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Abstract

Necrotizing enterocolitis (NEC) is a life-threatening intestinal disease that primarily affects 

preterm infants during their first weeks after birth. Mortality rates associated with NEC are 

15-30%, and surviving infants are susceptible to multiple serious, long-term complications. The 

disease is sporadic and, with currently available tools, unpredictable. We are creating an early 

warning system that uses stool microbiome features, combined with clinical and demographic 

information, to identify infants at high risk of developing NEC. Our approach uses a multiple 

instance learning, neural network-based system that could be used to generate daily or weekly 

NEC predictions for premature infants. The approach was selected to effectively utilize sparse and 

weakly annotated datasets characteristic of stool microbiome analysis. Here we describe initial 

validation of our system, using clinical and microbiome data from a nested case-control study of 

161 preterm infants. We show receiver-operator curve areas above 0.9, with 75% of dominant 

predictive samples for NEC-affected infants identified at least 24 hours prior to disease onset. Our 

results pave the way for development of a real-time early warning system for NEC using a limited 

set of basic clinical and demographic details combined with stool microbiome data.
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1 BACKGROUND

Necrotizing enterocolitis (NEC) is the most common intestinal emergency among preterm 

infants. It is characterized by rapidly progressive intestinal necrosis, bacteremia, acidosis, 
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and high rates of morbidity and mortality (Figure 1). Up to 11,000 premature infants are 

affected in the U.S. annually. Mortality rates are 15-30%, and survivors are at increased risk 

for intestinal strictures, nutritional malabsorption, and neurocognitive impairments [12, 21].

Currently there is no effective way to predict NEC before disease onset, when it is often too 

late to successfully intervene. Causes of NEC are not well-understood, but several studies 

have focused on shifts in the intestinal microbiome, the bacteria in the intestine whose 

composition can be determined from DNA sequencing from small stool samples [19]. 

Certain microbiome patterns have been found to precede NEC, although these patterns are 

variable and incompletely reliable [6, 11, 24, 36]. We hypothesized that a machine learning 

approach to modeling clinical, demographic, and microbiome data from preterm patients 

might allow discrimination of patients at high risk for NEC long before clinical disease 

onset, which would permit early intervention and mitigation of serious complications.

As a clinical implementation, we envision an early warning system built around rapid stool 

DNA extraction and sequencing technology, such as the Nanopore sequencing system [20], 

combined with efficient bioinformatic tools to rapidly and directly map sequence reads to a 

comprehensive bacterial sequence database (e.g. Kraken2, used in this paper and described 

below). Longitudinal microbiome compositional data for each patient would then be 

analyzed using a machine learning early prediction system such as described here. The 

process would be fast enough that it could be completed for all at-risk newborns in a 

neonatal ICU on a daily basis by a single technician. Daily NEC risk assessments from the 

system would be returned to the medical team so that infants at high risk for imminent NEC 

could receive enhanced observation or preventative measures such as restricted enteral intake 

and/or prophylactic antibiotic therapy.

Real life neonatal data are imperfect, however. Clinical data are noisy (from imprecise 

measurement, input errors, and clinician-to-clinician variability) and microbiome data from 

stool samples are sparse (most stool samples have similar microbial composition, 

representing only a tiny fraction of the bacterial kingdom). The suboptimal nature of the data 

presents a significant challenge to a machine learning approach to predicting NEC in an 

individual patient.

In order to contend with these limitations, we adapted an attention-based, multiple instance 

learning (MIL) approach that has been successfully deployed in the context of medical 

image interpretation [17]. We chose this strategy after recognizing similarities between 

microbiome and medical image data–both feature mostly extraneous information, minimal 

labeling, and both are usually accompanied by limited clinical information. We also used 

several pre-processing steps to normalize our input data and reduce the dimensionality of the 

dataset, both through rational handling of zero counts and hierarchical feature selection. 

These pre-processing steps proved crucial to generating highly accurate and early NEC 

predictions in a computationally tractable algorithm that could be performed in real-time in a 

clinical setting.

