Skip to main content
. 2021 Jul 27;14(1):89–100. doi: 10.1007/s12539-021-00463-2

Table 2.

Average results obtained by developed models on the deep features

Deep features/deep learning model Acc (%) Sen (%) Spe (%) Pre (%)
VGG-16 DNN 91.84 ± 2.23 69.6 ± 13.05 97.4 ± 2.8 89.21 ± 9.51
Bi-LSTM 95.68 ± 1.93 88.0 ± 7.16 97.6 ± 2.33 91.02 ± 7.31
ResNet-50 DNN 92.64 ± 1.38 70.4 ± 8.24 98.2 ± 0.75 90.93 ± 3.02
Bi-LSTM 93.28 ± 1.09 76.0 ± 5.66 97.6 ± 1.85 89.58 ± 6.28
DenseNet-121 DNN 88.32 ± 0.64 50.4 ± 6.5 98.0 ± 2.1 88.89 ± 10.69
Bi-LSTM 89.76 ± 1.48 60.0 ± 8.0 97.4 ± 1.5 86.27 ± 8.02
Concatenated deep features DNN 95.84 ± 1.06 82.4 ± 7.42 99.2 ± 0.75 96.59 ± 3.14
Bi-LSTM 97.6 ± 0.88 91.2 ± 1.6 99.2 ± 1.17 96.86 ± 4.5

The best result is shown in bold font