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Abstract

Within the field of human rehabilitation, robotic machines are used both to rehabilitate the body 

and to perform functional tasks. Robotics autonomy able to perceive the external world and reason 

about high-level control decisions, however, seldom is present in these machines. For functional 

tasks in particular, autonomy could help to decrease the operational burden on the human and 

perhaps even to increase access—and this potential only grows as human motor impairments 

become more severe. There are however serious, and often subtle, considerations to introducing 

clinically-feasible robotics autonomy to rehabilitation robots and machines. Today the fields of 

robotics autonomy and rehabilitation robotics are largely separate. The topic of this article is at the 

intersection of these fields: the introduction of clinically-feasible autonomy solutions to 

rehabilitation robots, and opportunities for autonomy within the rehabilitation domain.
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1. INTRODUCTION

Assistive machines used to regain or replace lost human motor function are crucial to 

facilitating the independence of those with severe motor impairments. Machines such as 

powered therapy orthoses and manipulandums aim towards rehabilitation of the body, and 

work with the patient to move their own arms and legs to regain diminished or lost function. 

Exoskeletons worn on the body provide additional structure, support and power that enables 

a patient to use weakened or paralyzed limbs—and the hope is for such machines to be used 

for everyday manipulation and mobility, in addition to the therapeutic role they play today. 

Prostheses are robotic limbs worn on the body as replacements for missing limbs. Powered 

wheelchairs offer non-anthropomorphic mobility for people with impairments ranging from 

muscle weakness to cervical paralysis. Robotic arms mounted to wheelchairs promise 
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enhanced manipulation capabilities for wheelchair operators with upper-body impairments. 

Each of these machines can extend the mobility and manipulation abilities of persons with 

motor limitations in their own legs and arms, and in some cases even provide ability where 

there is none.

In their clinical form, each of the machines listed above involves no robotics autonomy—

that is, the ability to make higher-level decisions based on observations of the external 

world. (Though there do exist elements of automation, discussed further in Section 4.3.1.) 

However, the potential impact for robotics autonomy on the field of rehabilitation is 

considerable. The handful of application areas to date—robotic “smart” wheelchairs (1), 

stationary and mobile intelligent robotic arms (2), the burgeoning area of autonomous 

robotic aides (3)—only begin to scratch the surface. Autonomous robots already 

synthetically sense the world, generate motion and compute cognition—any of which might 

be adapted to address sensory, motor and cognitive impairments in humans.

Within the field of rehabilitation robotics1 research, autonomy is engaged infrequently. 

However, 10-15 years ago the field saw a comparatively stronger presence from autonomy—

particularly on the topic of robotic wheelchairs and assistive arms mounted to them. In the 

years since research within the rehabilitation robotics community shifted away from 

autonomy, though we are beginning to see the pendulum swing back. Certainly the field of 

robotics autonomy has made significant advances in the intervening years, so there is a 

heightened potential to make new, perhaps more impactful, contributions.

The intersection of rehabilitation with even more advanced robotics autonomy technologies

—including artificial intelligence and machine learning—is ripe for exploitation. The 

purpose of this article is to examine this intersection, between the fields of robotics 

autonomy and rehabilitation robotics. Therefore, throughout, the discussion of rehabilitation 

robotics is skewed towards topics where autonomy has played a role or might in the future. 

For this reason, the article is not a comprehensive survey of the field of rehabilitation 

robotics. For such a review, we refer to the reader to the topic-specific surveys highlighted 

throughout the article.

This article begins with an introduction to the types of robots used within the domain of 

human rehabilitation to regain lost function (Sec. 2). It continues with a description of the 

fundamental challenge of capturing and interpreting control signals from a human with 

motor impairments, for the purpose of operating a machine used to replace lost function 

(Sec. 3). We then survey research that introduces autonomy to such machines in order to 

help overcome these operational challenges, including potential areas for future impact (Sec. 

4). A discussion of the societal adoption and acceptance of autonomy in rehabilitation robots 

follows (Sec. 5), and after our conclusions (Sec. 6).

1We identify the field of rehabilitation robotics to include reasearch involving the types of robots in actual clinical use (prostheses, 
exoskeletons, manipulandums and orthoses) and/or that participates the rehabilitation robotics community (e.g. the IEEE Conference 
on Rehabilitation Robotics). This is a largely separate community from the robotics autonomy community, with the primary difference 
being the strong biomedical engineering perspective of the former and the strong computer science perspective of the latter (with 
mechanical engineering heavily represented in both).
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2. REHABILITATION: REGAINING LOST FUNCTION

We begin with a brief overview of machines used for human rehabilitation. These include 

machines whose purpose it is to rehabilitation the body (Sec. 2.1) as well as machines used 

to replace lost motor function, which might be mounted on the body (Sec. 2.2) or unattached 

to the body (Sec. 2.3). A schematic of this categorization is shown in Figure 1.

2.1. With the Human Body

Physical therapy aims to rehabilitate the human body in order to regain lost motor function. 

It is founded on the ideas of neuroplasticity in the brain and motor learning and strength 

training in the body, and can help to address impairments such as partial paralysis as a result 

of stroke or incomplete spinal cord injury. The worldwide incidence of stroke is estimated to 

be 1% of the population (4), and even after intensive rehabilitation only 5-20% of stroke 

survivors recover full function (5) with 25-74% relying on a caregiver for basic functional 

tasks (6). Robotic devices play a role in therapy-enabled rehabilitation by providing physical 

guidance to the body’s movements; through manipulandums or haptic feedback interfaces in 

contact with some part of the body (usually the hand), or through powered orthoses and 

exoskeletons attached to and/or supporting the body (7).2 The benefits of robot-assisted 

therapy include standardized treatment and assessment, relief for therapists from repetitive-

motion therapies and longer training sessions (11).

