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JEL classification: We use U.S. county-level location data derived from smartphones to examine travel behavior and its relationship
R11 with COVID-19 cases in the early stages of the outbreak. People traveled less overall and notably avoided areas
ns with relatively larger outbreaks. A doubling of new cases in a county led to a 3 to 4 percent decrease in trips to and
Hi1 from that county. Without this change in travel activity, exposure to out-of-county virus cases could have been
Keywords: twice as high at the end of April 2020. Limiting travel-induced exposure was important because such exposure
Travel behavior generated new cases locally. We find a one percent increase in case exposure from travel led to a 0.21 percent
Mobility increase in new cases added within a county. This suggests the outbreak would have spread faster and to a greater
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degree had travel activity not dropped accordingly. Our findings imply that the scale and geographic network
of travel activity and the travel response of individuals are important for understanding the spread of COVID-19
and for policies that seek to control it.

1. Introduction

In the early stages of the COVID-19 outbreak, people drastically re-
duced their travel. Governments enacted numerous policies including
stay-at-home orders, business closures, and limits on mass gatherings to
reduce exposure and slow the spread of the virus. The change in travel
behavior may reflect the implementation of these policies but also may
be attributed to people responding to information about the number of
virus cases in their proximity. How did people reduce their travel be-
havior during the onset of the outbreak? Did they avoid places with
larger outbreaks? And how did this response affect exposure and slow
the spread of the disease?

In this paper, we use data on the movement of smartphones between
U.S. counties to study the change in travel behavior and virus exposure
in the early stages of the outbreak. The data provide daily measures
of the network of bilateral travel flows between counties.! Aggregate
patterns in the data confirm that travel between counties declined as
COVID-19 cases rose.

People not only traveled less, they avoided locations that had higher
numbers of cases. Using gravity regressions of bilateral travel flows on

case counts, we show that flows between locations declined in response
to increased cases in both the origin and destination. During a period of
explosive growth in cases, the results suggest that a doubling of cases in
either end of a trip led to roughly a 3.5 percent decline in travel flows.
This result holds even when controlling for government orders, suggest-
ing that people adjusted travel behavior based on available information
about the geography of the outbreak. A policy implication of this result
is the importance of providing timely, accurate information about the
geography of an outbreak.

Changes in mobility had large effects on overall virus exposure. We
construct a measure of nonlocal (out-of-county) exposure as a sum of
flows between counties weighted by the number of confirmed cases in
the counties visited. In counterfactual experiments, we find exposure
would have been twice as high at the end of April 2020 had people not
changed their travel behavior. Furthermore, a decomposition shows that
roughly one third of the difference in exposure came from changes in
the travel network, as opposed to overall declines in travel.

The reduction in out-of-county exposure matters because such ex-
posure led to increases in new COVID-19 cases. Under our preferred
instrumental variable method, we find that a 1 percent increase in the
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exposure measure led to a 0.21 percent increase in new cases. Therefore,
changes in travel patterns likely had significant benefits in reducing the
spread of the disease by decreasing exposure.

Finally, we provide a simple model of the spatial dynamics of an
outbreak. The model is used to illustrate the importance of the connect-
edness of locations and the mobility response of individuals to the ge-
ographic spread of new cases. The important takeaway from the model
is that travel can both speed the spread in the short run and amplify
the outbreak over the longer run, while a mobility response mitigates
both of these effects. The model does not include important features of
an epidemiological model such as recovery rates, deaths, or immunity.
However, it demonstrates the concept of how reductions in mobility re-
duce aggregate infections.

Our findings on travel complement other recent research on de-
clines in local activity during the outbreak. Gupta et al. (2020) find
that government policies led to significant declines in mobility, while
Engle et al. (2020) find that policy as well as local case levels re-
duced mobility. There is also evidence that reductions in mobility
and government policies mitigated the outbreak, including work by
Chinazzi et al. (2020), Courtemanche et al. (2020), Fang et al. (2020),
Fenichel et al. (2020), Glaeser et al. (2020), Kraemer et al. (2020), and
Wilson (2020). In addition Coven and Gupta (2020) show that migration
out of urban areas drove the spread of the outbreak. In contrast to these
studies, our research explicitly considers changes to the travel network
in addition to declines in mobility levels. We also construct a measure
of case exposure in addition to generic trip rates, which we find is an
important determinant of case growth.

Other researchers have looked at the role of networks during
the pandemic following work by Christakis and Fowler (2010) and
Bailey et al. (2018). Kuchler et al. (2021) show that social networks
in New York and Lodi, Italy predict the spread of COVID-19, while
Coven et al. (2020) perform a similar analysis for New York, but also
consider differences in mobility among demographic groups. In contrast
to these papers, we consider how the observed travel network changed
in response to the outbreak, and how this affected the spread of the
disease. Monte (2020) also shows how the connectedness of counties
shrank during the pandemic, but does not explicitly study the effects on
exposure or case growth.

Several papers have used quantitative urban and trade models
to study spatial health and economic outcomes during a pandemic.
Fajgelbaum et al. (2020) examine optimal commuting restrictions
in an epidemiology and trade model calibrated to several cities.
Giannone et al. (2020) use cross-state flow data to understand optimal
mobility restrictions. Relative to these papers, we focus on empirical
identification of mobility responses, exposure, and disease spread using
a geographically richer data set.