Other groups have used computational strategies to analyze various aspects of NEC or 

suggested hypothetical approaches to do so [35]. One group applied linear discriminant 
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analysis to clinical findings associated with the disease [18]. Clinical findings consistent 

with NEC often occur too late to effectively intervene, however, while combining clinical 

data with microbiome analysis may permit earlier detection. Machine learning has also been 

used in an exploratory capacity to discern bacterial metabolic pathways that may contribute 

to pathogenesis [22]. Ours is the first described system for a clinically applicable machine 

learning model that combines microbiome, demographic, and clinical data that could be 

collected and monitored in real-time in a neonatal ICU. We employ recently developed 

microbiome pre-processing and machine learning methods, extending their applicability to a 

new area of predictive monitoring.

This paper makes the following contributions:

1. Provides a framework for microbiome data pre-processing that recognizes and 

appropriately attends to the compositional and hierarchical aspects of the data.

2. Investigates suitable machine learning methodologies in the case study of 

predicting NEC in preterm infants that could translate to other medical problems 

with similar types of data.

3. Shows successful results that present a pathway toward a clinically useful tool to 

predict individual patient risk of developing imminent NEC.

2 COHORT

We tested machine learning algorithms on a dataset from a large, prospective cohort study 

with a nested case-control design by Warner et al.—performed between 2009 and 2013—in 

which 2,895 stool samples were studied from 161 preterm infants, 45 of whom developed 

NEC [36] (Figure 2). Infants were enrolled at three neonatal ICU sites: St. Louis Children’s 

Hospital, ChildrenâĂŹs Hospital at Oklahoma University Medical Center, and Kosair 

Children’s Hospital.

2.1 Cohort Selection

Inclusion criteria included birthweight under 1,500 g and an expectation of survival beyond 

seven days from birth. All stools from enrolled infants were sampled up to 60 days of life, 

hospital discharge, development of NEC, or death (whichever came first). Stool samples 

were stored frozen until thawed for DNA extraction. NEC was evaluated using the Bell 

staging system, and subjects were diagnosed with NEC only if they met criteria for Bell 

stage 2 (clinical and radiographic signs of intestinal pathology) [27]. Infants who were 

classified as having spontaneous intestinal perforation (a clinical entity distinct from NEC) 

were excluded from analysis, as were any subjects found to have major cardiovascular 

abnormalities. Clinical and demographic data were collected and stored for all enrolled 

infants.

At the end of the enrollment period, subjects who had developed NEC were 

demographically matched to 1-4 unaffected control subjects. These two groups made up the 

case (n=45) and control (n=116) cohorts. DNA was extracted from all 2,895 stool samples 

from both cohorts. Following DNA extraction, bacterial 16S ribosomal protein DNA 
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sequences were PCR amplified using primers flanking the V3 and V5 regions. Amplicons 

were sequenced on the Roche 454 GS FLX Titanium platform and uploaded to the National 

Center for Biotechnology Information.

2.2 Features

After obtaining authorized access to clinical and demographic data, we downloaded the raw 

sequence reads for 2,895 clinical samples from the Warner et al. study. We used Kraken2 

[38] to directly align the sequence reads to a database of microbiome DNA sequences (the 

miniKraken2 database), after which viral, fungal, and archaeal alignments were removed, 

leaving only bacterial matches.

We also included 27 clinical metadata features collected and reported in the Warner et al. 

dataset, eliminating from our analyses those metadata features (such as whether the patient 

survived) that would not be available to a neonatologist caring for a patient.

We replicated key findings from the initial study, including DNA sequence-based 

characterization of the taxonomic distribution of bacteria present in the samples and 

demonstration that infants who developed NEC showed trends toward Firmicutes-depleted 

and Proteobacteria-enriched intestinal microbiota, relative to unaffected control infants. Both 

of the latter findings were variable, however, and existed within a background of complex 

and noisy microbiome data, as visualized in Figure 2B.

