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Using Lawsonia inermis L. (henna) seeds has been frequently recommended for the improvement of memory in Iranian
Traditional Medicine (ITM). In this respect, different fractions of the plant were prepared and evaluated for their in vitro biological
assays related to Alzheimer’s disease (AD), including acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory
activity as well as metal chelating ability and DPPH antioxidant activity.*e dichloromethane and ethyl acetate fractions were able
to inhibit the BChE selectively with IC50 values of 113.47 and 124.90 μg/mL, respectively, compared with donepezil as the
reference drug (IC50 = 1.52 μg/mL). However, all fractions were inactive toward AChE. Phytochemical analysis of the
dichloromethane fraction indicated the presence of β-sitosterol (1), 3-O-β-acetyloleanolic acid (2), 3-O-(Z)-coumaroyl oleanolic
acid (3), betulinic acid (4), and oleanolic acid (5). *e inhibitory activity of isolated compounds was also evaluated toward AChE
and BChE. Among them, compounds 2 and 5 showed potent inhibitory activity toward BChE with IC50 values of 77.13 and
72.20 μM, respectively. However, all compounds were inactive toward AChE. Moreover, molecular docking study confirmed
desired interactions between those compounds and the BChE active site. *e ability of fractions and compounds to chelate
biometals (Cu2+, Fe2+, and Zn2+) was also investigated. Finally, DPPH antioxidant assay revealed that the ethyl acetate
(IC50 = 3.08 μg/mL) and methanol (IC50 = 3.64 μg/mL) fractions possessed excellent antioxidant activity in comparison to BHA as
the positive control (IC50 = 3.79 μg/mL).

1. Introduction

Alzheimer’s disease (AD) is characterized as the most
common neurodegenerative disease leading to a gradual
decrease in memory, cognitive disorders, psychological and
behavioral disturbances, and serious problems in daily ac-
tivities. Also, it accounts for more than 70% of dementia
cases in elderly people worldwide [1]. *e number of pa-
tients with AD is predicted to be triple in 2050 [2]. Not only
the increasing number of patients with AD in both devel-
oped and developing countries, but also the economic

burden of disease has encouraged the researchers to develop
efficient anti-AD drugs [3].

AD is the consequence of multiple etiological factors
including genetics, environment, and lifestyle [4]. *e
exact origin of AD is not clear and different factors in-
cluding reduced levels of acetylcholine (ACh) in the brain
[5], intracellular hyperphosphorylation of tau protein and
formation of neurofibrillary tangles (NFTs) [6],
accelerated aggregation of β-amyloid peptides [7], dys-
homeostasis and miscompartmentalization of the bio-
metal ions (Fe2+, Cu2+, and Zn2+) [8], calcium overload
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and mitochondrial disruption [9], and oxidative stress due
to the generation of reactive oxygen species (ROS) [10]
play important roles in the onset and progression of the
disease.

Now, it is clear that ACh levels in the hippocampus and
cortex are crucial for the regulation of memory, attention,
learning, and motivation [11]. Cholinesterases (ChEs) in-
cluding acetylcholinesterase (AChE) and butyr-
ylcholinesterase (BChE) are two cholinergic enzymes
involved in the hydrolysis of ACh into choline and acetic
acid to terminate synaptic transmission in the brain. In spite
of the fact that physiological function of AChE at cholinergic
synapses is well articulated, the function of BChE has still not
been clarified [12]. In a healthy brain, both activity and
concentration of AChE are more dominant than those of
BChE. BChE has shown low activity in hydrolytic reactions
and mainly distributed in plasma and tissues. However, the
supportive role of this enzyme in synaptic transmission has
been proven [13, 14]. During the progression of AD, hy-
drolysis of ACh is performed by BChE as the level of AChE
shows a steady decline to 50%, that of BChE reaches 900%,
and the BChE/AChE ratio also increases significantly [15]. It
has been demonstrated that BChE regulates ghrelin levels in
male BALB/c mice, which is responsible for emotional and
social behaviors such as aggression [16]. Moreover, BChE
activity was found to be very high in the hippocampus of
patients with AD, the tissue which is strongly associated with
cognitive functions [17]. All these indicate that the inhibition
of AChE alone does not afford a proper planning process for
the treatment of AD and the inhibition of BChE should also
be considered.