Early work using robots for physical therapy was characterized by pre-recorded motion 

trajectories (for lower-body rehabilitation) and constrained reaching movements (for upper-

body rehabilitation). Today the field has advanced to functional tasks and shared-control 

strategies that engage more active patient participation (11)—and by how much often is 

individualized based on patient needs and therapy goals. A lot of research in therapy robots 

investigates when and in what manner the automation assistance should step in to most 

effectively engage neurorehabilitation (7, 12).

A powered exoskeleton is a motorized rigid or flexible orthosis attached to the body (13), 

and currently its primary use is within clinical therapy environments (14). Exoskeletons 

provide guidance and support during upper- and lower-body motor rehabilitation exercises, 

including body-weight supported gait training on a treadmill. Lower-body exoskeletons also 

are being employed clinically by paraplegics for physiological benefits (rather than 

rehabilitated motor ability) such as reduced bone loss and improved digestion. A goal 

however is for powered exoskeletons also to be widely employed as mobility and 

manipulation devices outside of the clinic (14), and thus additionally to replace lost function. 

Powered exoskeletons therefore straddle the topics of rehabilitating the body and using a 

machine attached to the body to replace lost function (discussed next).

2A related technology is Functional Electrical Stimulation (FES) (8), where movement of the limbs is accomplished through electrical 
stimulation of the muscles (rather than a robotic orthosis), perhaps triggered by neural signals from the patient (9). FES, along with 
wearable sensors and virtual reality, are all technologies developed for neurorehabilitation which however fall outside of this scope of 
this article, as they do not involve the use of a robot. Also related, but out of scope, is a branch of robotics research (Socially Assistive 
Robotics (10)) that aims to socially (rather than physically) support the patient during therapy exercise.
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For a complete review of the area of robots used to rehabilitate the human body, we refer the 

reader to this collection (11) of articles on the topic of neurorehabilitation, as well as these 

survey articles (13, 14) on lower-limb exoskeletons.

2.2. With a Machine Attached to the Body

There are conditions for which a functional gap remains after the body has undergone 

rehabilitation therapy. For such conditions, machines can be employed in day-to-day life to 

bridge this functional gap and facilitate independent mobility and manipulation, which 

correlates with improved self-esteem, social connections and societal participation (15). One 

such condition is limb loss.

A prosthetic limb is a device attached to the body as a replacement for a lost limb. An 

estimated 1.6 million people in the United States alone are living with limb loss (16), and 

prosthetic limb use is correlated with positive measures like improved quality of life, 

restored function and increased employment likelihood (17).

The overwhelming majority of today’s prosthesis users employ a body-powered prosthesis, 

which contains no motors and is controlled either actively (e.g. using a harness attached to 

the opposing shoulder) or passively (e.g. a cantilevered foot). Upper-limb body-powered 

prostheses typically terminate in a single degree of freedom effector (hand or hook), and 

accomplish only a subset of the lost functionality (18, 19). Robotic arms and legs mounted 

on the body as a replacement for lost limbs—electric prostheses—are an incredibly 

promising, and yet surprisingly underutilized, technology.

There exist many hypotheses as to why robotic prostheses have not been adpoted more 

broadly, ranging from energy expenditure when operating the device (a particular concern 

for lower-limb prostheses), to difficulties with hardware maintenance, to operational 

challenges that limit functionality (a particular challenge for upper-limb prostheses) (18, 20). 

Regardless of how functional, a device simply will not be adopted if it is too heavy, expends 

more energy than it produces or has an uncomfortable socket connection (21). Many upper-

limb robotic (and body-powered) prostheses are used only aesthetically, not functionally, and 

for an overwhelming number of tasks the human simply uses their other hand (for unilateral 

amputations) (18, 19, 20). Accordingly, much of the research in the area of upper and lower-

limb prostheses focuses on the physical hardware design, and on the interpretation of signals 

from the human to control these machines.

For a in-depth review of the area of robotic prostheses, we refer the reader to survey articles 

on prosthesis use (18) and design (21), and myoelectric control (22).

2.3. With a Machine Unattached to the Body

While prostheses are machines mounted to the body to replace lost limb function, there also 

exist assistive machines that aim to replace lost function and likewise are operated by the 

human, but are not mounted to the human body.3

The powered wheelchair is by far the most ubiquitous assistive machine in use throughout 

society. There is evidence that powered mobility offers increased freedom, independence 
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and social engagement (25). However, there are impairments which can make driving a 

powered wheelchair a challenge, including upper-body physical impairments (ataxia, 

bradykinesia, dystonia, weakness/fatigue, spasticity, tremor and paralysis), cognitive 
impairments (deficits in executive reasoning, impaired attention, agitation and impulse 

control) and also perceptual impairments (low vision or blindness, limitations in head, neck 

or eye movement, visual field loss and visual field neglect) (26). Thus while many 

individuals do achieve sufficient mobility using wheelchairs, many others do not. A survey 

of clinicians in the United States found 10-40% of candidate users unable to be prescribed a 

powered wheelchair (26) because of sensory, motor or cognitive deficits that impede safe 

driving—leaving those individuals reliant on a caretaker for mobility.

One major confound is the fact that the more severe a person’s motor impairment, the more 

limited are their options for control interfaces—and accordingly also the control information 

that might be transmitted through these interfaces. Industry and academia alike continue to 

innovate on the design of control interfaces for wheelchairs (discussed further in Section 

3.1.2), as well as on the design of the wheelchair itself. For example, standing wheelchairs 

(27, 28) are developed for the health, functional and social benefits of the body being upright 

and at the height of standing adults.

The area of assistive robotic arms is less mature than that of powered wheelchairs, yet 

recently is gaining momentum. In the last 25 years there have been three major commercial 

assistive robotic arms.4 While wheelchair-mounted robotic arms arguably offer the most 

flexibility in terms where and when they provide assistance (29), standalone and mobile 

manipulators, workstation robots and automated feeding devices also have been proposed 

(2).