3 PRE-PROCESSING

3.1 Feature normalization

Using microbiome raw data in downstream applications without careful pre-processing can 

lead to spurious results for several reasons. At a basic level, pre-processing is essential 

because the microbial community in each biological sample may be represented by datasets 

that differ significantly from each other simply as a result of differential sequencing 

efficiency, even if the underlying populations are actually very similar [15, 16]. Put 

differently, two microbiome sequencing experiments from the exact same sampling site 

might yield results that–at least on the surface–appear distinct from one another. However, 

with proper pre-processing, many of the artifacts introduced by methodological or technical 

variation can be minimized.

One challenge that pre-processing must overcome is the fact that most microbiome tables 

are sparse, meaning that they contain a high proportion of zero counts (often around 90%). 

On the other hand, in most intestinal microbiome samples, a handful of bacteria account for 

most of the sequence reads. This imbalance between read counts for abundant species and 

rare ones ensures that the counts of rare species are uncertain, since they are at the limit of 

detection for the sequencing instrument. The exact number of read counts for these rare 

components will depend on the sequencing depth: some (though perhaps not all) will be 

detected if sequencing is performed very deeply, while rare components will not be detected 

at all with more shallow sequencing. Again, this fact can be largely accounted for through 

careful consideration of pre-processing techniques.
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The next challenge for which pre-processing must account is the fact that microbiome data 

are fundamentally compositional. The term compositional, in this context, means that the 

total number of reads obtained for a sample does not reflect the absolute number of microbes 

present, since the sample is just a fraction of the original environment [15, 16]. 

Compositional data are constrained by the simplex (sum to 1) and are not free floating in the 

Euclidean space [34]. As a result, standard statistical approaches must be adjusted for the 

underlying compositionality, otherwise surprising but misleading patterns will be identified. 

For example, without accounting for compositionality, an increase in abundance of one 

prevalent bacterial taxon can lead to spurious negative correlations for the abundance of 

other taxa.

A cornerstone of microbiome data pre-processessing is normalization, which adjusts for the 

sample-to-sample differences most likely to result from purely methodological or technical 

features of the experiment. There are several possible approaches to normalization [37]. 

Ideally, the strategy selected should effectively deal with the distinct but related issues of 

sparsity and compositionality. The normalization strategy may be (and usually is) an 

algorithm built from several sub-processes.

A typical first step is to eliminate the many zeros present in a sparse microbiome dataset. 

There are two main strategies for doing so. The first is to apply a pseudocount where zeros 

are replaced by a uniform small number, such as two-thirds of the sequencer’s limit of 

detection. Alternatively, Bayesian approaches can be employed to individually compare 

taxon counts across all samples and substitute zeros with individually calculated estimates. 

Again, these estimates tend to be small numbers. A drawback of the Bayesian approach is 

that it is computationally demanding, especially when the study consists of a large number 

of biological samples. Furthermore, it is not clear that the computational demands of the 

Bayesian approach yield superior downstream results compared to the pseudocount 

approach [37].

For our dataset, we elected to use the non-Bayesian approach. Zeros were replaced with a 

uniform value: 0.66, which was 2/3 of the smallest possible read count of 1.

The next step is to perform some form of logarithmic transformation to the data to restore 

data shape features that make them more tractable to traditional statistical analyses. Several 

log transformations have been described, and interested readers are directed to several 

papers on the topic [1, 14–16, 37]. Among the most widely used compositional data 

transformation, however, is Aitchison’s log-ratio approach [2]. The log-ratio approach rests 

on the recognition that the abundance values are not informative by themselves and that the 

relevant information is contained in the ratios of abundances between the different taxa. A 

simple log-ratio approach would involve taking the logarithm of ratios between each count 

in a sample and the count of an invariant reference taxa. However, since selecting a reference 

value can introduce its own set of artifacts, a less biased alternative was developed: the 

centered log-ratio approach. Here each taxon within a sample is transformed by taking the 

log-ratio counts for that taxon within a sample divided by the geometric mean of the counts 

of all taxa.
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Figure 4 shows the effects of our pre-processing. Here, the top row shows population 

distributions for major microbiome taxa before pre-processing. The histograms are highly 

skewed and not amenable to further statistical analysis. After pre-processing (bottom row), 

previously obscured population characteristics emerge, making downstream analyses 

feasible and informative.