Currently, there is no definite cure for AD, and most
available drugs approved by FDA, such as donepezil, gal-
antamine, and rivastigmine, are ChE inhibitors that improve
cognitive disorders and the disease symptoms [18]. In this
respect, development of ChE inhibitors is still in demand
and it should be noted that selective anti-AChE activity can
be achieved by small molecules, while selective anti-BChE
activity is possible by bulky ligands since BChE has displayed
low substrate specificity [19]. Another point that highlights
the importance of the inhibition of ChEs is their noncho-
linergic role especially that of BChE in the deposition of βA
plaques [20].

*e development of anti-AD drugs is directly affected by
the multifactorial nature of the disease; hence, medicinal
plants possessing a wide range of phytochemicals are the
potent candidates for the AD drug discovery [21]. Lawsonia
inermis L., commonly known as “henna” [22], belongs to
Lythraceae family and is a native of Southwest Asia and
North Africa [23]. L. inermis is known for its valuable ap-
plications in the cosmetic industry [24] and traditional
therapeutic properties such as edema, bronchitis, rheuma-
tism, smallpox, spermatorrhoea, menstrual disorders, and
hemorrhoids [25]. Antidiarrheal, anti-inflammatory, anal-
gesic, antipyretic, antibacterial especially Gram-positive
bacteria, and antifungal properties against Trichophyton,
Sporotrichum, and Cryptococcus have been recorded in the
literature [26]. According to Iranian Traditional Medicine
(ITM), consuming henna seeds with honey and tragacanth

strengthens and improves memory [27]. Herein, in con-
tinuation of our efforts on development of herbal anti-AD
agents [28–32], we selected L. inermis seeds to evaluate
different biological activities related to AD including in vitro
ChEs inhibitory activity as well as metal chelating ability
(copper, iron, and zinc ions) and DPPH antioxidant activity.
Also, according to the efficacy of dichloromethane fraction,
phytochemical analysis led to the isolation and identification
of five compounds that have not been previously reported
for henna seeds.

2. Materials and Methods

2.1. General Experimental Procedures. Melting points were
determined on a Kofler hot stage apparatus and are un-
corrected. NMR spectra were recorded on an Avance III
spectrometer (Bruker) operating at 400.20MHz for 1H-
NMR and 100.63MHz for 13C-NMR as well as 2D HMBC,
COSY, and HSQC experiments. Silica gel for column
chromatography (70–230 and 230–400 mesh) and precoated
silica gel F254 (20× 20 cm) plates for TLC were purchased
fromMerck. TLC plates were visualized under UV light (254
and 366 nm) as well as spraying anisaldehyde-sulfuric acid,
followed by heating at 150°C.

2.2. Chemical and Reagents. Acetylcholinesterase (AChE,
E.C. 3.1.1.7, Type V-S, lyophilized powder, from electric eel,
1000 units), butyrylcholinesterase (BChE, E.C. 3.1.1.8, from
equine serum), acetylthiocholine iodide (ATCI), and 5,5-
dithiobis-2-nitrobenzoic acid (DTNB) were purchased from
Sigma-Aldrich. Potassium dihydrogen phosphate, dipotas-
sium hydrogen phosphate, potassium hydroxide, and so-
dium hydrogen carbonate were obtained from Fluka.
Solvents for the extraction and column chromatography
(CC) were of technical grade and redistilled before use.
Deuterated solvents (100 atom % D) were obtained from
Sigma-Aldrich.

2.3. Plant Material. Fresh and healthy fruits of Lawsonia
inermis L. were collected from the southern coast of Iran,
Hormozgan Province, Bandar Abbas City, and the taxo-
nomic identities of the plant were authenticated by Doctor
Ajani, a taxonomist at the Research Institute of Forests and
Rangelands, and deposited in the Herbarium of Faculty of
Pharmacy, Tehran University of Medical Sciences (voucher
specimen no. 7028-TEH).

