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Abstract

Background: Age-related clonal hematopoiesis of indeterminate potential (CHIP), defined as 

clonally expanded leukemogenic mutations (particularly in DNMT3A, TET2, ASXL1, JAK2) in 

asymptomatic individuals, is associated with cardiovascular events, including recurrent heart 

failure (HF).

Objectives: We sought to evaluate whether CHIP is associated with incident HF.

Methods: We obtained CHIP status from whole exome or genome sequencing of blood DNA in 

participants without prevalent HF or hematologic malignancy from five cohorts. Cox proportional 

hazards models were performed within each cohort, adjusting for demographic and clinical risk 

factors, followed by fixed-effect meta-analyses. Large CHIP clones (defined as variant allele 

frequency >10%), HF with or without baseline coronary heart disease (CHD), and left ventricular 

ejection fraction (LVEF) were evaluated in secondary analyses.

Results: Of 56,597 individuals (59% female, mean age 58 years at baseline), 3,406 (6%) had 

CHIP, and 4,694 developed HF (8.3%) over up to 20 years of follow up. CHIP was prospectively 

associated with a 25% increased risk of HF in meta-analysis (HR= 1.25, 95% CI 1.13, 1.38) with 

consistent associations across cohorts. ASXL1, TET2, and JAK2 mutations were each associated 

with an increased risk of HF, whereas DNMT3A mutations were not associated with HF. 

Secondary analyses suggested large CHIP was associated with a greater risk of HF (HR=1.29, 

95% CI 1.15, 1.44), and the associations for CHIP on HF with and without prior CHD were 

homogenous. ASXL1 mutations were associated with reduced LVEF.

Conclusion: CHIP, particularly mutations in ASXL1, TET2, and JAK2, represents a new risk 

factor for HF.

Clonal hematopoiesis of indeterminate potential (CHIP) in asymptomatic individuals is associated 

with cardiovascular events, including recurrent heart failure (HF). We obtained CHIP status from 

five cohorts and evaluated whether CHIP was associated with incident HF. Of 56,597 individuals, 

3,406 had CHIP, and 4,694 developed HF over 20 years of follow up. CHIP was associated with a 

25% increased risk of HF. ASXL1, TET2, and JAK2 were each associated with an increased risk 

of HF. Large CHIP was suggested to have a greater risk of HF. CHIP, particularly mutations in 

ASXL1, TET2, and JAK2, represents a new risk factor for HF.
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Introduction

Heart failure (HF) is a leading cause of death in the elderly (1). Lifetime risk for HF is 1 in 

5, and HF is associated with short-term mortality rates exceeding those of many cancers in 

western countries (2,3). Coronary heart disease (CHD), along with hypertension, atrial 

fibrillation, and chronic kidney disease, are all risk factors for incident HF and strongly 

associated with aging. Age remains the strongest independent predictor for HF, but the age-

related factors promoting HF development are incompletely understood.

Recent genetic analyses of large asymptomatic populations have revealed that somatic 

mutations (most often in DMNT3A, TET2, ASXL1, and JAK2) in hematopoietic cells 

leading to clonal expansion are commonly acquired during human aging (4,5). Clonally 

restricted hematopoiesis with cytopenias and dysplastic morphology of blood and marrow 

cells are associated with subsequent diagnosis of hematologic malignancies and increased 

risk of all-cause mortality (6). However, most individuals with clonal hematopoiesis detected 

in peripheral blood do not have cytopenia, dysplasia, or neoplasia, a phenomenon termed 

clonal hematopoiesis of indeterminate potential (CHIP) (6,7). The prevalence of CHIP 

increases with age; the frequency is low (<0.5%) from birth until 50 years of age after which 

it rises rapidly, affecting 10–20% of persons aged 70 to 80 years (4,5). There is increasing 

evidence that individuals with CHIP are at increased risk of incident atherosclerotic 

cardiovascular disease (CVD) events, including CHD, stroke and CVD-related mortality (8–

13). Data from humans and experimental models relating CHIP somatic mutations to CVD 

have implicated altered immune cell function and pro-inflammatory cytokines (11,14–18).