Lastly, our research connects other work that seeks to inform policies
that restrict mobility. For example, Atalay et al. (2020) and Dingel and
Neiman (2020) study the ability of workers to work from home in dif-
ferent occupations and industries. By providing insights into spatial dy-
namics, our work can also help inform current theoretical research that
seeks to understand the tradeoff between health and economic welfare,
including work by Farboodi et al. (2020), Guerrieri et al. (2020), and
Kaplan et al. (2020).

2. Declining travel at the onset of the pandemic

We briefly introduce the data and describe the key features. More de-
tailed discussion and summary of the data are provided in Appendix A.

There are two main data sets used in our analysis. The first is the
record of COVID-19 daily case diagnoses by county as reported by Johns
Hopkins University.”

2 Johns Hopkins University Coronavirus Resource Center. Data were retrieved from
https://coronavirus.jhu.edu/.
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We combine this with a listing of state-level activity restrictions in-
cluding stay-at-home orders and closure of “nonessential” businesses.>

The second data set is an anonymized summary of movement be-
tween counties derived from a microdata record of smartphone loca-
tions. The measure was constructed and generously made publicly avail-
able by Couture et al. (2021) (hereafter, COGHW) using data provided
by vendor PlacelQ. The individual device locations are collected when
an application requests GPS location data. These “pings” are aggregated
at the county level. The data set consists of a time-consistent list of 2018
counties in the U.S covering 97 percent of the U.S. population. In our
analysis, we use data from January 20, 2020 to May 25, 2020.*

Specifically, the data report: (i) the number of devices registering in
a county each day, and (ii) the fraction of those devices that registered
in each county (of the 2018) sometime in the preceding 14 days. The
product of (i) and (ii) is a measure of the number of trips between two
counties.®

Trips are best viewed as indicators of connectedness. There is no
definitive notion of origin or destination, and the reported statistic is
the probability of a binary event, not a transition from a starting place
to ending place. In correspondence with the timing in the data construc-
tion procedure, we refer to the current location as “focal” county and
the previous location as the “visit” county. The data construction also in-
duces a moving average quality that we will account for in the analyses
that follow.°

These data depict travel between counties as opposed to within coun-
ties.” By studying this form of mobility, our focus is on trips that are
more likely to create contact between regions, rather than those that
create contacts between neighbors (such as visits to a store or restau-
rant). We will refer to this out-of-county travel from here on as “travel
activity” or “mobility.”

To set the stage for analysis, we first show the dynamics of travel
activity in the early phase of the pandemic. To construct a consolidated
measure of mobility (m) for a county j on date 7, we summarize the out-
of-county trips as the product of active devices in the county, d;, and
trip probabilities between j and other counties i (within the lag window
of two weeks) as reported on day t, o;;;:
my=d; Y o )

i#j

. . ~ mj, _ .
We then index the series as /i, = =, where mj, is the mean of the
jO

county’s index in the pre-pandemic pejriod (January 20, to February 23).
Additional details about the components of the index can be found in
Appendix B.

Figure 1 overlays the median county daily mobility index with gov-
ernment orders, cumulative cases, and new cases. Panel A plots the in-
dex versus the share of counties under the mobility restrictions of bans
on mass gatherings, closures of “nonessential” businesses, and stay-at-
home orders. Panel B compares the index to log national cumulative
cases, and Panel C compare it to new cases added. A vertical line marks
the national emergency declaration on March 13.

One notable feature is that the first drop in mobility occurred im-
mediately following the initial run-up in cases—and before mobility re-
strictions were enacted-as it became clear that the U.S. was experienc-

3 These data were collected by the Institute for Health Metrics and Evaluation at the
University of Washington. They were downloaded from https://covid19.healthdata.org/

4 CDGHW continue to update the data, but we chose to focus our analysis on the initial
phase of the U.S. outbreak.

5 According to CDGHW, a spatially inactive device is less likely to register its location
and appear in the data—and active devices fell substantially as the pandemic took hold-but
they caution against strict quantitative interpretation of active device counts. Clearly the
variation is relevant for our study of travel across counties.

6 CDGHW chose the lag window of two weeks based on public health guidance of
COVID-19 incubation time.

7 We focus on CDGHW’s location exposure index (“LEX”), but CDGHW also publish a
within-county measure of activity (the device exposure index, “DEX”) that we use as an
important control in our case growth analysis in Section 5.
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Fig. 1. National Mobility Index, Mobility Restriction, and Case Growth.
NOTES: The figures plot the median composite mobility index against: the
fraction of counties under government restrictions (A), the log of the national
case count (B), and the number of new cases reported nationally in the preced-
ing two weeks (C). In A, “Close NE Business” means a mandated site closure
of businesses deemed “nonessential.” Sources: Couture et al. (2021), all pan-
els; healthdata.org (2020), panel A; Johns Hopkins University Coronavirus
Resource Center (2020), panels B and C.
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ing community spread and not just isolated cases due to foreign travel.
From March 1, to March 14, though no county was yet under stay-at-
home order, mobility dropped by 20 percent as cases rose 500%.