3.2 Hierarchical Feature Selection

Another special characteristic of microbiome data is its hierarchically structured feature 

space, which can be exploited for more efficient and accurate modeling through taxonomy 

dimensionality reduction (e.g., [23, 26]).

16S sequencing allows the generation of thousands of features. While this facilitates the 

categorization of microbiota to different groups of organisms (from the highest to the lowest 

level: kingdom, phylum, class, order, family, genus and species) based on their shared 

characteristics, it creates challenges when it comes to applying machine learning algorithms. 

Indeed, a high number of features compared to the sample size is linked to the curse of 

dimensionality [4]: a phenomenon where the data points are so sparse in the high-

dimensional space that it becomes extremely hard for any sophisticated machine learning 

algorithm to generalize well without overfitting the training sample. Overfitting leads 

ultimately to unreliable models that will do poorly on new unseen samples. Concretely, in 

the Warner et al. dataset, the data is a matrix n × m where n represents the total number of 

samples, with n = 2895 for 161 patients, and m = 3702, the number of non-zero taxa derived 

by 16S sequencing. This low samples-to-features ratio will subvert efforts at machine 

learning. Therefore, some form of taxonomy dimensionality reduction is required to improve 

model performance. Taxonomy dimensionality reduction has been successfully applied to 

colorectal cancer prediction [25].

Feature selection in hierarchical feature space [28], adopted by Oudah and Henschel in [23], 

has been shown to be an effective approach for using microbiome taxonomy for feature 

engineering and dimensionality reduction. Their proposed methodology, Hierarchical 

Feature Engineering (HFE), allows identification of a reduced set of features that can then be 

fed to machine learning algorithms. An additional advantage of this reduction is that it 

provides insights by identifying a small set of informative features that are linked to the 

outcome of interest.

HFE uses a series of filtering steps and heuristics to decrease the number of dimensions. In 

brief, given a microbiome taxonomy, HFE proceeds as follows: (1) a feature engineering 

phase where higher taxonomic features abundance is obtained by summing the weighted 

abundance of their children, (2) a heuristic-based phase where Pearson correlation 

coefficients are calculated for each pair (parent, child) in the taxonomy. Any child node with 

a correlation greater than a given threshold is pruned, (3) a supervised information gain-

based filtering is performed on all possible paths from the root to the leaves of the taxonomy. 

The outcome label of interest is then used to calculate the information gain for each node. 

Those with a low score (zero, or smaller than the average information gain along the path, 

are discarded). Incomplete paths where the full taxonomic information was not calculable 

Hooven et al. Page 6

Proc ACM Conf Health Inference Learn (2020). Author manuscript; available in PMC 2021 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will be handled by comparing the information gain of the leaves to the global information 

gain across the taxonomy.

Similarly to the HFE method [23], we reduce the dimensionality in the Warner data by 

removing any node that is redundant with the parent, using a Pearson correlation threshold 

of 0.7. This reduced the the numbers of taxa from 3,702 to 2,282.

Information gains were also calculated for each node of the taxonomy tree using the NEC 

target label. Any node with an information gain of zero was discarded. This process allowed 

us to prune the number of features further to 362 features.

4 METHODOLOGY

We evaluated several machine learning methods in order to determine the best strategy for 

predicting NEC from microbiome data. We found optimal performance from a gated 

attention-based multiple instance learning (MIL) approach based on a multi-layer neural 

network architecture [17]. This approach was successfully applied to medical imaging.

We adopt a MIL approach to predicting NEC. We model each example (patient) as a bag of 

instances (samples). MIL is a form of weakly supervised learning [7, 10], where the training 

instances are arranged in sets, called bags, and the label is provided for the entire bag. More 

formally, we have a set of labeled examples:

X1, y1 , X2, y2 , …, Xn, yn

where each bag Xi is a set of instances of the stool microbiome of the form Xi = {xi1, xi2, …, 

xik} along with clinical metadata features. Note that k corresponding to the number of 

samples can vary from one patient (bag) to another. The overall label yi ∈ {0, 1} denotes the 

bag class label–that is, whether the baby developed NEC or not.