2.4. InVitroAChE/BChEInhibitionAssay. In vitro anti-ChEI
activity was performed against acetylcholinesterase (AChE,
E.C. 3.1.1.7, Type V-S, lyophilized powder, from electric eel,
1000 units) and butyrylcholinesterase (BChE, E.C. 3.1.1.8,
from equine serum) using the modified Ellman’s method
[33]. To obtain acceptable enzyme inhibitory activity
(20–80%), the stock solutions of the fractions (10mg/mL)
and compounds (1mg/mL) were prepared in DMSO and
were diluted with a mixture of DMSO and methanol to
achieve four different final concentrations of the fractions
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(63.5, 125, 250, 500 μg/mL) and compounds (1, 10, 20, 40 μg/
mL), while obtaining the final ratio of 50/50 DMSO/
methanol. Each well consisted of 50 μL potassium phosphate
buffer (KH2PO4/K2HPO4, 0.1M, pH 8), 25 μL prepared
sample as described above, and AChE enzyme (25 μL) with a
final concentration of 0.22 units/mL in the buffer. *ey were
preincubated for 15min at room temperature, and then,
125 μL DTNB (3mM in buffer) was added to the mixture.
Following the addition of 25 μL substrate ATCI (3mM in
water), changes in the absorbance were spectrometrically
measured at 405 nm using a UV Unico Double Beam
spectrophotometer. In parallel, a blank containing all
components without enzyme was used in order to account
for the nonenzymatic reaction. A negative control was also
used under the same conditions without inhibitor, and
donepezil was used as the positive control. *e IC50 values
were determined graphically from log concentration vs. % of
inhibition curves. All experiments were performed in
triplicate. BChE inhibition assay was performed in the same
method.

2.5. Metal Ion Chelating Ability. All solutions used in metal
chelating study were prepared in methanol. *e solutions of
Fe2+, Cu2+, and Zn2+ ions were obtained from FeSO4.7H2O,
CuCl2.2H2O, and ZnCl2, respectively. To investigate the
biometal chelating ability, a solution of compound or
fraction at distinct concentration (1mL) was mixed with the
metal solution (1mL) at the same concentration in a 1 cm
quartz cuvette, and the mixture was left at room temperature
for 30min. *en, the absorbance of the solution was read in
the wavelength range of 260–500 nm [34].

2.6. Antioxidant Activity by DPPH Test. Several concentra-
tions of the test fraction inMeOHwere prepared. Aliquots of
different concentrations of the fraction (1mL) were added to
the DPPH methanolic solution (1.0mL, 0.1mM), and the
mixtures were shaken vigorously and left for 30min at room
temperature in the dark. *e absorbance was then measured
at 517 nm using a UV⁄visible spectrophotometer. *e per-
cent scavenging activity was calculated using the following
formula:

inhibition(%) � 1 −
A (sample) − A (blank)

A (control)
􏼢 􏼣 × 100,

(1)

where A (sample) is the absorbance of the fractions, A
(blank) is the maximum concentration of samples without
DPPH, and A (control) is the absorbance of the DPPH.

In the same procedure, butylated hydroxyanisole (BHA)
was used as the positive control. *e DPPH radical scav-
enging activity of the fractions was expressed as IC50 (μg/
mL), which is obtained from linear regression plot between
concentrations of the test fractions and percent inhibitions.

2.7. Molecular Docking Study. A molecular docking study
was carried out using the Autodock 4.2.6 program for
compounds 2 and 5. *e crystal structure of apo BChE (PDB

ID: 4TPK) was retrieved from the Protein Data Bank
(http://www.rcsb.org). *e 3D structure of donepezil
(positive control) was obtained from the DrugBank data-
base (https://go.drugbank.com). *e 2D structures of the
desired compounds were drawn on ChemDraw Profes-
sional 16.0, and 3D structures were generated using
Chem3D suite, saved in .pdb format, and converted to
.pdbqt format coordinate by AutoDockTools (ADT).
Moreover, for preparation of the pdbqt form of the en-
zymes, polar hydrogen atoms were added to amino acid
residues and Kollman charges were assigned to all atoms
using ADT, and the obtained enzyme .pdbqt was used as an
input for the Autogrid program. In Autogrid for each atom
type, the inhibitor’s maps were calculated with 0.375 A°

spacing between grid points, and the center of the grid box
was placed x = 1.176, y = 11.017, and z= 11.175 for BChE.
*e dimensions of the active site box were set at
40 × 40× 40 × A° for BChE [35]. Flexible ligand dockings
were accomplished for the selected compounds. *e
docking was carried out with 100 runs using the La-
marckian genetic algorithm (LGA). Other parameters were
accepted as default. *e calculated geometries were ranked
in terms of free energy of binding and the best pose was
selected for further analysis. Molecular visualizations were
performed by Discovery Studio 4.0 client software.