Travel activity continued its downward trend from that point into
April as case counts continued an exponential rise and stay-at-home or-
ders and other mobility restrictions were more widely enacted. Mobility
reached a bottom in mid-April at 56 percentage points below its pre-
virus average but recovered as the level of new cases tapered in May.
These patterns suggest that households may have been responding to
information about virus prevalence as well as formal emergency decla-
rations and restrictions.®

3. The changing geography of travel activity

Did travel activity drop in a uniform way, or were some locations
affected more than others? We next exploit the full geographic structure
of the data to see which sets of visits changed to produce the decline in
mobility.

To study the geography of the change in activity, we use a gravity
regression of travel flows on local case counts. Specifically, we regress
recorded visits between county pairs on the case counts on each side of
a trip. The model is

In(d;i015) = w;In(1L+n;,_14.-1) + @;dn(l+n;;_4.01) + B;I(R;)
+6,I(Ry) + pij; + pr + € 2)

where d;,0;;, is the number of visits (number of active devices observed
in focal county j times the probability of a visit to county i in the lag
window before #), and n;,_14.,_1, 1;,_14:,— are new cases reported® in
the focal and visited counties, respectively, in the preceding two weeks
(the travel window).'? R, and R, represent mobility restrictions (stay-
at-home orders) in the focal and visit counties, respectively.

This model recovers, via parameters »; and ;, the observed relation-
ship between visits and cases in the locations on each side of a trip (the
focal and visited place). This is to test whether the pullback in over-
all mobility shown in the last section is associated with the locations’
severity of outbreak.

The specifications include fixed effects for each dimension of the
panel: time (p,) and directed county pair (p, j).“ Therefore, the iden-
tifying variation is within a given trip route over time, relative to the
national average change in trips. The effect measured is how the visits
on a route change with case counts compared with the baseline period,
pre-pandemic. Because of the moving-average nature of the visit rate
definition, the daily data have a mechanical degree of serial correla-
tion. To reduce this but still account for the fast-moving dynamics of
the outbreaks, our main specifications use one observation per week
(Wednesdays). Standard errors are clustered by county pair and time.

Table 1 reports the results of the gravity regressions from Eq. (2).
Column 1 shows the coefficients on the two-week new case count in the
focal and visit counties. Cases in the focal county reduce trips outside
the county (w; < 0). A doubling of new cases in the focal county (an
increase of about 69 log points) reduces recorded trips by 3.7 percent (~
0.69 x 0.054). New cases in the visit county also limit the visit probability
(w; < 0). That is, conditional on making a trip, devices are less likely to
visit counties with relatively higher infection rates. A doubling of new
cases in the visit county reduces trips by 3.5 percent (= 0.69 x 0.0498).

8 We provide additional evidence in Appendix C using a panel of county-level data that
while mobility declined in response to government orders, there was also an independent
and quantitatively significant response to proximate virus cases.

9 Throughout the paper, we focus on new case diagnoses reported within the travel
window, although we have found similar results when measuring total cases and deaths.

10 The timing is such that the cases are being publicly reported within the travel win-
dow, so they would be salient to travelers and and would produce exposure as defined in
Section 4.

11 Ppairs are “directed” in that they are potentially asymmetric (p, i # P
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Column 2 adds controls for shut-down orders on either side of a trip.
The estimates show that stay-at-home orders reduced travel, but con-
ditioning on case counts, the magnitude of these effects was relatively
small. Stay-at-home orders in the focal county reduced trips by 1.5 per-
cent, and orders in the visit county reduced trips by 3 percent. Notably,
the inclusion of the shut-down orders does not change the marginal ef-
fects of new cases.

The distribution of visit frequency is highly skewed and distance-
dependent, and perhaps not all trips were affected by cases in the same
way. In column 3 we add an interaction of cases in the visit county with
pre-pandemic visit probability to allow the case elasticity to depend on
the base rate. The negative coefficient indicates that visits declined more
(in proportional terms) to places that were visited regularly (as opposed
to episodically) prior to cases arising. We add in column 4 an indicator
for whether the counties are neighbors, allowing the nearest places to be
affected at different rates. The coefficient on neighbors is positive, and
the coefficient on the baseline visit rate interaction increases. Together,
these results show that the trips declining the most were those to regu-
larly visited counties, but with some persistence in the most proximate
places.

Column 5 includes all controls together and the results are consistent
with previous specifications. Finally, in column 6, we test the robustness
of the model to using biweekly observations instead of weekly to corre-
spond with the two-week lookback in the visit construction. We find the
results very much consistent with the weekly data, even in the standard
errors.

A natural question is whether these estimated effects can be inter-
preted causally. Two potential threats to causal interpretation are omit-
ted variables and reverse causality. On omitted variables, a two-way
fixed effects design accounts for a host of potential problems. In this de-
sign, we are comparing trip frequency within a focal-visit county pair
relative to the national average change for all pairs in a given week. Re-
sults are driven not by cross sectional differences in mobility rates but
by visits decreasing in proportionally greater amounts along routes with
relatively more cases on either side of the trip. Any remaining threat
would have to be a local, time-varying omitted factor driving cases and
mobility in opposite ways. Likely more relevant, given the evidence in
Section 2, is the potential for reverse causality. The extant evidence is
that more mobility leads to more cases, while here we find that more
cases lead to less mobility, suggesting our coefficients are if anything
biased downwards.'?