3. THE CHALLENGE: CAPTURING CONTROL SIGNALS FROM HUMANS 

WITH MOTOR IMPAIRMENTS

For assistive machines that aim to fill a gap in lost function, whether attached to the body or 

not, a major challenge is how to capture and interpret control signals from the human. A 

significant factor is that with increasingly severe motor impairments, there is a diminishing 

ability on the part of the human to generate control commands, and fewer interface options 

for how to capture these control commands. Often as machines become functionally more 

complex to meet the need of increasingly severe motor impairments, so too do these 

machines become more complex to control. Thus, in addition to motor impairments, 

operation is challenged by the limited control interfaces which are available to those with 

severe impairments and also the complexity of the machine to be controlled.

3The next step along this trajectory of course is independent robotic assistants (3, 23, 24) that serve as body surrogates without being 
in contact with, or even co-located with, the operator’s own body. Such technologies have demonstrated promise, but still are quite far 
from adoption within the clinical world of rehabilitation, and therefore fall outside of the scope of this article.
4The MANUS (later iARM, Exact Dynamics, Arnhem, Netherlands), Raptor (Applied Resources Corporation, New Jersey, United 
States) and JACO (Kinova Robotics, Quebec, Canada).
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3.1. Clinical Standards

Human motor impairments often translate into limitations—in bandwidth, in duration, in 

strength, in sources on the body—in the control signals that person can produce. For 

prosthesis control, there exists a fundamental confound that the higher the level of 

amputation, the more Degrees-of-Freedom (DoF) there are to control on the prosthesis, and 

yet fewer residual muscles to generate the control signals. Many traditional interfaces used 

to operate wheelchairs, like the 2-axis joystick, are inaccessible to those with severe motor 

impairments such as paralysis as a result of injury (e.g. cervical spinal cord injury) or 

degenerative disease (e.g. Amyotrophic Lateral Sclerosis, ALS). Moreover, the interfaces 

which are accessible to those with severe motor impairments already struggle to control 

machines like powered wheelchairs, and are fairly untenable for more complex machines 

like robotic arms.

A significant effort in both academia and industry has gone into creating control interfaces 

that are both effective in operating assistive machines yet also able to be operated by the 

target end-users of those machines (Fig. 2). Here we overview control interfaces and 

paradigms commonly employed on commercially-available machines used to replace lost 

function: prosthetic limbs (Sec. 3.1.1), wheelchairs (Sec. 3.1.2) and robotic arms (Sec. 

3.1.3).

3.1.1. Prosthetic Limb Control.—The control paradigms and sensors used to operate 

prostheses differ for the upper and lower limbs—for functional reasons like the types of 

movements produced by that limb, and physiological reasons like where the robotic limb is 

mounted and what signals from the human are used to operate it.

A common sensor interface employed on robotic prostheses is the myoelectric interface that 

detects, using electrodes placed on the surface of the skin, electromyographic (EMG) signals 

produced as a result of muscle activation. For purposes of physiological intuition, EMG 

signals typically are detected from residual limb muscles.

Discriminating control commands from myoelectric signals can be a challenge for reasons 

ranging from consistent sensor placement day-to-day after donning/doffing the device, to 

sensor drift due to physiological factors like sweat and swelling, to low signal-to-noise ratios 

in the detectable electrical signals. These challenges are exasperated in upper-limb 

prostheses because a higher dimensional control signal is required—the number of 

controllable DoF in the human arm and hand is much greater than that of the leg and foot. 

Recent innovations seek to modify the human body, rather than the interface (Sec. 3.2.1), in 

an effort to find alternate ways to produce these signals. For example, Targeted Muscle 

Reinnervation (TMR) (30, 31) is a procedure that surgically relocates nerves from the 

amputated limb to reinnervate muscles that no longer are biomechanically functional (e.g. 

the pectoral or serratus muscles after a shoulder disarticulation) and are larger than the 

muscles of the residual limb—effectively producing a biological amplification of the EMG 

signal.

The commercial standards in upper-limb myoelectric prostheses typically operate one 

controllable DoF each for the hand, elbow and wrist. A direct control paradigm maps a pair 
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of EMG electrodes to control a single DoF (22, 32). For example, an electrode pair detects 

the (thresholded) difference in biceps/triceps contraction to control prosthetic elbow flexion/

extension. When placed on agonist-antagonist muscles of the residual arm, there is an 

advantage of physiological intuition (32). Typically a (mechanical or EMG) switch is used to 

divert control from one function to another (e.g. from the elbow to the hand).

As prostheses become more articulated, the upper limit on the number of controllable DoF 

becomes an inhibitor. A pattern-recognition paradigm is able to handle a larger number of 

control classes, using machine learning techniques to map the signals from an array of 

electrodes to a set of movement classes that typically each control one half of a single DoF 

(22, 32). Each decoded class maps to a distinct function, and the most advanced decoding 

techniques (which, importantly, also are usable by the human) discern 10-12 motion classes 

(22, 33). For example, elbow flexion and extension each would be individual classes. The 

simultaneous control of multiple DoF remains a significant challenge (34).

Control in lower-limb robotic prostheses typically consists of a set of finite-state machines. 

Each state machine is a pre-programmed gait—an automated controller that a therapist tunes 

to the gait of the user—and each state is a posture of that gait (35, 36). The pre-programmed 

gaits include for example flat surface walking, incline walking and stair ascent/descent. 

Interface decoding therefore consists of predicting when to trigger a switch between the 

finite-state machines. Mechanical sensors such as force sensors and joint encoders are the 

standard inputs to these decoders, with more recent developments also incorporating EMG 

(37, 38, 39).

3.1.2. Wheelchair Control.—There are wheelchair control devices and interfaces 

specifically designed to address some of the physical, cognitive and visual impairments 

mentioned above (Sec. 2.3). Typically extensive hand-tuning by an occupational therapist 

occurs when a person is being fit for a powered wheelchair, for example that dampens gains 

to address tremor or narrows the deadzone of a joystick to address motion limitations. A lot 

of expertise and user assessment stands behind the design of these interfaces.