2.8. Extraction and Isolation. After drying the fruits of the
plant in the shade and away from the sun, the seeds, a brown
cone, were carefully separated from the capsule-like fruits,
and then, the skin of the fruits and other plant organs were
removed. Next, 400 g seeds were milled using a laboratory-
scale mill and extracted with methanol (MeOH) 100%
(5× 2 L) for 72 h at room temperature. *e collected extract
was concentrated under vacuum at 40°C using a rotary
evaporator, and finally, 84.20 g dry extract was obtained,
yielding 21.05%. *is extract was subjected to silica gel-
column chromatography (CC) (400 g, 70–230 mesh,
10× 30 cm) and washed with petroleum ether (PE),
dichloromethane (DCM), ethyl acetate (EtOAc), and MeOH
(4 L per solvent), respectively.

*e DCM fraction was loaded onto a silica gel vacuum
liquid chromatography (VLC) (200 g, 70–230 mesh,
4.5× 70 cm), eluted with a gradient of the PE :DCM, and then
DCM : acetone (ACE). Totally, 13 fractions (F1–F13) were
combinedwith the aid of TLC analysis (bands were detected on
TLC under UV (254nm and 360nm) and spraying ani-
saldehyde-sulfuric acid, followed by heating at 150°C.

Fraction F4 (250mg, eluted with DCM 100%) was ap-
plied on silica gel CC (60 g, 70–230 mesh, 2× 70 cm) and
eluted with a gradient of the PE : ACE (95 : 5 to 80 : 20) to
afford six subfractions (SFs. 4a-4f). Subfraction 4d was
recrystallized from chloroform to give compound 1 (4mg).
Fraction F5 (500mg, eluted with DCM :ACE (99 :1)) was
subjected to another silica gel CC (60 g, 70–230 mesh,
2× 70 cm), eluted with a gradient of the PE : ACE (90 :10 to
65 : 35) to afford three subfractions (SFs. 5a–5c). Subfraction
5b was further separated on silica gel CC (45mg, 230–400
mesh, 2× 70 cm), eluted with PE : ACE (85 :15) to give
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compound 2 (10mg). Fraction F8 (600mg, eluted with
DCM : ACE (96 : 4)) was separated over a silica gel CC
(40 g, 230–400 mesh, 1.5 × 70 cm) with a gradient mixture
of PE : ACE (80 : 20 to 0 : 100) as eluent, to afford thirteen
subfractions (SFs. 8a–8m). Subfraction 8f was triturated
with EtOAc to give an insoluble solid, which was
recrystallized from MeOH to afford compound 3 (8 mg).
Subfraction 8d was loaded onto silica gel CC (65mg,
230–400 mesh, 2 ×100 cm), eluted with a gradi-
ent mixture of n-hexane : ethyl acetate (80 : 20) to give five
subfractions (SFs. 8d1–8d5). Two subfractions, 8d1 and
8d3, were recrystallized from MeOH to afford compound
4 (7 mg) and compound 5 (8 mg), respectively.

3. Results and Discussion

3.1. Isolated Compounds from Henna Seeds.
Phytochemical analysis of dichloromethane fraction of
L. inermis seeds was conducted using silica gel column
chromatography to isolate and characterize five compounds
1–5 for the first time for henna seeds (Figure 1). All data
from the characterization of compounds 1–5were compared
with those reported in the literature [36–40].