Recently in a cohort of patients with HF, Dorsheimer et al found during 4.4 years of median 

follow-up, those with either TET2 or DNMT3A mutations had increased risk of death or HF 

hospitalization (HR=2.1, 95% CI 1.1–4.0) (19). Murine models with hematopoietic or 

myeloid-specific deficiency of Tet2 or with myeloid-specific transgenic Jak2V617F are more 

prone to cardiac dysfunction after coronary artery ligation-induced myocardial infarction or 

aortic constriction-induced pressure overload (20–22). Therefore, we tested the hypothesis 

that CHIP driver mutations are associated with incident HF in four cohorts from the NHLBI 

Trans-Omics for Precision Medicine (TOPMed) Program and the United Kingdom Biobank 

(UKBB) study.

Methods

Study Populations

Participants from five population-based cohorts, the Atherosclerosis Risk in Communities 

(ARIC), Cardiovascular Health Study (CHS), Jackson Heart Study (JHS), UKBB, and the 

Women’s Health Initiative (WHI) with data on HF outcomes and baseline CVD risk factors 

and other covariates were included the analysis. For the current analysis, we excluded 

participants who were not followed for HF adjudication, those who had a history of HF at 

enrollment, incident HF prior to blood draw, or insufficient CHIP data quality or missing 

covariates from each participating study. The final study population consisted of 56,597 self-

identified Black, White, and Hispanic individuals. Detailed descriptions of each cohort are 

provided in the Supplemental Methods. The Institutional Review Board at each participating 
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institution approved the studies and participants from each study provided written informed 

consent.

Exposure

For CHS, JHS and WHI, CHIP was determined at the Broad Institute (Cambridge, MA) via 

whole genome sequencing (WGS) of blood DNA using the GATK MuTect2 (23) somatic 

variant caller through the NHLBI TOPMed project on the basis of 74 pre-specified driver 

mutations in genes known to promote clonal expansion of hematopoietic stem cells using a 

conventional variant allele frequency (VAF) of >2% as previously described (11,15). For 

ARIC and UKBB, CHIP was determined at the Broad Institute (Cambridge, MA) via whole 

exome sequencing (WES) using same calling algorithm described above as previously 

described (14). Detailed sequencing and variant calling are provided in the Supplemental 

Methods. CHIP was defined by the presence of somatic variants in genes previously 

implicated in hematologic cancers with a VAF >2% but without hematologic cancer or other 

non-neoplastic clonal disease (6). For secondary analyses, VAF >10% was used to define 

high-VAF CHIP.

Outcomes

All five studies used trained physician adjudicators, hospitalization records and/or 

International Classification of Disease (ICD) codes to verify HF events and time to event or 

last follow-up. Incident HF was defined as the occurrence of HF after the visit when DNA 

was drawn with physician adjudication and/or ICD 9 discharge or a death certificate with 

code 428, or ICD 10 with code I50. Details for each study are provided in the 

Supplementary Methods. Secondary analyses were performed to evaluate associations 

between CHIP and HF with or without prior CHD as defined by self-report or ICD code at 

baseline or incident adjudicated CHD prior to HF.

The cross-sectional association of CHIP with left ventricular ejection fraction (LVEF) from 

cardiac MRI data was evaluated in the UKBB in 4,122 individuals with cardiac MRI data. 

Only CHIP ascertained using blood sample collected at baseline visit, the same visit that 

LVEF was measured, were included. The UKBB performed 20-min scans using a 1.5T 

scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, Erlangen, 

Germany) and used these scans to provide automated estimates of LVEF (24). LVEF 

extreme outliers were determined and filtered by adjusting the traditional box and whisker 

upper and lower bounds and accounting for skewness in the phenotypic data identified using 

the Robustbase package in R (setting range=3), as previously done for other phenotypes in 

the UKBB (25,26).