Joysticks are by far the most common interface used to operate powered wheelchairs, which 

fully cover the 2-DoF control space (speed, heading) of the wheelchair. Standard joysticks 

are operated by the hands, however miniature limited-throw joysticks are employed broadly 

and operated by many other parts of the body (e.g. toe, chin, tongue). A joystick is a 

proportional control interface, which generates control signals that scale with the magnitude 

of the user input (i.e. amount of joystick deflection).

The commercial control interfaces that are accessible to those with severe motor 

impairments are limited in both the dimensionality of the control signals they are able to 

simultaneously issue (generally 1-D, occasionally 2-D), and also the continuity of that 

control signal. Such interfaces include the sip-and-puff, which is operated by respiration, 

and arrays of mechanical or proximity switches embedded within the wheelchair headrest. 

These interfaces typically offer non-proportional control, which issues control signals in 

preset amounts that do not scale with the magnitude of the signal provided by the human.5 

To change the value of the control signal (or power level) instead involves navigating 
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through a menu displayed on a small screen mounted near the armrest. Some maneuvers 

require multiple changes in power level, for example driving up a ramp into a van (higher 

power, to overcome the incline) and then positioning inside the van (lower power, for precise 

positioning).

3.1.3. Robotic Arm Control.—Robotic arms attached to wheelchairs is still a 

burgeoning, but growing, commercial area. To date, there are no commercial interfaces 

specifically designed for robotic arm control. The interfaces in use are those which have 

been developed to operate wheelchairs. For example, the Kinova JACO is sold with a 3-axis 

joystick using buttons to switch between control modes.

Control of end-effector position (3-D) and orientation (3-D) for a robotic arm nominally 

exists in 6-D. This is a higher dimensionality than that provided by standard joysticks, which 

offer 2-D or 3-D control. The standard solution is to partition the control space into control 

modes, that operate within only a subset of the control space at a given time. To operate a 

different subset requires a switch to a different control mode (e.g. through a button press). 

Modal control of a robotic arm already is a challenge with 2-D and 3-D interfaces. With the 

more limited wheelchair interfaces (1-D, discrete) available to those with severe motor 

impairments, control becomes fairly untenable—and in practice such interfaces rarely are 

used to operate robotic arms. Which presents an irony: where robotic arm operation becomes 

inaccessible to those who arguably are most in need of its assistance.

3.2. Progress in Research

Despite the success of assistive machines in facilitating independence for many, there are 

circumstances under which control remains a challenge—to the point even of making the 

machine entirely inaccessible. To address this challenge presents the following options: 

either to capture more complex control signals from the human, or for the machine operation 

to require less complex input from the human, by designing simpler machines or offloading 

some of the burden to autonomous controllers.6 That is:

1. Easier Control. To design machines with high functional complexity, and yet 

low control complexity.

2. Richer Control Signals. To design novel control interfaces and decoding 

paradigms able to capture high-complexity control signals despite severe motor 

impairments.

3. Robotics Autonomy. To introduce robotics autonomy that augments, interprets 

or modifies low-complexity control signals from the human.

While the operational challenges associated with assistive and rehabilitation robots are 

broader, and include factors like energy expenditure and socket fit, we focus in this section 

on the question of control: of capturing and interpreting control signals from the human, and 

5Though very recently a proportional control sip-and-puff has entered the market (Stealth Robotics, Colorado, United States).
6An additional avenue is to modify the human body itself, rather than the machine side of the interface—as is done in the TMR 
surgery mentioned in Section 2.2.
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integrating these signals within control paradigms on the robot. The topic of autonomy in 

rehabilitation machines and robots will be discussed in Section 4.

3.2.1. Design Innovations in Prostheses.—Research in prosthesis control focuses 

on decoding signals from the human, mapping these signals to alternative control spaces and 

novel hardware designs that require simpler control. All of these approaches aim to simplify 

or improve control, or enable more complex control.

For commercial upper-limb robotic prostheses, paradigms that control 1-DoF at a time are 

the norm. Such control paradigms are robust and straightforward to use, but do not scale 

well to high-DoF systems or complex coordinated motions (22). Therefore, a large body of 

pattern-recognition research focuses on advancing EMG decoding paradigms—evaluating a 

variety, even cascades (40), of machine learning algorithms (41, 42) and different input 

features for these algorithms (41, 42, 43), as well as exploring different output classes (44, 

45, 46) including simultaneous multi-DoF control (34). Prosthesis operation furthermore is a 

target application domain for cortical neural interfaces (47, 48)—an extremely promising 

technology with the potential to capture complex control signals in the absence of movement 

ability, but still with many hurdles to adoption.

Sensor decoding research also features prominently in lower-limb prostheses, where here 

superior decoding aims to better predict transitions between finite-state machines. Arguably 

the stakes for classification errors with this hardware are higher than for upper-limb 

prostheses—since a mismatch between the selected automated gait and the human’s 

intended gait can result in a fall. Lower-limb decoders take as input information from 

mechanical sensors (e.g. force sensors, joint encoders) (39) or EMG data (37); and today, 

most often a combination of both (38, 49). Recent work is beginning to explore algorithms 

that perceive the external world, rather than just the human body, to anticipate environmental 

triggers of a state-machine switch (e.g. detection of a staircase (50)).

Academic work in simultaneous (multi-DoF) control for upper-limb prostheses furthermore 

explores alternative mapping paradigms. For example, such approaches might have each 

decoded class map to a set of multi-DoF motions (51) or force functions for each joint (52), 

or employ direct control within a reduced dimensionality space (53). This work at times is 

motivated by the idea of muscle synergies, that activate in coordination rather than 

individually. There is evidence of synergies in the human body that coordinate groups of 

muscles (54), posture and force in the hand (55, 56) and movement at the spinal cord (57).