There is no access to the instance labels themselves. Therefore, the whole bag is labeled 

with yi = 1, the NEC outcome, if it includes at least one positive instance. Therefore the 

example is considered weakly labeled, because only a subset of those instances are the 

drivers of that outcome.

The bag label yi is given by:

yi =
1, iff ∑kyik ≥ 0
0, otherwise

(1)

Where yik denotes the latent label of the kth instance of bag i. These yik labels are not 

available during training while the bag label yi is observed.

There are two main approaches to solve the MIL problem. In instance level approaches, 

predictions are made for each instance and aggregated to obtain the bag level label Y. In 

embedding level approaches, instances X are mapped to a vectorial embedded space and fed 
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to a final classifier. We used a recently developed embedding level strategy, known as 

attention-based multiple instance learning [17] that was applied to medical imaging.

In [17], initial embedding of features is performed by a neural network, which passes an 

embedded value to an attention-based MIL pooling algorithm that delivers the bag label X. 

The embeddings are aggregated using the attention weights, which are then fed to the fully 

connected layer with a sigmoid activation function that produces a bag probability. This 

model assumes that a bag label is distributed as a Bernoulli distribution θ(X) ∈ [0, 1] and 

trains it by optimizing the log likelihood function.

The attention-based pooling function is constructed as follows. Obtaining the embeddings H 
= {h1, …, hk} through a neural network fψ(∗), where hk = fψ(xk), the embeddings are 

aggregated by the weighted mean operator [17]:

z =
k = 1

k
akhk (2)

where:

ak = exp w⊺tanh Vhk

j = 1
k exp w⊺tanh Vhj

(3)

where w ∈ ℝL × 1 and V ∈ ℝL × M are parameters. Attention-based MIL can be further 

enhanced by adding a gated mechanism [9, 17], a feature included in our prototype:

ak =
exp w⊺ tanh Vhk

⊺ ⊙ sigm Uhk
⊺

j = 1
k exp w⊺ tanh Vhk

⊺ ⊙ sigm Uhk
⊺ (4)

Where U ∈ ℝL × M are parameters and ⊙ is an element-wise multiplication. The sigm(·) is a 

sigmoid function that serves to introduce non-linearity to the attention-based MIL pooling, 

improving efficiency in learning complex relationships that may be significant in 

determining the bag label. An overview of the computational architecture of our system is 

shown in Figure 5.

In NEC risk assessment, the instances consist of microbiome taxonomy data and 

demographic metadata. Each patient is defined as a collection of instances, and the task is to 

assign a NEC risk classification to the patient.

5 EMPIRICAL RESULTS

We implemented in Python for the general pipeline and used Py-Torch as a deep learning 

framework. Our implementation is available on Github 1. We tested our MIL-based NEC 

prediction system on the dataset described in Section 2 [36].

1https://github.com/necdreamteam/NEC.git
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In NEC risk assessment with our system, the instances consist of microbiome taxonomy data 

after normalization (3.1) and hierarchical feature selection (3.2), combined with commonly 

collected demographic and clinical metadata (e.g. gestational age at birth, mode of delivery, 

birth weight, gender). Each patient is defined as a collection of instances, and the task is to 

assign a NEC risk classification to the patient.

We used stratified sampling to partition the Warner et al. dataset into a training and testing 

sets. We conducted five trials of this partitioning to avoid any sampling bias. We used a 

cross-validation modeling strategy whereby we trained our system on a portion of the 

dataset, then repeatedly tested the resultant model on the data subset that was withheld 

during training. The final model obtained was then applied to the test set. We averaged the 

results across all trials.

We evaluated our system using two main metrics:

1. How well can it determine, based on stool microbiome and clinical data, whether 

or not a given patient developed NEC?

2. How long before disease onset did the dominant instance occur?

Alternative Methods.

Two of the instance level approaches that we have included as comparison are mi-SVM and 

MISVM [3]. Both of these algorithms try to identify the maximum margin hyperplane that 

separates negative bag instances from a selected representative instance from a positive bag. 