Covariates

Covariates were included at the time of blood draw. For analyses with incident HF, age at 

blood draw, sex, smoking status, prevalent diabetes mellitus, stroke, CHD, body mass index 

(BMI), systolic blood pressure (SBP), socioeconomic status, and self-reported race were 

adjusted for as potential confounders Cigarette smoking status was categorized as never, 

past, and current. In ARIC, CHS, JHS and WHI, a history of hypertension, diabetes mellitus, 

stroke, or CHD was either defined by self-reported history of physician diagnosis or 
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adjudicated outcomes prior to CHIP determination. BMI (kg/m2) was based upon clinic 

exams of measured height and weight at the baseline study visit. SBP (mmHg) was 

measured using standard procedures during baseline clinical exams. In UKBB, history of 

type 2 diabetes mellitus, stroke, and CHD were identified by a combination of self-report 

and ICD codes as detailed in Supplemental Table 1. SBP was adjusted by adding 15 mmHg 

for antihypertensive medication users as previously done (26). Detailed socioeconomic 

status measures are provided in the Supplemental Methods.

Statistical methods

Cox proportional hazards model were fitted with adjustment for age, sex, education, diabetes 

mellitus, smoking status (never, past, current), stroke, coronary heart disease, SBP, 

antihypertensive medication use, BMI, and race (if more than one). Schoenfeld residual plots 

were generated to assess the proportional hazards assumption. We did not observe any 

pattern with time from the graphical inspection, indicating no violation of proportionality. In 

WHI, the subcohort was oversampled for cases of deep vein thrombosis/pulmonary 

embolism and stroke, therefore inverse probability weighting was used to account for 

selection bias. WHI, JHS and CHS were further adjusted for income categories, and UKBB 

was adjusted for normalized Townsend deprivation index. Using summary data from the five 

studies, we conducted inverse variance-weighted, fix-effects meta-analysis to obtain the 

effect estimates for total HF, as well as HF with and without prior CHD. In UKBB, 

association of CHIP status with

LVEF was performed using a linear regression model with the adjustments of age, sex, 

smoking status, prevalent CHD, diabetes mellitus, SBP, and self-reported race. We used 

forest plotted effect estimates and confidence intervals of individual study along with pooled 

results. All statistics were performed using SAS and R (https://www.r-project.org). Two-

sided p value <0.05 was considered statistically significant.

Results

A total of 56,597 study participants were analyzed in the present study to assess the 

association between CHIP and incident HF. 4,694 of them developed HF with up to 20 years 

follow-up. The mean age of each study ranged from 54.5 to 74.6 (SD between 5.4 and 13.0) 

years old, 6% of the participants had CHIP, and 3.3% of the participants had high-VAF 

CHIP. Table 1 shows baseline characteristics for those participants with CHIP compared to 

those without CHIP, and Supplemental Table 2 provide HF events follow-up time. In brief, 

CHIP carriers were older and more likely to have comorbidities. Prevalent CHIP did not 

appear to be related to BMI or lipid profiles. Consistent with prior observations, the most 

common CHIP genes were DNMT3A, TET2, ASXL1 and JAK2, as shown in Table 2. The 

numbers for somatic mutation carriers for each ascertained CHIP gene are provided in 

Supplemental Table 3.

In the fixed-effect meta-analysis, we observed that any CHIP mutation aggregately was 

associated with a 25% increased risk of HF (HR= 1.25, 95% CI 1.13, 1.38), with consistent 

direction of effect in four of the five studies (Central illustration). TET2 (HR=1.59, 95%CI 

1.18, 2.14), JAK2 (HR=2.50, 95%CI 1.35, 4.64) and ASXL1 (HR=1.58, 95%CI 1.20, 2.08) 
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somatic mutations were strongly associated with an increased risk of HF, while DNMT3A 
mutations were not associated with HF (Figure 1). In secondary analyses, we observed a 

slightly stronger association between high-VAF CHIP and the risk of HF (HR=1.29, 95% CI 

1.15, 1.44). The associations for CHIP mutations on HF without prior CHD (HR=1.21, 

95%CI 1.07, 1.36) and HF with prior CHD (HR=1.26, 95% CI 0.97, 1.64, Figure 2) were 

homogeneous (p=0.78 for test of homogeneity,).