There also exists work that aims to simplify control through mechanical design, rather than 

interface design. For example, robotic hand designs (58, 59) that mechanically encode 

synergies are being piloted on prosthetic arms, and variable stiffness prosthetic ankles 

increase functionality without increasing control complexity (60). Designs also aim to 

provide sensory feedback to the human, widely believed to be a necessity for advanced 

manipulation, by adding sensors to the prosthesis (61) or somatosensory neural interfaces 

(62).
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3.2.2. Interface Innovations in Wheelchairs.—Much of the research in interfaces for 

wheelchair operation focuses on capturing control signals from alternate sites on the body. 

Control signals are captured from head gestures (63, 64, 65) and facial movements (65, 66, 

67), shoulder and body movements (68, 69), and eye gaze (70). Biophysical signals such as 

electrooculography (71), electromyography (64) and electroencephalography (EEG) (72, 73) 

all are used to provide control input to wheelchairs. In addition to these noninvasive neural 

interfaces, cortical neural interfaces (47, 48) also might be used to operate wheelchairs and 

wheelchair-mounted robotic arms—with transformative potential for patients with locked-in 

syndrome, for example. All of these interfaces have the advantage of not requiring the user 

to adapt to the physical form factor of the interface, unlike commercial interfaces like the 

joystick, sip-and-puff and headarrays.

The field of wheelchair research also has introduced interfaces designed specifically to be 

paired with autonomy paradigms (discussed further in Section 4). For example, there are 

interfaces that employ haptic feedback to guide the user’s trajectory or alert them to 

obstacles (74, 75), touch-based graphical user interfaces to capture control commands (76) 

or locations of interest (65, 77), control command selections via blinking diodes and EEG 

(78), and speech interfaces to capture low- and high-level control commands (64, 79, 80) 

and environment annotations (81).

4. AUTONOMY IN HUMAN-OPERATED ASSISTIVE MACHINES

When a person has a motor impairment as a result of injury, disease or limb loss, our first 

line of defense is rehabilitation—to regain as much function as is possible with their own 

body. When rehabilitation however has reached its limits and a gap in function remains, we 

turn to assistive devices and machines to fill that functional gap. The idea behind then 

adding robotics autonomy is to make these machines even more accessible—to reduce 

operational burden and perhaps even create access where currently there is none.

The fundamental components of an autonomy system include sensors to observe the external 

world, and intelligence paradigms that reason about this information and generate control 

signals able to be executed by the hardware platform. Accordingly, components such as 

perception, obstacle-free path planning and motion controllers are standard on autonomous 

systems—all of which require additional sensing and computational infrastructure. Largely 

for this reason, to date within rehabilitation the majority of robotics autonomy has been 

introduced to machines that are not mounted to the body. (The introduction of autonomy to 

machines worn on the body is discussed further in Section 4.3.1.)

While full autonomy is an option for assistive machines, for reasons of robustness (82, 83) 

and user acceptance (84) it seldom is the architecture of choice today. An important 

observation is that users of assistive devices overwhelmingly prefer to retain as much control 

as possible, and cede only a minimum amount of control authority to the machine (18, 85).

The alternative then is to share control between the human and robotics autonomy. While at 

one end of the shared-control spectrum lies fully manual control and at the other fully 

automated control, in between lies a continuum of shared-control paradigms, that integrate 
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inputs from manual control and automated controllers. Within robotics, typically the goal of 

shared-control paradigms is to find a sweet spot along this continuum (86, 87, 88); ideally, 

where sharing control makes the system more capable than at either of the extremes. When 

one considers how able, or willing, the human is to accommodate limitations of the robot 

however, users of assistive machines potentially are very different than more traditional 

human-robot teams (e.g. search-and-rescue or manufacturing).

Fundamental questions that any assistive shared-control autonomy system must address 

include: (1) What is the intent of the human? Without an explicit indication from the human 

of their intended task or goal, this information must be inferred. (2) How to appropriately 

share control between the autonomy and human control commands? The assistive robotics 

literature offers numerous paradigms for how to accomplish control sharing—and yet 

surprisingly few comparative studies of these paradigms (89, 90). Even when paradigms 

perform similarly according to typical robotics metrics like success, efficiency and safety, 

this does not mean the paradigms will rate similarly in user acceptance or adoption.

4.1. Robotic Wheelchairs

By far the most common introduction of autonomy to a rehabilitation machine is the 

powered wheelchair. The potential for robotic “smart” wheelchairs to aid in the mobility of 

those with motor, or cognitive, impairments has been recognized for decades (1). A survey 

(26) of epidemiological data estimates that between 1.4 and 2.1 million individuals would 

benefit from a robotic wheelchair at least some of the time. Despite significant advances in 

capabilities, control and interfaces, there has been limited7 success in transitioning robotic 

wheelchair technologies to the general public—so much so that the clinical world remains 

largely unaware that this technology even exists.

4.1.1. System Design and Autonomy Behaviors.—Historically, the general trend in 

robotic wheelchairs was to offer a complete system: that was very capable, but also involved 

a fair amount of infrastructure, and components that were costly. Many were developed in 

their entirety from the ground up, including the wheelchair hardware and software systems 

(91). Early robotic wheelchairs often relied on modifications to their environment, such as 

fiducial landmarks (92) or visual/magnetic lines (93). As sensors and algorithms improved 

however, so did the autonomy capabilities.

Many recent works take more modular approaches to both hardware and software 

development. Modular software is used to accommodate multiple control interfaces (91, 76) 

and sensors (94). Modular hardware is used to interface the autonomy system with a variety 

of commercial powered wheelchair models (76, 95, 96, 97), or to address different levels of 

human ability (91).

For reasons of user, bystander and wheelchair safety, collision avoidance is one of the most 

common autonomy behaviors implemented within robotic wheelchair systems (96, 98, 99, 

7The discontinued Wheelchair Pathfinder (Nurion-Raycal Industries, Pennsylvannia, United States) provided obstacle feedback to 
people with low-vision/blindness, and the TAO-7 Intelligent Wheelchair Base (AAI Canada, Ontaria, Canada) is marketed as a 
research testbed.
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100). Collision avoidance can assist with human impairments ranging from spasticity to 

bradykinesia to visual field neglect, and can help with spatially-constrained maneuvers such 

as driving in crowds (25). Approaches for how to avoid collisions include stopping (93, 

101), alerting the user (e.g. via joystick force feedback (74)), steering away from the 

obstacle (102, 103) and engaging a path planner to circumvent the obstacle (85, 104).