β-Sitosterol (1): colorless needles (4mg), mp: 134–137°C.
1H NMR (400MHz, CDCl3) δ = 5.35 (1H, d, J= 5.3Hz, H-6),
3.52 (1H,m, H-3), 1.01 (3H, s, Me-19), 0.92 (3H, d, J= 6.6Hz,
Me-21), 0.79–0.87 (9H,m, Me-29, Me-26, Me-27), 0.68 (3H,
s, Me-18). 13C NMR (125MHz, CDCl3, based on DEPT,
HMQC and HMBC experiments; see Table 1) [36].

3-O-β-Acetyloleanolic acid (2): colorless crystal; m.p.
>250°C. 1H NMR (400MHz, CDCl3) δ = 5.27 (1H,m, H-12),
4.49 (1H, m, H-3), 2.82 (1H, dd, J= 13.9, 4.6Hz, H-18), 2.05
(3H, s, 3-OAc), 0.74, 0.85, 0.86, 0.90, 0.93, 0.94, 1.12 (21H, s,
CH3 × 7). 13C NMR (125MHz, CDCl3, based on DEPT,
HMQC and HMBC experiments; see Table 1) [37].

3-O-(Z)-Coumaroyl oleanolic acid (3): white powder,
m.p. >250°C. 1H NMR (400MHz, DMSO-d6): δ = 7.61
(2H, d, J = 8.5 Hz, H-5′ and H-9′), 7.60 (1H, d, J = 16.1 Hz,
H-3′), 6.86 (2H, d, J = 8.5 Hz, H-6′ and H-8′), 6.43 (1H, d,
J = 16.1 Hz, H-2′), 5.24 (1H, bs, H-12), 4.59 (1H, dd,
J = 11.4, 4.3 Hz, H-3), 1.19, 0.99, 0.97, 0.95, 0.95, 0.92, 0.81
(21H, s, CH3 × 7). 13C NMR (125MHz, CDCl3, based on
DEPT, HMQC, and HMBC experiments); see Table 1
[38].

Betulinic acid (4): white amorphous powder, m.p.
>250°C. 1H NMR (400MHz, DMSO-d6) δ = 12.07 (1H, s,
-COOH), 4.69 (1H, d, J= 1.8Hz, H29a), 4.78 (1H, t,
J= 1.8Hz, H-29b), 4.28 (1 H, d, J= 5.1, OH-C3), 2.96 (2H,m,
H-3 and H-19), 1.65, 0.94, 0.88, 0.88, 0.77, 0.65 (21H, s,
CH3 × 7). 13C NMR (125MHz, CDCl3, based on DEPT,
HMQC, and HMBC experiments; see Table 1) [39].

Oleanolic acid (5): white amorphous powder, m.p.
>250°C. 1H NMR (400MHz, CDCl3) δ = 12.05 (1H, bs,
HOO-C28), 5.19 (1H, m, H-12), 4.32 (1H, d, J= 5.1Hz, OH-
C3), 3.03 (1H, m, H-3), 2.77 (1H, dd, J= 13.9, 4.6Hz, H-18),
1.84 (1H, dd, J= 9.0, 3.6Hz, H-9), 1.26, 1.12, 0.92, 0.90, 0.88,
0.74, 0.70 (21H, s, CH3 × 7), 0.69 (1H, bs, H-5). 13C NMR
(125MHz, CDCl3, based on DEPT, HMQC, and HMBC
experiments; see Table 1) [40].

3.2. Anticholinesterase Inhibitory Activity . As anticholin-
esterases are still prescribed for the treatment of symptoms
and cognitive impairment in patients with AD [41], potency
of L. inermis seeds absorbed our attention due to recom-
mendations in ITM. In this respect, all fractions and isolated
compounds were screened for their in vitroAChE and BChE
inhibitory activity using a 96-well microplate reader
according to the modified Ellman’s method [42] comparing
with donepezil as the reference drug (IC50 = 1.52 μg/mL)
(Table 2).

It should be noted that all fractions and compounds 1–5
demonstrated no AChEI activity; however, results related to
the selective anti-BChE activity were worth considering. As
can be seen in Table 2, DCM and EtOAc fractions were the
most potent and selective inhibitors of BChE with IC50
values of 113.47± 1.25 and 124.90± 1.15 μg/mL, respectively,
whereas the other fractions were not active. In the case of
isolated compounds, compounds 2 and 5 depicted selective
BChE inhibitory activity with IC50 values of 77.13± 0.01 and
72.20± 0.42 μM, respectively.