These two algorithms assume that all instances are independently distributed and therefore 

structure information—the potential interrelationships between instances, such as important 

temporal variation in microbiome features—is not taken into account. MILboost is a MIL 

variant of AdaBoost that has been mostly used for object detection in images. In this model, 

weights are assigned to each instance to maximize the likelihood of bags [39]. As with the 

two instance-based approaches, the MILboost algorithm does not take account of 

relationships between the instances. We also include a logistic regression (LR) comparitor. 

For SVM-based methods, we used linear and radial basis function (RBF) kernels. For all 

alternative methods, we did hyperparameter tuning accordingly (for example, C for linear, C 

and Gamma for RBF in SVM), using cross-validation. This is to ensure a fair comparison to 

the attention method proposed and other baselines used. Finally, we show the improvement 

in model performance that stems from center-log ratio transformation pre-processing.

Performance of these alternative approaches, shown in Figure 6, was generally poor. 

Predictive accuracy was barely above chance, with receiver-operator characteristics 

demonstrating limited ability to differentiate NEC from non-NEC cases.

Experimental System Predictive Performance.

In repeated trials using the approach described above, we demonstrated ROC AUCs around 

0.9, suggesting a good balance of sensitivity and specificity (Figure 6). Precision-recall 

characteristics of the experimental system also exceeded any of the alternative methods, with 

precision-recall AUC values around 0.7.
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We note that the models trained on all the features from microbiome taxonomic 

classification did not converge, due to the high dimentionality of the data. This highlights the 

importance of the hierarchical feature selection.

Model interpretability.

Most neural network-based machine learning systems cannot provide interpretability [13], 

leaving the basis of prediction unexplained. An attractive feature of our system is the 

interpretability potential of its models, permitting identification of key samples, over 75% of 

which are identified at least 24 hours prior to disease onset (Figure 7). These key samples 

will help direct further studies toward interpretability in the model. Interpretability will 

enhance our understanding of the etiology of NEC, increase our confidence in using the 

models in a clinical setting, and help refine our data collection to build even more accurate 

NEC scoring models.

6 CONCLUSION AND FUTURE WORK

We have developed a prototype of a machine learning system for predicting NEC in preterm 

infants, using stool microbiome and clinical metadata features. NEC is a serious illness for 

which there is currently no effective method to predict individual patient risk and no single 

predictive biomarker. This makes NEC an appealing target for a semi-supervised machine 

learning system that can detect subtle associations from complex datasets with minimal 

operator instruction.

To handle the sparseness, compositionality, and high dimensionality of raw microbiome 

sequencing data, we have employed pre-processing steps that include normalization, 

centered-log ratio transformation, and hierarchical feature selection. The hierarchical feature 

selection was performed to maintain only features that are essential for prediction. The cut-

off point of 0.7 is a conservative threshold for Pearson correlation (where in fact any 

correlation exceeding 0.5 could be deemed as strong). In addition, any node in the taxonomy 

tree with an information gain of zero was discarded. Our results demonstrate the importance 

of addressing these two problems with this type of data. We used a MIL system that has 

been effectively deployed in medical image interpretation—another realm in which weak 

signals exist in a complex and mostly irrelevant data space. We show empirically that the 

MIL attention model outperforms other MIL and non MIL methods.

Since there is no meaningful clinical benchmark against which to compare our system, we 

have instead assessed its performance relative to closely related multiple instance learning 

systems and logistic regression analysis, demonstrating superior predictive accuracy and 

discrimination.

To pursue this research further, we envision multiple potential paths from our current 

instantiation to a clinically useful tool. Our future work will be to integrate our prediction 

model into a clinical research protocol whereby at-risk neonates under 1,500 g will have 

bacterial DNA from stool samples sequenced daily using rapid and inexpensive Nanopore 

sequencing technology [20]. Sequence data will be automatically fed into Kraken2 for 

microbial population characterization, followed by pre-processing as described above. 
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Relevant clinical data for each patient will be attached to the biological data, which will then 

be fed into our MIL early warning system. The goal of our initial study will be to validate 

our predictions in a real-time neonatal ICU cohort. Once this validation phase is complete, 

we will start planning a randomized clinical trial of using our predictive system as a driver of 

neonatal ICU medical decision-making.