Additional autonomy behaviors on robotic wheelchairs include person following (105), 

wheelchair convoying (106), automated docking (107), wall following (95, 108, 109, 110) 

and doorway traversal (89, 99, 110, 111, 112). Approaches that automate route planning (77, 

113) can be especially appropriate for users with cognitive impairments (114).

How to generate appropriate motion trajectories also is a topic of interest—for example, 

trajectories that take into account human comfort (115) or social considerations such as how 

to pass a pedestrian (116).

4.1.2. Shared Control.—Recognizing that the user often is dissatisfied when the 

machine takes over more control than is necessary—effectively forcing the user to cede 

more control authority to the machine than needed—many approaches offer a variety, often a 

hierarchy, of autonomous and semi-autonomous control modes within their shared-control 

schemes.

In early robotic wheelchairs, shared-control frequently triggered a discrete shift from human 

control to autonomous control (117) or placed the high-level control (e.g. goal selection) 

with the human and low-level control (e.g. trajectory planning and execution) with the 

autonomy (80, 91, 108, 118). This latter partitioning remains widely employed in more 

recent works as well (67, 76, 119, 110). A smaller number of works blended commands 

from the user and the autonomy (85, 111, 120)—which increasingly is adopted today.

Today research efforts explore methods to intelligently and smoothly accomplish control 

sharing such that the user retains more control while safety is maintained. The function for 

determining how much control lies with the human versus the autonomy often is based on 

safety metrics such as distance to an obstacle (96, 97, 99) and uncertainty (90), or 

humancentric metrics like comfort and transparency (121, 96, 122), or is inferred using 

machine learning techniques (123). An approach fundamentally different to control blending 

is to partition the control space. For example, paradigms allocate control of heading to the 

autonomy and linear speed to the human (100, 111, 117, 124).

There exist approaches that incorporate an explicit estimate of user intent into their shared-

control paradigm, in order to decide what is the human’s goal (97, 125), which shared-

control paradigm to use (98) and when the autonomy should step in (99, 126); also to 

smoothly blend with the autonomy controls (127) and filter noisy input signals (128).

The importance and need to customize the control sharing to individual operators is gaining 

interest in recent years (97, 125, 129, 130). There are architectures that aim to develop 

individualized models of assistance (125, 129), and preliminary evidence of human 

preference over assistance paradigms changing over time (89).
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Studies which are longitudinal and in-situ are critical, and remain absent from the literature: 

that is, studies which examine and compare control sharing use and preference, and intent 

inference performance, over extended periods of time and in real-world dynamic 

environments, both indoors and outdoors.

4.2. Robotic Arms

Robotic arms mounted to powered wheelchairs today is still a burgeoning commercial area, 

though within academia several long-term projects have developed assistive systems with 

integrated mobility and manipulation (68, 131, 132). Arguably the introduction of autonomy 

will be a necessity for the widespread adoption of assistive robotic arms—their higher-

dimensional control makes operation a prohibitive challenge for those with severe motor 

impairments. Even with the advent of neural interfaces able to capture richer control signals 

from the human, it is very likely that autonomy still will help to ease operation. While no 

commercial arms offer autonomy to date, this is an active area of research.

4.2.1. Potential and Challenges.—Autonomy in robotic arms can help to accomplish 

Activities of Daily Living (ADL) manipulation tasks, such as personal hygiene, meal 

preparation and feeding, as well as basic functionality like picking up objects from high and 

low surfaces (133). In the United States alone there are 10.7 million people who require 

assistance with one or more ADL tasks.8

While from one perspective the question of intent inference is perhaps easier than for 

wheelchairs (because the workspace is smaller), from another perspective it is more 

challenging—there exists much greater variety in the types of motions we employ to 

accomplish manipulation tasks. Motion generation on robotic arms also must address issues 

like solving for inverse kinematics and singularities, which might be complicated by the 

human guiding the arm into configuration-infeasible parts of the control space. Perceptual, 

inference and motion generation challenges all still serve as impediments to the robustness 

of autonomy-endowed assistive robotic arms—and are bottlenecks in their use to accomplish 

ADL tasks with motor-impaired operators in complex real-world environments.

The fact that the human signals are lower dimensional than the full robot control space raises 

multiple decisions for the system designer. One decision is the human signal mapping: that 

is, to what control space the human signals should map. For example, the human and 

autonomy might operate entirely different controllers (e.g. the human position and the 

autonomy gripper force (134)). More commonly, the human signals map directly to control 

robot end-effector (or joint) position or velocity—but of course only to a subset of that 

control, as dictated by the currently engaged control mode. Whether the autonomy is 

restricted to operate within the same control dimensions as the human, or free to augment 

the human’s signal in the uncovered control dimensions, is another design decision.

The challenges of modal control create additional opportunities for autonomy. For example, 

instead of issuing control commands, the autonomy might instead anticipate and facilitate 

switches between the control subspaces, to ease the burden of mode switching (135) or to 

8United States Census Bureau 2010 disability data: www.census.gov/people/disability/
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better estimate human intent (136). Such an approach is reminiscent of function switching in 

upper-limb prostheses (that is, of diverting control to operate different joints), which is an 

identified opportunity for autonomy (137).

4.2.2. Shared Control.—As with robotic wheelchairs, for wheelchair-mounted robotic 

arms there is a question of how to design paradigms for control sharing. Earlier work saw a 

similar high/low-level control partition, where the user selected the task or goal, which then 

was executed by the autonomy system (29, 138). In some works the human additionally 

intervened to provide pose corrections (68, 78, 139) or assist the autonomy (83). To partition 

the control dimensions between the autonomy and human also was explored (140).