*e compensatory role of BChE in late-stage or ad-
vanced AD has been fully proven and the enzyme is re-
sponsible for the reduction of the ACh levels in the brain.
Also, BChE plays an important role in the transformation
of nonfibrillary to fibrillar Aβ plaques and senile plaques. It
seems that inhibition of BChE can be considered as a
therapeutic target in the treatment of AD [43]. In this
respect, medicinal plants and natural products have been
found to possess desired anticholinesterase activity. Plant-
derived alkaloids, such as physostigmine, galantamine,
sanguinine, and huperzine A, have shown significant in-
hibitory activity against acetylcholinesterase [44]. Ter-
penes, sterols, flavonoids, and glycosides have also been
reported to possess anti-ChE activity [45]. Among fifteen
compounds isolated from Gelsemium elegans and Aglaia
odorata, paeonol and hydroperoxy-24-vinylcholesterol
exhibited selective BChE inhibitory activity [46]. Also,
sixteen lanostane triterpenes obtained from fruiting bodies
of Ganoderma lucidum were selective inhibitors of AChE
[44]. All these findings revealed that medicinal plants are
the most credible source of ChE inhibitors.

*e effect of L. inermis has been investigated from
different points of view. Amat-ur-Rasool et al. reported
that the methanolic extract of henna leaves had strong in
vitro AChEI and BChEI activity with IC50 values of 0.33
and 0.41mg/mL, respectively [47]. Also, study of the
ethanolic extract of henna leaves against scopolamine-
induced memory impairment in Swiss albino mice
revealed that using the extract at the doses of 200mg/kg
and 400mg/kg for 7 days inhibited AChE significantly as
compared with the control group [48]. As reported by Mir
et al., in vivo investigation of the ethyl acetate and
chloroform extracts of L. inermis leaves at a dose of 25mg/
kg indicated their memory-enhancing potentials using
two methods including “without inducing amnesia” and
“induction of amnesia” by administration of diazepam as
well as the cognitive improvements using behavioral
models including elevated plus maze (EPM) and the
passive shock avoidance (PSA) paradigm [49].
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3.3. Metal Ion Chelating Activity. Redox-active metals such
as Fe2+, Zn2+, and Cu2+ can increase the toxicity of Aβ
plaques by forming coordinate bonds. Also, excessive ac-
cumulation of metal ions and interaction with β-amyloid
plaques leads to oxidative stress due to an increased for-
mation of reactive oxygen species (ROS). It seems that the
biometal chelation hypothesis can be considered as a strong
therapeutic tool in the treatment of AD [28]. *us, the metal
chelating ability of all fractions and isolated compounds 1–5
was investigated. For this purpose, the UV-visible absorp-
tion spectra were recorded in the wavelength range of
260–500 nm and compared with those obtained from the
treated solution of fractions or compounds with Fe2+, Zn2+,
and Cu2+ ions with final concentrations of 20 μg/mL and
20 μM, respectively. *ose findings indicated the desired
capability of phytochemicals present in the fractions to form
complexes with biometals.

*e MeOH fraction was able to chelate Cu2+ ions more
strongly than Fe2+ and Zn2+ ions. *e absorbance peak of
MeOH fraction (final concentration of 31.25 μg/mL) at
286.4 nm changed to 284.3 nm after 30min interaction with
Cu2+ ions (Figure 2).

*e EtOAc fraction (final concentration of 31.25 μg/mL)
showed three absorption peaks at 294.9, 290.7, and 282.1 nm.
It was capable of Cu2+ chelating as a peak at 288.5 nm
appeared after interaction with Cu2+ ions. *e interaction
with Fe2+ ions led to a change in the absorption wavelength
(288.5 and 297.1 nm). However, the fraction could not
chelate Zn2+ ions (Figure 3).