In summary, the results indicate households were not only traveling
less, they were avoiding places with more severe outbreaks. This sug-
gests that households were less exposed to virus cases than if they had
continued travel activity as in the days before the pandemic, a topic we
treat in more detail in the next section.

4. Case avoidance and the effect on exposure

Travel between counties likely results in people coming in contact
with outbreaks outside their local area. Are these encounters consequen-
tial for case growth? To examine this question, we begin by defining
nonlocal case exposure and then consider how the pattern of case avoid-
ance shown above affected exposure and altered the trajectory of virus
spread.

To summarize the case contacts a county is incurring via out-of-
county travel, we construct a measure of nonlocal case exposure as
Xjr = Z m;j R, 3)

i#j
where n;, represents new cases in the visit county at time ¢, and m,;, =
0;;,d;, is a pairwise mobility measure as in Eq. (1). The index is a sum-
mary of contacts with cases encountered outside the focal county: a

12 Even under this caveat, we show in Appendix D that case-induced mobility changes
can explain the dynamics of mobility over our study period.
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case-weighted sum of the travel flows. We refer to this index simply
as “exposure.”

The exposure index could be high for a given county because of
some combination of (i) high frequency of travel and (ii) travel to high
caseload areas. In Appendix E.1, we decompose the sources of exposure.
The general pattern is that more exposed counties have greater contact
with high caseload areas and not necessarily higher levels of overall
mobility. That is, the severity of the outbreak within the geography of
a county’s network is far more consequential for case exposure than the
level of trips. For example, early in the U.S. outbreak, places connected
to the New York metro area exhibited high levels of exposure, irrespec-
tive of their overall mobility.

Following from the results in Section 3, we examine the impor-
tance of case avoidance for exposure, comparing realized exposure to
counterfactual exposure measures that assume travel activity did not
change despite the increase in cases. Specifically, we calculate the ex-
posure measure in Eq. (3), letting the number of cases n;, evolve as in
the data, but holding mobility constant at pre-pandemic averages (as if
0,140 = 050 jo)-

Table 2 shows the ratio of counterfactual exposures to actual expo-
sures at month-end checkpoints. Column 1 shows the total effect declin-
ing mobility had on exposure. Had travel activity continued as usual,
the median county would have had exposure to 54 percent more cases
at the end of March, 109 percent more cases at the end of April, and 40
percent more cases at the end of May. Thus, at the springtime height of
the pandemic, the median county would have been exposed to twice as
many cases had mobility not adjusted.

Columns 2 through 4 show decompositions of the effects of the com-
ponents of mobility on exposure.'® From Egs. (1) and (3), there are
three components to mobility and therefore three ways the contact in-
tensity could change. First, the number of devices registering as active
could change.'# Second, the total frequency of out-of-county visits could

13 The decompositions do not add to the total because each is a median of a univariate
calculation.
14 Devices could become active with or without registering out-of-county trips.

change. Third, for a fixed amount of mobility, the network of visited
places could change.'®

We find that each of the three components of the exposure measure
contributed to the decrease in exposure. For example, in April, had ac-
tive devices counts continued as usual (column 2), case exposure would
have been 24 percent higher. Had total visit frequency continued as
usual (column 3), case exposure would have been 34 percent higher.
Had the network of visited counties remained as usual (column 4), case
exposure would have been 22 percent higher.

The last column is especially interesting because it shows a substan-
tial amount of the change in exposure resulted not just from staying
home, but from avoiding places with higher levels of cases when travel-
ing. Notably, even as the level of total mobility edged higher in May, a
reduction in exposure resulted from people avoiding counties with high
caseloads.'®

5. The effect of exposure on new case growth

The remaining question is whether out-of-county exposure causes
increases in new cases. To test this, we regress new cases in a county
on our index of exposure to out-of-county cases, controlling for lagged
cases and other county attributes. The baseline model is

In(l4+n;,)=0n(1+n;,_)+0,In(1 +x;,_)+ Z]’-,,,la +Zy+p +eg
“

where county j at time 7 is the unit of analysis, » denotes new cases, x
is the out-of-county exposure from Eq. (3), and the Z’s are county-level
controls. In this specification, time is measured in weeks.

The 0s are parameters of interest, and principally, the expo-
sure parameter ¢,. Z; is a set of controls for time-varying county
characteristics—mainly, a within-county device exposure index, and in
some specifications, the mobility index from Eq. (1). The within-county

15 To see this, consider a decomposition of the contact from county j to county i as
my, =d;o;, =d;,M;nx,;, the number of devices in j (d;), the total number of trips from
J (M},), and the share of those trips from j to i (z;;,).