Future work will explore the use of interpretability models, which have shown great promise 

in explaining the prediction of machine learning models for individual patients [8]. 

Specifically, given the high predictive power of our MIL approach, when it correctly predicts 

that a patient developed NEC, we could explore further the characteristics of what instance 

(composed of microbiome and clinical data) drove that prediction. Examples of 

interpretability approaches include using rules such as the work in [29], and generating 

characterizations of key features based on the ranked list of the attention weights assigned 

by the MIL attention model to each instance within the bag label [30–32]. Interpretability 

models will be deployed on those key instances and could impact clinical practice while 

providing explanations to the patient’s parents for any model-driven clinical decisions.

We will also explore devising a hierarchical feature selection approach more suitable for the 

multiple instance learning framework. The method we employed is univariate and works at 

the instance level, not the bag level. Given that only a few instances are driving the bag 

label, we would devise an iterative approach to focus on the high-attention samples.

While considerable attention has been devoted to machine learning applications in adult 

medicine [5, 33], there has been less emphasis on potential uses in pediatric diagnosis and 

prevention, and the subspecialty of neonatology has been so far almost entirely overlooked 

by machine learning teams. However, neonatal patients are—in some ways—ideal 

candidates for machine learning approaches. They suffer from complex, multifactorial 

illnesses driven by a host of maternal and intrinsic risk factors; neonatal ICUs generate 

considerable physiologic and laboratory data amenable to machine learning strategies; and 

because infants cannot communicate directly they are highly vulnerable and would benefit 

substantially from effective computation systems to identify and prevent their illnesses. We 

see the work presented here as an initial step in that direction.
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Figure 1: 
Necrotizing enterocolitis (NEC) manifests as feeding intolerance and abdominal swelling in 

preterm infants (left). Current diagnosis relies on clinical signs and characteristic X-ray 

features (middle). The result is irreversible intestinal necrosis (right).
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Figure 2: 
Summary images show disease characteristics of the nested case-control cohorts from [36] 

used to develop the NEC early warning system (A). Panel B illustrates stool microbiome 

composition characteristics for patients in the study. Each vertical strip represents the 

complete microbiome of one stool sample; colored portions indicate genus level microbiome 

community members detected in that sample.
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Figure 3: 
A phylogenetic tree (A) showing microbiome community members identified through 16S 

sequencing of DNA from study subject stools. This tree reflects Kraken2 sequence mapping 

followed by hierarchical feature selection. The table (B) lists clinical metadata features 

included in our model and statistical comparisons. We confirmed two microbiome trends 

reported in the initial study: NEC-affected infant microbiota contain less Firmicutes bacteria 

and more Proteobacteria relative to unaffected control infant microbiota (C).
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Figure 4: 
Pre-processing of microbiome data allows population characteristics to emerge, enabling 

downstream analyses. The top row shows raw-count taxonomic population data prior to pre-

processing. The curves are skewed and compressed. The bottom row shows the same 

populations after pre-processing as described in the text. Following pre-processing, 

population distributions are normalized, less skewed, and demonstrate patterns that were 

obscured in the unprocessed raw data.
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Figure 5: 
The architecture of our prototype NEC early warning system, which consists of multiple 

layers of fully convolutional networks (FCN) culminating in an interpretable gated attention 

mechanism and passage of embedded data to a sigmoid function that generates a risk 

prediction. CLRT=centered-log ratio transformation; HFS=hierarchical feature selection. 

Image derived, with modifications, from [17].
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Figure 6: 
Receiver-operator and precision-recall curves generated by different models. The MIL 

Attention Model with CLRT applied (black boxes) was the best performer, and was used to 

determine the prediction lead-times for affected patients. For the histograms (bottom), 

ANOVA with Dunnett’s correction for multiple comparisons was performed comparing all 

models to the final MIL attention model with CLRT. ** p<0.01; *** p<0.001; LR=logistic 

regression; CLRT=center-log ratio transformation
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Figure 7: 
As a key step toward model interpretability, identification of dominant samples that inform 

NEC predictions well before disease onset.
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