*e UV spectrum of DCM fraction (final concentration
of 250 μg/mL) showed several absorption peaks at 326.9,
320.5, 316.3, 303.5, 292.8, and 286.4 nm. Interaction of the
fraction with Cu2+ ions led to the appearance of new peaks at
307.7 nm, a red shift from 326.9 to 331.2 nm, and a blue shift
from 316.3 nm to 314.1 nm. In the case of interaction with
Zn2+ ions, a blue shift from 303.5 to 297.1 was clear. In-
teraction of the sample with Fe2+ ions demonstrated ab-
sorption peaks at 318.4, 314.1, 309.9, 301.3, 294.9, 290.7, and
286.4 nm (Figure 4).

*e PE fraction (final concentration of 125 μg/mL)
showed an absorbance peak at 275.7 nm. After the inter-
action of the fraction with Cu2+ ions, a red shift from
275.7 nm to 288.5 nm was confirmed. When it was treated
with Zn2+ and Fe2+ ions, a red shift from 275.7 nm to
282.1 nm was also observed (Figure 5).

Investigation of metal chelating ability of isolated
compounds 1–5 showed that only compound 3 (final
concentration of 40 μM) was able to form chelates with
biometals (Figure 6). Interaction of compound 3 and Zn2+

and Cu2+ ions afforded two blue shifts from 320.5 and
312.0 nm to 314.1 and 307.7 nm, respectively. Moreover, the
interaction of compound 3 and Fe2+ ions led to a change in
the absorbance from 320.5 to 318.4 nm (Figure 6).

3.4. Antioxidant Activity by DPPH Assay. DPPH is a stable
free radical that can accept an electron or hydrogen radical
to become a stable molecule. All fractions (PE, DCM, EtOAc,
and MeOH) of L. inermis were screened for its possible
antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl radical
(DPPH) scavenging activity comparing with butylated
hydroxyanisole (BHA) as the standard drug
(IC50 = 3.79± 0.37 μg/mL). As shown in Table 3, EtOAc and
MeOH fractions were found to be the most potent anti-
oxidant fractions (IC50 = 3.08± 0.10 μg/mL and
3.79± 0.37 μg/mL, respectively) as potent as the positive
control. However, both PE andDCM fractions showed lower
antioxidant activity than BHA.

3.5. Molecular Docking Study. To gain an insight into the
binding interaction of the isolated compounds (2 and 5)
with BChE (PDB ID: 4TPK), molecular docking experiments
were performed using the Glide module (autodock suite).
Docking scores in kJ/mol are shown in Table 4.

As shown in Figure 7, compound 2 made desired in-
teractions with the BChE active site. *e carbonyl group of
carboxylic acid established H-bonding interaction with
Glu197, Ser198, and His438 residues. Carbonyl group of
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Figure 1: *e structure of isolated compounds (1–5) from L. inermis seeds.
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ester moiety formed a hydrogen bond with Ser287. Other
interactions including alkyl and pi-alkyl interactions were
constructed through the hydrophobic backbone of
compound 2 and His438, Tr982, Ala328, and Tyr440
residues.

In the case compound 5 (Figure 8), two hydroxyl groups
formed two H-bonding interactions with Gly116 and Tyr440
residues of the BChE. Alkyl and pi-alkyl interactions were
constructed between hydrocarbon moiety of compound 5
and Phe329, Ala328, His438, Met437, Trp430, Tyr332,

Table 1: 13C NMR data of isolated compounds 1–5 based on DEPT, HMQC, and HMBC experiments.

Position
δC (ppm)