16 In Appendix E.2 we provide more detail on the evolution of exposure over time.
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Table 1
Changes in Mobility - Gravity Regressions.
1 2 3 4 5 6
Cases in Focal County —0.0540 —0.0535 —0.0541 —0.0544 —0.0540 —-0.0504
(0.0054) (0.0053) (0.0054) (0.0054) (0.0053) (0.007)
Cases in Visited County —0.0498 —0.0491 —0.0486 —0.0478 —-0.0471 —0.0430
(0.0056) (0.0055) (0.0055) (0.0055) (0.0053) (0.0074)
Stay at Home in Focal County —0.0153 —0.0152 —0.0186
(0.0064) (0.0064) (0.0084)
Stay at Home in Visited County —0.0308 —0.0310 —0.0320
(0.0062) (0.0063) (0.0086)
Cases in Visited X Baseline Visit Rate —-0.2700 —-0.5420 —0.5426 -0.5139
(0.0308) (0.0411) (0.0414) (0.051)
Cases in Visited X Neighbors 0.1266 0.1271 0.1158
(0.0092) (0.0093) (0.011)
Constant 1.5693 1.5814 1.5691 1.5690 1.5811 1.6014
(0.0161) (0.0179) (0.016) (0.016) (0.0178) (0.0263)
R? 0.875 0.875 0.875 0.875 0.875 0.871
NT 41,253,269 41,253,269 41,253,269 41,253,269 20,344,813 20,308,351
Pairs 3,564,207 3,564,207 3,564,207 3,564,207 3,564,207 3,188,031
Weeks 18 18 18 18 18 9

NOTES: The table reports results from a gravity regression of log visits in the two weeks preceding observation date on
new cases and stay-at-home orders; see Eq. (2). The observation level is a weekly observation of a directed county pair
(i.e., A—> B # B — A). All specifications include directed county pair and week of year fixed effects. Standard errors are
clustered by directed county pair and time of observation. Source: Authors’ calculations using data retrieved as described

in Section 2.

Table 2
Decomposition of Actual Exposure Relative to “Business As Usual,” By Mobility
Component.
Partial Effect Of:
Time Combined  Device Count  Visit Rate  Visit Geo. Network
1 2 3 4

Last Week of March ~ 1.54 1.17 1.16 1.13

Last Week of April 2.09 1.24 1.34 1.22

Last Week of May 1.40 1.14 1.02 1.19

NOTES: The table reports the median ratio of counterfactual exposure, projected
using pre-pandemic period mobility rates, relative to actual exposure for each listed
point in time. Nonlocal case exposure is defined in Eq. (3). Column 1 is the com-
bined exposure index, and columns 2 through 4 are its components. Column 2 holds
fixed total active devices, column 3 holds fixed out-of-county pings per device, and
column 4 holds fixed the visit county share in the focal county’s travel network.
Source: Authors’ calculations using data retrieved as described in Section 2.

device exposure index (also provided by CDHGW) is a measure of the
number of other devices a typical device encounters at points of interest
(e.g., stores) within the focal county.!” This is distinct from the out-of-
county travel activity in focus in our study, but it is similar to other
measures of device activity in the literature.'® Z ; is a set of controls
for fixed county characteristics, such as population size and density, or
fixed effects to capture attributes nonparametrically. Specifications in-
clude time fixed effects, p,. The ¢ is the error term.

The outcome variable is the natural logarithm of one plus the number
of new cases reported in the last week. The observation level is county
by week beginning the first week of March, when community-spread
cases began to emerge in the U.S. The exposure index is lagged one
week (representing activity one to three weeks prior to the observation
date) so as not to overlap with the new case period in the outcome
variable, and lagged new cases are measured over the same window
as exposure. Because the model includes time fixed effects, estimates
are identified off of spatial-temporal variation relative to the national
average. Standard errors are clustered by week and state.'”

17 See Appendices Appendix A and Appendix B for more details.

18 For example see Engle et al. (2020); Glaeser et al. (2020), and Gupta et al. (2020).

19 We use state instead of county to account for potential correlation in outcomes when
many policy decisions were made by state governments.

Column 1 of Table 3 presents results using ordinary least squares
(OLS) regression. The regression shows two features of viral spread.
First, and unsurprisingly, lagged cases in the county create new cases.
A one-percent rise in past cases is associated with a 0.74 percent rise
in new case growth. Second, and more novel, exposure to out-of-county
cases increases local new cases. A one percent rise in outside exposure
is associated with a 0.11 percent increase in new case growth. Moving
from the median to 90th percentile county in terms of network exposure
(roughly, from Ohio to New Jersey) would mean a 24 percent increase
in new cases added in a given week. The control variables indicate that
larger and denser counties, and places with more within-county device
exposure (i.e., fewer people staying at home), have higher case growth.

Next, we consider some alternative explanations to the causal effect
of exposure. One hypothesis is that the exposure measure is picking up
something about overall mobility that is predictive of new cases.?’ Col-
umn 2 adds the county’s mobility index directly, and its coefficient is
marginally negative.?! In light of the results of Sections 2 and 3, we
attribute this to reverse causality—the pullback in mobility during the

20 Note that any threat would have to concern out-of-county travel, as we control for
within-county contacts with the device exposure index.