Follow-up analyses in UKBB were conducted to further investigate the association between 

CHIP and LVEF. Demographics of the 4,122 individuals in the LVEF analyses are provided 

in Supplemental Table 4. We found that any CHIP was not significantly associated with 

reduced LVEF (p = 0.07). However, ASXL1 somatic mutations were significantly associated 

with reduced LVEF (beta −4.02%, 95% CI −6.97, −1.06, p=0.008). We did not observe 

significant associations across DNMT3A, TET2, JAK2 specific somatic mutations (Figure 

3).

Discussion

In our meta-analysis from five prospective population-based studies, CHIP (as defined by 

somatic mutations in leukemia-related genes in the absence of hematologic malignancy) was 

associated prospectively with increased risk of a first episode of hospitalized HF, 

independently of traditional CVD risk factors. In analyses of specific CHIP driver mutations, 

TET2, JAK2 and ASXL1 were most strongly associated with risk of incident HF. ASXL1 
somatic mutations were significantly associated with reduced LVEF. In secondary analyses, 

greater levels of clonal expansion (VAF>10%) were associated with higher risk of incident 

HF among individuals and there was no significant differences between those with and 

without prior CHD.

We included large, prospective NHLBI-sponsored cohort studies with available CHIP data, 

extensive baseline CVD risk factor data, and relatively long follow up on HF, as well as all 

available UKBB data. The large-scale study population enables us to have adequate 

statistical power for CHIP and HF association detection. Our findings are consistent with 

and extend recent observations from clinical and murine studies of CHIP and HF, as well as 

studies of CHIP and age-related CVD in general. CHIP has been associated with increased 

risk of subclinical atherosclerosis, myocardial infarction, ischemic stroke, and all-cause 

mortality, independently of traditional CVD risk factors (11,12,14). These associations were 

dependent on clone size with the greatest risk of CVD in those with VAF>10%. In a cohort 

of 200 patients with pre-existing ischemic HF at baseline, the presence of CHIP and 

magnitude of clonal expansion were prospectively associated with HF outcome severity 

(19). This association was confirmed in a larger cohort of 419 stable chronic HF patients 

with previous MI, where CHIP was associated with higher mortality independently of other 

risk factors (27). Moreover, individuals carrying multiple CHIP mutations had higher 

mortality compared to those carrying a single CHIP mutation or non-CHIP carriers (27). We 

analyzed HF with and without prior CHD to delineate the association in ischemic vs. non-

ischemic forms of HF, and homogeneous effect of CHIP on the two forms of HF was 

observed. Previous animal study showed that Tet2, Dnmt3a, and transgenic Jak2V617F 
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mutations in mice induced both ischemic and hypertensive models of HF (18,21,22), which 

supports our finding that CHIP may influence both ischemic and non-ischemic forms of HF.

While we observe an association with overall CHIP presence and incident HF, gene-based 

analyses demonstrate significant associations specifically for TET2, JAK2, and ASXL1. The 

protein encoded by TET2 is an epigenetic regulatory enzyme that modulates hematopoietic 

stem cell self-renewal but is also involved in inflammatory pathway regulation (11). The 

mice experiments demonstrated that inactivation of Tet2 and Dnmt3 promoted Ang II-

induced cardiac dysfunction and renal fibrosis (18), and in mice transplanted with Tet2-

deficient bone marrow or conditional Tet2 deletion in myeloid cells, there was clonal 

expansion of mutant cells, along with worse cardiac remodeling, hypertrophy, and fibrosis 

following myocardial ischemia or pressure overload (22). A recent study also showed that 

bone marrow transplantation of Tet2-deficient cells was sufficient to induce HF in otherwise 

unchallenged mice (28). Given the observed effect estimate, CHIP is likely an important 

additive risk factor for HF. Whether distinct genes yield differential risk in the context of 

established HF risk factors merits further study.

Similar to TET2, the protein encoded by ASXL1 is an epigenetic regulator of gene 

expression that has been frequently mutated in myeloid malignant myeloid diseases (29–31). 