1 2 3 4 5
1 37.3 38.1 37.4 38.4 38.0
2 31.7 23.5 23.3 27.1 27.1
3 71.8 80.9 79.7 76.7 76.8
4 42.3 37.7 37.5 38.2 38.3
5 140.8 55.3 54.5 54.8 54.7
6 121.7 18.2 17.8 17.9 18.0
7 31.9 32.5 32.0 33.8 32.0
8 31.9 39.3 38.8 40.2 38.8
9 50.1 47.5 46.8 49.8 47.0
10 36.5 37.0 36.5 36.3 36.5
11 21.1 22.9 22.8 20.4 22.8
12 39.8 122.6 121.4 25.0 121.5
13 42.2 143.6 144.5 37.5 143.8
14 56.8 41.5 41.3 41.9 40.7
15 26.1 27.6 27.2 30.0 26.9
16 28.3 23.4 22.6 31.6 22.0
17 56.1 46.5 45.6 55.4 45.6
18 11.9 40.9 40.8 46.6 41.2
19 19.4 45.8 45.4 48.4 45.4
20 36.2 30.7 30.4 150.3 29.0
21 18.8 33.8 33.3 29.1 33.2
22 33.9 32.4 32.2 36.7 32.8
23 26.1 28.0 27.8 28.0 28.2
24 45.1 15.4 15.0 15.7 16.0
25 29.2 16.7 16.7 15.9 15.0
26 19.1 17.2 16.8 15.8 16.8
27 19.8 25.9 25.5 14.3 25.5
28 23.1 183.8 178.6 177.3 178.6
29 12.0 33.1 32.8 18.9 30.3
30 — 23.6 23.3 109.7 23.3
CH3COO — 21.3 — — —
CH3COO — 171.1 — — —
1′ — — 166.4 — —
2′ — — 114.5 — —
3′ — — 143.8 — —
4′ — — 125.0 — —
5′ — — 130.3 — —
6′ — — 115.7 — —
7′ — — 159.8 — —
8′ — — 115.7 — —
9′ — — 130.3 — —

Table 2: AChE and BChE inhibitory activity of fractions and isolated compounds from L. inermis.

Fractions AChE IC50 (μg/mL) BChE IC50 (μg/mL) Compounds AChE IC50 (μM) BChE IC50 (μM)
PE >500 >500 1 >100 >100
DCM >500 113.47± 1.25 2 >100 77.13± 0.01
EtOAc >500 124.90± 1.15 3 >100 >100
MeOH >500 >500 4 >100 >100
Donepezil 0.03± 0.00 1.52± 0.10 5 >100 72.20± 0.42

Donepezil 0.08± 0.01 3.99± 0.27
∗Data are expressed as mean± SD (three independent experiments).
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Figure 2: *e absorbance changes of MeOH fraction alone and in
the presence of Zn2+, Fe2+, and Cu2+ ions.
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Figure 3: *e absorbance changes of EtOAc fraction alone and in
the presence of Zn2+, Fe2+, and Cu2+ ions.
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Figure 4: *e absorbance changes of DCM fraction alone and in
the presence of Zn2+, Fe2+, and Cu2+ ions.
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Figure 5: *e absorbance changes of PE fraction alone and in the
presence of Zn2+, Fe2+, and Cu2+ ions.
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Figure 6: *e absorbance changes of compound 3 alone and in the
presence of Zn2+, Fe2+, and Cu2+ ions.

Table 3: Free radical scavenging activities of the fractions of
L. inermis.

Fraction IC50 (μg/mL)
PE 29.40± 1.61
DCM 23.45± 1.25
EtOAc 3.08± 0.10
MeOH 3.64± 0.03
BHA 3.79± 0.37

Table 4: Molecular docking analysis of isolated compounds from
L. inermis in the active site of AChE and BChE.

Compound Docking score (kJ/mol)
BChE (PDB: 4TPK)

2 −9.06
5 −9.05
Donepezil −9.53
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Tyr440, Trp82, and Pro285. Moreover, two pi-sigma inter-
actions were formed between methyl groups and Trp82.

4. Conclusion

In this study, different biological activities of Lawsonia
inermis L. seeds related to AD as well as phytochemical
analysis were investigated. In vitro anti-ChE activity of all
fractions indicated potent and selective BChE inhibitory
activity of the dichloromethane fraction which led to
the isolation and identification of β-sitosterol (1), 3-O-
β-acetyloleanolic acid (2), 3-O-(Z)-coumaroyl oleanolic acid
(3), betulinic acid (4), and oleanolic acid (5). Evaluation of
compounds 1–5 toward AChE and BChE revealed that
compounds 2 and 5 were the most potent and selective
inhibitors of BChE with IC50 values of 77.13 and 72.20 μM,
respectively. Furthermore, evaluation of the antioxidant and
metal chelating ability of fractions and compounds con-
firmed the capability of L. inermis seeds to be considered in
the treatment of AD.
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