21 Recall the mobility index compares the change in mobility within a county to its pre-
pandemic average, not cross-sectional differences in the level of travel.
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Table 3
Nonlocal Case Exposure and Local New Cases.
1 2 3 4 5 6
Model OLS OLS OLS OLS FE v IV FE
Case Exposure 0.111 0.127 0.162 0.213 0.417
(0.028) (0.030) (0.051) (0.035) (0.148)
Case Expo., Neighbors 0.036
(0.006)
Case Expo., Non-Neighbors 0.070
(0.025)
Lagged Local Case Growth 0.744 0.736 0.730 0.630 0.731 0.620
(0.029) (0.029) (0.021) (0.071) (0.031) (0.074)
Within-County Device Expo. 0.119 0.159 0.125 0.185 0.098 0.048
(0.047) (0.041) (0.043) (0.111) (0.052) (0.142)
Mobility Index —-0.003
(0.000)
Population 0.157 0.148 0.178 0.068
(0.035) (0.036) (0.035) (0.042)
Pop. Density 0.046 0.043 0.036 0.035
(0.010) (0.010) (0.011) (0.010)
Implied Marginal Effect to Case Growth Rate
90-50 Expo Gap 0.246 0.286 0.139 0.380 0.527 1.110
(0.070) (0.077) (0.025) (0.140) (0.107) (0.505)
Non-neighbor 1.119
(0.045)
Fixed Effects
Level(s) Week Week Week County; Week County;
Week Week
Number 12 12 12 2018; 12 12 2018; 12
Instruments:
Projected Exposure y y
R 0.8609 0.8612 0.8627 0.8672 0.8018 0.873
NT 24,038 24,038 24,023 24,038 24,038 24,038

NOTES: The table reports regression results of the model represented by Eq. (4); “Expo” is shorthand for out-of-
county case exposure. The outcome variable is the natural log of one plus the number of new cases in the county.
The observation level is county by week. Standard errors are double clustered by county and week. Source: Authors’

calculations using data retrieved as described in Section 2.

periods of higher case growth. The results suggest that any effect of mo-
bility on new cases is operable via exposure to outside cases.

There was regional heterogeneity in the severity of the outbreak and
a predictable geographic component to the observed travel network, and
thus another alternative explanation to exposure is spatial correlation
in travel and case outcomes. As one way to address the possibility,?? in
column 3 we split exposure by nearby (neighboring county) and farther-
away (non-neighboring county) exposure. (Together, these sum to the
county’s total exposure.) If all the exposure effect were coming from
nearby counties, the exposure result may actually be spurious and due
to spatial correlation. Instead, we find significant effects for each source
of exposure independently.

Another potential concern is that unobserved local attributes were
driving both exposure and local virus spread. In column 4 we add county
fixed effects in order to sweep out time-invariant features and focus on
exposure variance within a county over time. The coefficient estimate
rises relative to column 1, showing that even within a county, periods
of greater exposure are followed by periods of greater increase in cases.

These results indicate case exposure through travel creates new cases
within a focal county. However, the preceding sections showed that mo-
bility dropped, and especially to and from counties with higher levels of
new cases, which reduced the amount of exposure a county would ex-
perience. Hence, there is potential for reverse causality that may down-
ward bias the estimated effects. With this concern, we seek an instru-
ment correlated with exposure but not itself generating new cases.

Our strategy is to build a predicted exposure measure based on pre-
determined features of a county. Using a gravity regression of trips on
a flexible county-pair distance function (detailed in Appendix A), we

recover a predicted county-pair visit rate, 6;;, based on proximity of

22 In Appendix Table F1, we present other robustness checks addressing spatial correla-
tion.

counties. The predicted mobility then enters an expected exposure in-
dex, %;, = ¥, 6;;n;, which is used an instrument for actual exposure.
The exclusion restriction is that the distance to other county’s cases af-
fect the focal county’s case rate only through potential travel-related
exposure.??

Column 5 reports the results of the IV regression. The coefficient
on exposure rises to 0.21, indicating attenuation from reverse causal-
ity is indeed present in the OLS specification. Column 6 uses the IV
with county fixed effects. Because the predicted visit weight used in
constructing the instrument is distance-based and hence invariant for
each county pair, the instrument loses power when adding fixed effects.
The point estimate with fixed effects rises to 0.41 but is less precise.?*
While these are broadly consistent, the IV model without fixed effects
is our preferred specification because it mostly relies on pre-determined
variation coming from the way a county’s point in space would affect
its travel network.

In summary, we find consistent evidence that out-of-county exposure
via the travel network affects new case diagnoses. Appendix F provides
a number of additional robustness checks.

6. Geographic connectedness and virus spread

We have marshaled evidence for three important facts: (i) Travel ac-
tivity dropped significantly as case counts rose, with a particular avoid-
ance of areas with relatively larger outbreaks; (ii) Such a drop in ac-
tivity limited exposure to out-of-county virus cases; (iii) Out-of-county

23 We use a distance-based model of trip frequency instead of the “business-as-usual”
mobility from Section 4 in order to more plausibly satisfy the exclusion restriction, in
the event that abnormal connectedness is the result of unobserved links between counties
(e.g., the level of trade) that also correlated with case growth.