Recent work investigates blended control and inferred operator intent. What form the 

function allocating control should take, and on what it should depend, is an open research 

question (141). Intent inference often plays a role in this control allocation, and research 

explores improving (136, 142) and even influencing (143) this inference.

Much of the evaluation of assistive robotic arms for which the goal or task is not defined a 
priori (or explicitly indicated by the human) is limited to reaching or pick-and-place tasks. 

More empirical evaluations of complex, multi-step ADL tasks are critically needed.

4.3. The Future

The introduction of autonomy transforms an assistive machine into a kind of shared-control 

robot, that allows the human to offload some of their operational burden. Autonomy to date 

largely has been employed on wheelchairs and robotic arms, and never deployed clinically. 

However in the future we do anticipate clinical and societal adoption (discussed further in 

Section 5.1), as well as opportunities for autonomy on a greater variety of clinical devices 

and machines. With this, we also anticipate a need for autonomy that is customized to 

individual users, and adapts with them as their abilities and preferences change.

4.3.1. Autonomy in More Assistive Machines.—While today within the field of 

rehabilitation robotics there exists little autonomy, there do exist elements of automation—

such as the automated gait controllers seen in lower-limb prostheses (35) and exoskeletons 

(14), automated grasps implemented on prosthetic hands (144) and automated assistive 

behaviors implemented on wheelchair-mounted robotic arms (68). Another area in which 

automation plays a role is assist-as-needed controllers (145, 146) that adapt how much 

control assistance is provided during robot-enabled physical therapy. There likely exist 

opportunities to advance each of these elements with additional sensors and intelligence.

Another opportunity area is assistive devices that are not themselves machines, but which 

might integrate autonomy technologies that provide feedback to the human user. For 

example, academia and industry integrate sensors into long canes and walkers used by those 

with low-vision and blindness, to provide the user with obstacle information (147).

The potential for robotics autonomy to help with the control challenges of upper-limb 
prostheses appears strikingly evident—there is a societal expectation that an artificial limb 

will replace the full functionality of a lost limb, and yet for the overwhelming majority of 
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prosthesis users this still is far from reality. However there are fundamental challenges to 

integrating autonomy into prosthetic limbs, and in particular prosthetic arms—challenges 

which often are unacknowledged by the robotics autonomy community. Prosthetic arms and 

hands differ from robotic ones in important ways. Crucially, weight is a deal-breaking factor

—upper-limb prostheses must be physically supported, for hours at a time, by the user’s own 

shoulder and residual limb—with several important consequences. One is an absence of 

sensors; typically on commercial prosthetic arms, not even joint encoders are present. 

Control, as a result, is exclusively open-loop. Second is less actuation power; batteries must 

be light, small enough to be contained within the arm and able to operate for hours or even 

days without recharging. Third is fewer computational resources; again, limited by 

constraints on weight, size and power. There also are practical considerations like how to 

keep sensors clean, or how to don the device with precision if required for sensor calibration 

or kinematic transforms. All of these factors help to explain why advances in robotics 

autonomy overwhelmingly have not been clinically applicable to prosthetic limbs.

While these considerations do present considerable challenges, they do not necessarily rule 

out all opportunities for autonomy. For example, simple tactile sensors employed in reactive 

control paradigms that maintain grip force or achieve force closure (144) would not require 

extensive sensing or computation. Sensors worn on other parts of the body also are 

becoming more commonplace within society. We also do note efforts within academic 

research to considerably constrain autonomy propositions with clinical viability (137, 148).

The above constraints on sensors, actuation power and computation are less severe for 

prosthetic legs. Lower-limb prostheses are larger, support the body rather than are supported 

by it and often do integrate sensors such as joint encoders. To introduce additional sensors 

that perceive the external world to improve automation, or even introduce some element of 

autonomy, is more clinically viable than for upper-limb prostheses, and is currently being 

explored within academia (50).

4.3.2. Customized and Adaptive Autonomy.—Users of rehabilitation machines are 

unique in their physical abilities—motor, sensory or cognitive—as well as in their personal 

preferences. This uniqueness strongly suggests a need for customized, even individualized, 

assistance solutions—and specifically in regards to how control is shared (141). The 

question of how to achieve customization, that moreover is viable to deploy within clinical 

populations, is formidable. While the assistive autonomy likely can be tuned in the clinic (as 

when fit for a wheelchair by an occupational therapist), such a solution is not able to respond 

to changing patient needs.

To fully meet the needs and preferences of the user, we anticipate a requirement that the 

level and form of assistance be dynamic and able to adapt autonomously—which of course 

presents both a major opportunity and major challenge for machine learning. In particular, 

we expect this human-robot team to be changing over time for the following reasons:

• Changing human ability. It is expected that the user’s needed or desired amount 

of assistance will be extremely non-static: hopefully due to successful 

rehabilitation, but also possibly due to the degenerative nature of a disease.

Argall Page 15

Annu Rev Control Robot Auton Syst. Author manuscript; available in PMC 2021 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Changing human preference. A given user might prefer different levels of 

assistance on different days or throughout the day, depending on factors like pain 

or fatigue. The human naturally also will learn and adapt to the machine; 

changing how they behave as an operator as they become more familiar with the 

autonomy.

• Changing environments. The performance of the robot and needs of the human 

are likely to change as they are introduced to new scenarios. If we want the robot 

to go where the human goes, it will encounter novel environments.

To achieve dynamic assistance, there is a question of where the adaptation signals come 

from, when and in response to what adaptation should happen, and how to accomplish the 

adaptation. Users communicate with the robot through interfaces that effectively filter (and 

thus remove information content from) their control signals, and these control signals 

furthermore are likely to be noisy, sparse and often masked (by impairment or interface) of 

the human’s true motor intent. Suitable machine learning algorithms therefore will be 

required to extract information from sparse and noisy signals, provided by non-experts, and 

be judicious in deciding what is temporary variability and what are actual changes in need, 

ability or preference—in short, to adapt appropriately to the changing needs and wants of the 

user, without overfitting to trial-by-trial variations and noise.

