correlation between the percentage of NKG2C1 NK cells and concurrent VL in 18 treat-
ment-naive subjects tested at time points in acute/early infection (35). The analysis per-
formed here was done on a larger group of 43 HIV1 and CMV1 individuals together
and stratified by NKG2C genotype. To our knowledge this is the first report investigat-
ing correlations between the intensity of NKG2C expression on NK cells and VL set
point. Overall, we found no evidence that NKG2C1 NK cell parameters influenced VL
set point, which is a determinant of the rate of HIV disease progression.

gd T cells also express NKG2C and have been shown to respond to HIV-infected
cells (59, 60). Future studies should explore the link between NKG2C genotype, CMV
infection, and frequency of NKG2C-expressinggd T cells at the level of susceptibility/re-
sistance to HIV infection and at the level of HIV control.

In summary, our results support that carriage of the NKG2C2/2 genotype is associ-
ated with higher susceptibility to HIV infection, particularly by the parenteral infection
route. Although, NKG2C copy number was associated with percentage and intensity of
NKG2C expression on NK cells, these parameters did not correlate with HIV VL set
point.

MATERIALS ANDMETHODS
Ethics statement. This research study was approved by the Institutional Review Board of the

Research Ethics Committee of the McGill University Health Centre (study identification code 2018-4501).
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It was conducted according to the principles expressed in the Declaration of Helsinki. Written informed
consent for the collection of each individual’s specimens and subsequent analyses using these samples
was obtained from all study subjects.

Study population. The study population included 591 individuals: 434 were PLWH enrolled in the
Montreal PI study, and 157 were HESN subjects (61). Persons at high risk of being sexually exposed to
HIV, which we will designate here are sexually exposed (SE) HESN (n= 78), included HIV-uninfected men
who have sex with men (MSM) recruited from the Clinique Médicale l’Actuel (n= 40) and subjects en-
rolled in the Ipergay Pre-Exposure Prophylaxis (PrEP) on-demand study followed in Montreal (n= 21)
(62). These MSM SE HESN subjects answered “yes” to the question “Have you had unprotected receptive
anal intercourse with a partner of unknown HIV serostatus or known to be HIV-infected, at least 5 times
in the last 6months or at least 50 times in your lifetime before starting PrEP?” An additional 17 SE HESN
subjects were HIV-negative partners in HIV-discordant couples who remained HIV uninfected despite
multiple exposures that occurred before the availability of antiretroviral treatment (ART). These included
9 men and 8 women; 6 of the men were MSM (63). We also recruited HIV-negative injection drug user
(IDU) HESN subjects from the St. Luc cohort (n= 79) (64). All IDU HESN subjects answered “yes” to the
question “Have you shared needles and/or injection equipment with partners known to be HIV-infected
at least 5 times?” Clinic visits for St. Luc cohort participants occurred approximately every 6 months, at
which time information was collected regarding the frequency of their at-risk behavior for HIV exposure.
All HESN subjects provided a blood sample from which peripheral blood mononuclear cells (PBMCs) and
plasma were isolated and stored frozen until use. HIV serostatus was assessed using HIV enzyme immu-
noassays (EIAs) (65). Subjects enrolled in the Montreal PI cohort included individuals recruited within the
first 6 months of HIV infection, who were then followed an average of every 3months for up to 4 years
(65). At each clinic visit, CD4 and CD8 counts and plasma VL were measured, ART status was recorded,
and blood was drawn for isolation of PBMCs and plasma, which was stored frozen until use. For one
experiment comparing the expression of NKG2C on cells from HIV2 CMV1 persons, 11 additional sub-
jects who had minimal HIV exposure, were included.

NKG2C genotyping. Genomic DNA was extracted from the PBMCs of all study subjects with the
QIAamp DNA blood minikit (Qiagen, Inc., Toronto, ON, Canada) according to the manufacturer’s instruc-
tions. Full-length nkg2c (nkg2c1) and the deletion variant (nkg2c2) are alleles at the same locus (24).
NKG2A is encoded at a separate locus. The presence of nkg2c1 or nkg2c2 alleles and the nkg2a locus, as a
positive control present in all subjects, was determined by sequence-specific PCR. Three sets of forward
and reverse sequence-specific primers for nkg2c1, nkg2c2, and nkg2a were used to amplify the allele
groups at the nkg2c and nkg2a loci. The forward and reverse primers for amplification of the nkg2c1 allele
were NKG2CT/F (59-ATCAATTATTGAAATAGGATGC-39) and NKG2CT/R (59-CGCAAAGTTACAACCATCACCAT-
39) (24). Those amplifying the nkg2c2 allele were BREAK-F (59-ACTCGGATTTCTATTTGATGC-39) and BREAK-R
(59-ACAAGTGATGTATAAGAAAAAG-39) (24). Those amplifying the nkg2a internal control were NKG2A3F
(59-TGTATCCACCTCTCCTTTCG-39) and NKG2A4R (59-TTTGTACAGCCTAAGATCAAG-39) (24). Twenty-five
nanograms per microliter of genomic DNA from each participant was amplified with Platinum Taq
(Thermo Fisher Scientific, Burlington, ON, Canada) in a T100 Thermal Cycler (Bio-Rad Laboratories, Inc.,
Hercules, CA) using the following conditions: denaturation at 95°C for 2min, then 35 cycles of denatura-
tion at 95°C for 30 s, annealing at 55°C for 30 s, and extension at 72°C for 30 s, followed by a 5-min exten-
sion at 72°C. Amplicons were visualized by gel electrophoresis on a 2% agarose gel in 0.5� TBE buffer
(45mM Tris base, 45mM boric acid, 1mM EDTA) run at 125 V for 30min in Fluo-DNA loading buffer (6�;
Zmtech Scientifique, Montreal, QC, Canada) and imaged with an Omega Lum C imaging system (Gel
Company, Inc., San Francisco, CA). Band sizes of 300 bp corresponded to nkg2c1 alleles, 400 bp to nkg2c2