24 A test of equivalence between the point estimates from columns 5 and 6 rejects the
null with a p-value of 8.6 percent.
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exposure affects the rate of new cases added. Together, these facts sug-
gest cases would have been higher had travel activity not dropped in
response to cases. Our last exercise is to combine these insights into a
single model in order to evaluate conjectures about spread of the virus
in alternative travel scenarios.

We construct the following spatial vector autoregressive model of
mobility, case exposure, and case growth. The primary outcome of inter-
est is new cases added, in Eq. (5a), which is affected by own-county and
out-of-county exposure. For the rate of transmission from local and non-
local case exposure, we take point estimates from our preferred model
in Table 3, column 5. Nonlocal case exposure, in (5b), is a function of
outside cases and mobility, which is itself affected by the path of cases
locally and nonlocally (Eq. (5¢)). To calibrate the responsiveness of mo-
bility to cases, we take point estimates of Eq. (2) from Table 1, column
3.25 Appendix G shows sensitivity of the model to alternative calibra-
tions.

n =0, 1 +60x;, (5a)

Xj; = Z 0jMis (5b)
i#j

i = 611+ 6yn;; + 636501, (5¢)

We emphasize that this is an autoregressive process and not an epi-
demiological model. There are no notions of recovery, death, or immu-
nity among the population. (Indeed, our unit of analysis is a spatial area,
not a person.) We will note the values the model produces for the sake
of exposition, but we intend this exercise to be more illustrative than
empirical.?®

Accordingly, to keep the model simple, we illustrate a three loca-
tion system. Two locations are calibrated with symmetric mobility rates
to represent two closely connected counties and another more distant
county. We set the baseline visit rate to 7.5 percent for the closely con-
nected locations and 0.55 percent for the distant one.?”

The model is used for the following thought experiment: if an out-
break of new cases exogenously appears in one of the two connected
locations, what happens to the spread of the disease locally and through-
out the system? To illustrate the importance of endogenous travel for the
rate of disease spread, we simulate the model in three scenarios: (i) a de-
fault without mobility (i.e., a purely autoregressive process, (5a) alone),
(ii) with mobility but without the feedback effect of cases on travel ((5a)
and (5b)), and (iii) with mobility and endogenous feedback ((5a), (5b),
and (5c¢)). Plots the impulse responses for an experiment of 10 new cases
dropped into the “treated” location Fig. 2.

The path of new cases added is depicted in the first row of figures.
The rate of own-location spread is below one, so that if there were no
mobility (and consequently no exposure), the virus would asymptoti-
cally die out in the treated location, as illustrated by the “isolated/no
mobility” lines.

In scenarios with mobility and exposure, the outbreak jumps loca-
tions, which themselves grow through local spread. Exposure then leads
to the subsequent re-infection of other places in the system, keeping the
disease alive. The impact of exposure then depends on the degree of
mobility.

In the treated location, the path of cases shows an initially oscil-
lating pattern, as own-location case contribution slows but exposure to

25 We use the model with the baseline visit rate-cases interaction to account for the
differing elasticities between frequently and infrequently visited places.

26 In particular, we suspect that the parameters measuring the mobility response to cases
could be downward biased, but the central point of the model can be made by contrasting
responsive and unresponsive mobility.

27 We have in mind connected but distinct economic regions. A visit rate of 7.5 percent
represents the integrated counties of the Philadelphia and New York CBSAs, for example.
See also Table A2.
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outside cases rises. New case rates then rise to a steady state. In the
initially virus-free connected location, nonlocal exposure seeded the lo-
cal outbreak, and it eventually reaches the same steady-state level as
the treated location. The distant location experiences its own outbreak,
although its lower connectivity translates into a lower long run aver-
age rate of exposure, so its steady state is lower than the two closely
integrated counties.

Among the two steady states with mobility, the level of new cases is
about 60 percent higher in the scenario without response to cases. To
see why, the second row of figures shows the mobility rate. The “unre-
sponsive” scenario is fixed to have no endogenous change in mobility
and mechanically results in the flat lines. In the endogenous mobility
scenario, we see travel fall as the outbreak occurs. In the two connected
counties, mobility falls by 42 percent. There is consequently a reduc-
tion in exposure, shown in the third row of figures, which is only 45
percent as high in the responsive scenario as the unresponsive, because
of a combination of less travel and a lower level of cases.

The difference in exposure alters the total rate of disease transmis-
sion, creating the gap in new cases among scenarios shown in the first
row of figures. Thus, when mobility does not decline in response to the
outbreak, the rate of new cases added is faster and steady-state level is
higher.

In summary, the model shows why spatial connectedness matters
for both the spread and the perpetuation of the virus. Most directly,
nonlocal exposure allows the virus to jump from one area to another.
Perhaps less obvious, however, is how travel also affects the rate of
growth of cases and the steady state level. Connectedness generates
higher caseloads as travel compounds local transmission through rein-
fection across areas.