Somatic mutations in ASXL1 have been associated with CHD (11), however, little is known 

about the effect of ASXL1 somatic mutations and its potential role on the development of 

HF remains unexplored. We showed for the first time that ASXL1 somatic mutations were 

associated with LVEF, which is exploratory and hypothesis-generating for future research.

The JAK2V617F driver mutation associated with myeloproliferative neoplasms and 

atherothrombotic disease is mechanistically distinct from other CHIP driver mutations. In 

our study population, JAK2V617F constitutes the majority of JAK2 mutations. In a mouse 

transgenic model of myeloid-restricted expression of mutant JAK2 that more closely 

resembles the human CHIP phenotype, transgenic mice developed worsening HF following 

ischemia or pressure overload by promoting macrophage inflammation of the myocardium 

and cardiac remodeling and infarct size in an IFNGR1 and STAT1-dependent manner (21). 

The experimental data described above further support the role of inflammatory cytokine 

production and signaling by immune cells in the pathogenesis of HF (32). While HF in 

humans has diverse causes, clinical manifestations, and pathophysiologic mechanisms, 

inflammation represents a common mechanism involved in different HF subtypes (33). In 

both hematopoietically deficient Tet2 and Jak2 murine HF models, IL-1beta, IL-6, TNF-

alpha, and CCL2 expression were increased (21,22). Thus, CHIP has diverse effects on 

various immune cell types and inflammatory mediators which play key roles in HF and 

atherosclerosis (14). These observations are also consistent with subgroup analyses from the 

CANTOS cohort that the IL-1beta inhibitor canakinumab was associated with a dose-

dependent reduction in HF hospitalization and mortality and improvement in left ventricular 

function (34,35). Whether these effects for HF events are greater among individuals with 

CHIP as observed for MACE in a CANTOS exploratory analysis requires further study (36).
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Study limitations.

Our results suggesting that gene-specific driver mutations in TET2, JAK2 and ASXL1 may 

be preferentially associated with incident HF risk require confirmation in additional larger 

studies. While the murine experimental models of CHIP showed fairly consistent effects on 

inflammation-related and HF-related phenotypes across different CHIP driver genes (TET2, 

DNMT3A, JAK2), there were some differences noted in kinetics of clonal expansion and 

patterns of inflammatory gene expression by LPS-stimulated macrophages. In contrast to 

disruption of Tet2 by gene editing, Dntma3 deficiency did not result in clonal expansion of 

mutant cells, but still led to myocardial hypertrophy, fibrosis, macrophage infiltration and 

dysfunction in the Angiotensin II infusion model. One might hypothesize that differences in 

the kinetics of clonal expansion of driver mutations (which tend to be greater for TET2 and 

JAK2) may explain the gene-specific differences in HF risk. Longitudinal studies of CHIP 

measured at multiple time points in humans may be needed to address this question. In 

addition, the recent association of multiple CHIP driver mutations with higher HF-related 

mortality (27) suggest that the presence of multiple CHIP driver mutations may be a 

surrogate measure for more extensive accumulation of DNA damage or reduced DNA repair 

or bone marrow-derived endothelial progenitor cell regenerative capacity (37). Another 

limitation of the current study was the lack of availability of HF subtype information in a 

substantial proportion of our overall sample, which limited our ability to explore these 

associations with adequate power and merits further investigation.

Conclusion

Our findings identify CHIP as a potentially important novel age-related risk factor for HF, 

consistent with previous findings of the role of CHIP as a risk factor for age-related 

atherosclerotic CVD more broadly. If confirmed, these findings ultimately may have 

potential implications for development or targeting of anti-inflammatory therapies such 

IL-1beta or NLRP3 inflammasome inhibitors in HF patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Clinical Perspectives

Competency in Medical Knowledge:

In asymptomatic individuals, age-related clonal hematopoiesis of indeterminate potential 

is associated with adverse health outcomes, including heart failure.