Engineering research is necessary to develop and design these algorithms, and long-term 

studies with end-users are required to evaluate their efficacy and iterate upon their design. 

Eventually, it will be necessary for these studies to be performed in-situ, outside of the lab 

and out in general society, which will present an entirely new set of challenges.

5. DISCUSSION

We conclude with a discussion of the adoption and acceptance of autonomy in rehabilitation 

robots, and propose a challenge to the community to break down the partition between 

machines that rehabilitate the body and machines that fill functional gaps.

5.1. Societal Adoption and Acceptance of Autonomy

User acceptance is always a factor in the adoption of new technologies. However users of 

assistive devices rely very intimately on this machine—it is physically supporting, or 

attached to, their bodies—and understandably can be very particular in their tolerance for 

innovation. The final measure of success for any assistive device is to what extent it 

improves the quality of life and abilities of the user—and, no matter how elegant the 

engineering, this measure will be zero if the device is never adopted. The consideration of 

user acceptance thus is made all the more relevant.

It is critical when developing assistive technologies to consider appearance, regulations and 

cost. Any infrastructure (sensors, computers) added to the assistive machine should be 

evaluated for whether or to what extent it minimizes contributing to the appearance of 

impairment. Dimension or weight additions need to be evaluated for practicality—for 

example, even if the expanded width of a wheelchair remains ADA9 compliant, it might 

significantly increase the difficulty of traversing through doorways. Whenever speaking with 
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clinicians and patients, cost always emerges as a dominating factor. At least in the short 

term, these technologies will not be covered by insurance plans in most countries, and so any 

system that is going to be of practical benefit should be reasonable to finance out of pocket. 

Even as the cost of sensors and computing power rapidly declines, this still places some 

technologies outside the realm of feasibility—calling into question the utility of research 

which depends on such technologies.

We argue that the deployment of robotics autonomy in traditionally human-operated 

assistive machines is particularly timely. With the advent of driver-assist technologies (such 

as emergency braking, lane assistance) in standard automobiles, we now have a domain in 

which traditionally human-operated machines have incorporated robotics autonomy and 

become shared-control. Furthermore, the use of these machines is widespread, throughout 

all facets of society. In a very concrete way never before seen, people are primed to accept 
and adopt assistance from robotics autonomy. Given this societal familiarity, and lowered 

barriers to high-quality sensor information, with industry engagement it would be feasible to 

envision autonomy technology deploying on assistive machines this decade.

5.2. Gold Standard: Assistive Robots that Rehabilitate

The beginning of this article presented a categorization that partitioned rehabilitation robots 

into machines which aim to rehabilitate bodies and those which aim to replace lost function. 

However, we might envision that this bifurcation would not always exist. Instead, the 

operation of an assistive machine that replaces lost function also might be used to regain lost 

function. We are starting to see this explored with novel interfaces that provide rehabilitation 

benefits through their operation (149), and are used to control computers and wheelchairs. A 

therapy paradigm might adapt how much and what sort of autonomy assistance is provided 

by the robot, in order to encourage the recovery of motor function—as we have seen in 

machines whose purpose it is to rehabilitate the body (145, 146). A breakdown of this 

partition, and the advent of robots that provide both functional capabilities as well as 

rehabilitation benefits by virtue of their operation, could be seen as a gold standard for 

rehabilitation robotics, and thus a grand challenge for the field.

6. CONCLUSION

When our ability to rehabilitate motor impairments in the human body has reached a plateau, 

we turn to assistive machines and devices to fill that functional gap. While such machines do 

successfully facilitate independent mobility and manipulation for many, there are many 

others for whom the operation of these machines is made difficult, or entirely inaccessible, 

by their motor impairments and the control interfaces which are available to them. This 

confound only increases as motor impairments become more severe, interfaces become more 

limited and machines become more complex to control.

Robotics autonomy holds the potential to aid in this difficulty, by offloading some 

operational burden from the human to the autonomy. Within academic research, autonomy 

has been introduced primarily to powered wheelchairs and robotic arms. There are many 

9The Americans with Disabilities Act and its associated regulations: www.ada.gov/
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subtle and critical factors to introducing clinically-feasible autonomy solutions to 

rehabilitation machines, which moreover often go unacknowledged by (or are unknown to) 

the robotics autonomy community. No autonomy technology will be adopted by the end-user 

that has not given proper consideration to these factors.

Today there is little overlap between the communities of rehabilitation robotics and robotics 

autonomy, and little representation from robotics autonomy within clinical or research work 

in human rehabilitation. In the future however greater cross-pollination between these 

communities could facilitate autonomy being introduced to, and facilitating access to, a wide 

variety of human-operated assistive machines. We propose a grand challenge for these 

communities to integrate even further, and design interfaces and control paradigms that 

rehabilitate the body through the operation of assistive robots that perform functional tasks.
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Figure 1. 
Categorization of robots used for human rehabilitation. Low-level automation is seen 

primarily in robots used to rehabilitate the body and robots worn on the body to replace lost 

function. Higher-level autonomy so far has been introduced (within research, never 

clinically) primarily to robots not worn on the body—in part due to practical considerations 

like where to mount additional sensors and computational infrastructure.
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Figure 2. 
Examples of clinical standards in control interfaces for prostheses, wheelchairs and robotic 

arms. Left to right: Body-powered prosthesis harness, EMG electrodes embedded within a 

prosthesis socket, joystick with visual feedback display, sip-and-puff and array of switches 

embedded within a headrest. Photo credits, left to right: Ottobock (Duderstadt, Germany), 

Ottobock, Quickie Wheelchairs (Phoenix, Arizona, United States), Adaptive Switch 

Laboratories (Spicewood, Texas, United States) and Permobil (Timrå, Sweden).
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