alleles, and 800 bp to nkg2a (29). Samples were classified as homozygous for the presence of the nkg2c1

allele when only the 300-bp band was present (NKG2C1/1), homozygous for nkg2c2 (NKG2C2/2) when
only the 400-bp band was present, and heterozygous for nkg2c1 and nkg2c2 when bands of both sizes
(NKG2C1/2) were present (29).

Flow cytometry analysis of the frequency of NKG2C+ cells and the intensity of NKG2C
expression. PBMCs from 32 NKG2C1/1, 19 NKG2C1/2, and 6 NKG2C2/2 HIV1 CMV1 subjects were stained
with an antibody cocktail that allowed for gating on live NK cells as CD32 CD142 CD192 CD56dim lym-
phocytes. We also stained PBMCs from 43 NKG2C1/1 and 18 NKG2C1/2 HIV2 CMV1 subjects with this
antibody cocktail; all belonged to the HESN group, except for 11 HIV2 CMV1 low-risk controls. These
were examined for differences in the percentage of NKG2C1 CD56dim, NKG2C1 CD571 CD56dim, and
NKG2A1 CD56dim NK cells and the intensity of NKG2C expression on CD56dim NK cells from subjects car-
rying each NKG2C genotype. The intensity of NKG2C staining was assessed by measuring the mean fluo-
rescence intensity (MFI), the median fluorescence intensity, and the fold change over background in the
MFI of NKG2C staining. Cryopreserved PBMCs were thawed and resuspended in RPMI 1640 medium sup-
plemented with 10% fetal bovine serum (FBS), 2mM L-glutamine, 50 IU/ml penicillin, and 50mg/ml
streptomycin (R10) (all from Wisent, St Jean Baptiste, QC, Canada). PBMCs (106 in 100ml of R10) were cell
surface stained for 25min at 4°C with previously optimized concentrations of fluorochrome-conjugated
antibodies to the following cell surface markers: CD3-BV785 (clone OKT3), CD19-BV785 (HIB19), CD14-
BV785 (M5E2), and CD56-BV605 (HCD56) from Biolegend, San Diego, CA; CD16-allophycocyanin (APC)-
Cy7 (3G8) from BD Biosciences, Baltimore, MD; NKG2C-phycoerythrin (PE)-Cy7 (REA250) and NKG2A-APC
(REA110) from Miltenyi Biotec, Auburn, CA; CD57-PE (TB01) from Life Technologies, Burlington, ON,
Canada); and Indo-Violet LIVE/DEAD (L/D) stain from Fisher Scientific, Waltham, MA. Cells were then
washed twice with fluorescence-activated cell sorter (FACS) buffer (phosphate-buffered saline [PBS], 4%
fetal bovine serum [FBS], 0.05% NaN3) and fixed in 2% paraformaldehyde (Santa Cruz Biotechnology,
Santa Cruz, CA). Between 5 � 105 and 7� 105 cells were acquired using an LSRFortessa X-20 flow
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cytometer (BD Biosciences, San Jose, CA). Results were analyzed using FlowJo v10.6.2 software (Tree
Star, Ashland, OR).

VL set point determination. VL set points were calculated for 160 NKG2C1/1, 83 NKG2C1/2, and 6
NKG2C2/2 HIV1 carriers. The average of the VLs from all treatment-naive time points 6 months after the
estimated date of infection to the end of their follow-up in the Montreal PI cohort were used to calculate
the VL set point.

Statistical analysis. Statistical analysis and graphical presentation of results were performed using
GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, CA) and Statistical Analysis System (SAS) software
version 9.4 (SAS Institute, Cary, NC). The statistical significance of differences in the racial/ethnic compo-
sition of the HIV1 and HESN populations and deviations in the distributions of NKG2C genotype from
Hardy-Weinberg equilibrium (HWE) was assessed using x 2 tests. Between-group differences in the fre-
quency of NKG2C genotypes in PLWH and HESN populations were determined using two-tailed Fisher’s
exact tests with Haldane’s correction. The statistical significance of between-genotype differences in the
percentage of NKG2C1 NK cells, the intensity of NKG2C expression on CD56dim NK cells, and VL set point
in ART-naive PLWH was assessed using Kruskal-Wallis tests with Dunn’s posttests. The significance of cor-
relations between the percentages of NKG2C1, NKG2C1 CD571, and NKG2A1 CD56dim NK cells and in-
tensity of NKG2C expression and VL set point in ART-naive CMV1 PLWH was assessed using Spearman’s
correlation tests. P values of,0.05 were considered significant.
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