Translational Outlook:

Further studies are warranted to determine whether clonal hematopoiesis of indeterminate 

potential impairs cardiac function, and if so, to explore mechanistic links.
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Figure 1. Clonal hematopoiesis in individual genes and incident heart failure.
Individual genes analyzed include a) ASXL1, b) DNMT3A, c) JAK2 and d) TET2. Event 

represents the number of incident heart failure cases. For each gene, multivariable adjusted 

hazard ratios and 95% CIs were calculated separately in each study adjusting for age, sex, 

education, diabetes mellitus, smoking status, stroke, coronary heart disease, systolic blood 

pressure, hypertension medication use, body mass index, and race (if more than one) and 

combined using a fixed-effect meta-analysis. Abbreviations as in Central Illustration.
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Figure 2. Associations for somatic mutation and heart failure subgroups.
a) clonal hematopoiesis of indeterminate potential with variant allele frequency > 10% and 

incident heart failure, b) clonal hematopoiesis of indeterminate potential and incident heart 

failure without prior coronary heart disease, and c) clonal hematopoiesis of indeterminate 

potential and incident heart failure with prior coronary heart disease. Event represents the 

number of incident heart failure cases. For each model, multivariable adjusted hazard ratios 

and 95% CIs were calculated separately in each study adjusting for age, sex, education, 

diabetes mellitus, smoking status, stroke, coronary heart disease, systolic blood pressure, 

hypertension medication use, body mass index, and race (if more than one) and combined 
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using a fixed-effect meta-analysis. Coronary heart disease status was not adjusted in the 

associations of heart failure with or without prior coronary heart disease. Abbreviations as in 

Central Illustration.
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Figure 3. Clonal hematopoiesis and left ventricular ejection fraction in UK Biobank.
Association of clonal hematopoiesis of indeterminate potential status with left ventricular 

ejection fraction was performed using a linear regression with the adjustments of age, sex, 

smoking status, prevalent coronary heart disease, diabetes, systolic blood pressure, and self-

reported race in the UK Biobank participants. Unadjusted first quartile, median, and third 

quartile of left ventricular ejection fraction were presented in the boxplots, and outliers were 

presented as dots. LVEF = left ventricular ejection fraction; other abbreviations as in Central 

Illustration.
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Central Illustration. Clonal hematopoiesis of indeterminate potential mutation and incident 
heart failure.
Clonal hematopoiesis of indeterminate potential, determined by whole exome or genome 

sequencing, was significantly associated with an increased risk of heart failure in five 

prospective studies including 56,597 African, European and Hispanic populations with up to 

20 years follow-up. Multivariable adjusted hazard ratios and 95% CIs were calculated 

separately in each study adjusting for age, sex, education, diabetes mellitus, smoking status, 

stroke, coronary heart disease, systolic blood pressure, hypertension medication use, body 

mass index, and race (if more than one) and combined using a fixed-effect meta-analysis. 

CHIP = clonal hematopoiesis of indeterminate potential; ARIC = Atherosclerosis Risk in 

Communities Study; CHS = Cardiovascular Health Study; JHS = Jackson Heart Study; 

UKBB = United Kingdom Biobank; WHI = Women’s Health Initiative.
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Table 2.

Most frequent genes with somatic mutations by each study.

Somatic Mutations ARIC N (%) CHS N (%) JHS N (%) UKBB N (%) WHI N (%) All Studies N (%)

ASXL1 51 (0.5) 33 (1.4) 3 (0.1) 148 (0.4) 24 (0.5) 259 (0.5)

DNMT3A 253 (2.6) 172 (7.2) 55 (2.3) 1370 (3.7) 251 (4.8) 2101 (3.7)

JAK2 8 (0.1) 9 (0.4) 2 (0.1) 21 (0.05) 15 (0.3) 55 (0.1)

TET2 48 (0.5) 81 (3.4) 17 (0.7) 334 (0.9) 89 (1.7) 569 (1.0)

Any mutation 427 (4.3) 337 (14.0) 91 (3.8) 2143 (5.8) 408 (7.8) 3406 (6.0)

Large CHIP 257 (2.6) 287 (12) 82 (3.4) 879 (2.4) 342 (6.6) 1847 (3.3)

Frequencies and percentages are displayed
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