7. Conclusion

This paper has used county level location data from smartphones to
document the change in travel activity during the early phase of the
COVID-19 pandemic in the U.S. We find that mobility across counties
dropped substantially as case counts rose. Relatively larger case counts
decreased spatial activity on both sides of a trip: Mobility decreased
more in counties with more cases, and the activity that did occur tended
to avoid areas with higher caseloads.

Understanding the nature of the change in activity is important be-
cause mobility across county lines produces contact with nonlocal cases.
Such case exposure contributes to local case growth which in turn has
a feedback effect on nonlocal case growth, creating exposure for other
localities in a continuing loop.

Our findings have several implications for policy and practice. First,
public information about the spread of the virus is important. We find
people responding to such information by restricting their activity in
rational ways-both in level and in direction. In a sense, a “healthy fear”
of the virus appears to provide motivation for social distancing and sim-
ilar behavioral interventions, perhaps even more so than government
mandates.

Second, because spatial activity never entirely disappears, localities
could benefit from coordinated responses and shared information. Con-
nectedness means there are spatial externalities. A policy that suits one
area may inadvertently produce a threat to a connected area. Frag-
mented policy across regions could inhibit society’s ability to control
the spread of COVID-19.
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Appendix A. Data

This appendix reports additional details regarding the underlying
case and mobility data sets.
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Al. Case prevalence

First we present some basic statistics from the daily COVID-19 case
data.?® In the spring of 2020, the early phase of the pandemic, COVID-19
cases were relatively concentrated in the Northeast U.S., and especially
the New York City metro area, although there was some presence of
cases throughout the country.

Table Al reports summary statistics on case prevalence in terms of
per capita cumulative diagnoses and rates of new diagnoses in each
month of our period of interest. The distribution of cases is skewed with
a long right tail, with many counties having low rates but some hav-
ing major outbreaks. The ratio of the 99th percentile to the median per
capita infection rate is at or above 19 for each month in our sample.
The mass of the distribution shifted to the right as the virus percolated
throughout the country. The peak of new infections was in early to mid
April (although these rates were then surpassed by surges in the summer
of 2020 and winter of 2020-2021).

A2. Measuring travel behavior from smartphones

The empirical basis of this paper are measures of mobility con-
structed by Couture et al. (2021) that are derived from GPS locations
recorded by smartphones. This appendix contains additional details not
covered in Section 2; see Couture et al. (2021) for a complete description
of the data.

Table A1
Summary of Case Prevalence.
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fidentiality and to limit the size of matrix, CDGHW limited the reported
counties to those that had at least 1000 devices registering over a one
week period from November 2019 to early January 2020. The result-
ing dataset consists of a time-consistent list of 2018 counties in the U.S,
comprising 4,072,324 possible pairs, some of which may be zero if no
device from the focal county has visited the destination county in the
previous two weeks. The average county exhibits 1732 unique nonzero
pairs per week in the base period of January 20, to February 23, the
first five weeks of data and before the onset of widespread COVID-19
diagnoses. We do not observe activity outside the 2018 county network,
but the observed counties encompass 97 percent of the U.S. population.

Under CDGHW's selection method of a 1000 device threshold, larger
counties are more likely to register in the data, but some rural areas and
small towns are represented as well. Among metro areas, 90 percent of
counties (comprising 99 percent of metro population) appear in the data.
Counties in metro areas making up 86 percent of total U.S. population
comprise the same percentage of the devices registering in the dataset.
Rural and micropolitan counties appear at a rate of 48 percent, although
80 percent of the population in these areas is represented. These smaller
counties, making up 11 percent of U.S. population, account for the re-
maining 14 percent of devices we observe.

Table A2 reports summary statistics for one of the main objects of
interest, the fraction of devices in the focal county present in the visit
counties in the previous 14 days, which includes the own-county rate as
a “visit.” The typical county has a same-county ping rate of 90 percent,
meaning 10 percent of devices present today are “new” and were not

Time Mean SD 25th 50th 75th 90th 99th
Cases per 1k Residents

Last Week of March ~ 0.150 0.459 0.022  0.059 0.135 0.278 1.413
Last Week of April 1.582 2.991 0.351 0.716 1.548 3.280 16.499
Last Week of May 3.000 5.087 0.685 1.414 3.252  6.757 26.790
New Cases in Preceding 2 Weeks

Last Week of March ~ 65.99 578.89  0.71 3.00 13.00  60.00 843.00
Last Week of April 192.08 893.21 4.29 15.93 70.14 267.43 4,318.71
Last Week of May 150.99  644.21 471 17.79  78.43  278.57  2,350.00

NOTES: The table reports summary statistics of COVID-19 cases per capita and new
cases for selected months in the spring of 2020, as reported by Johns Hopkins University.

Table A2
Summary Statistics of Device Ping Rates by Geography.
Pairs NT Mean SD P10 P50 p90

Same County na 70,630 89.08 4.78 82.69 90.01 94.19
Other Counties:
Neighbor 9366 327,653 23.14 17.33 5.44 18.32 49.42
Within Commuting Zone 8562 299,670 19.77 19.02 1.95 12.81 49.98
Within State 128,351 4,429,513 3.08 7.82 0.09 0.62 6.97
Within Division 573,239 17,131,215 1.00 4.29 0.02 0.12 1.43
Within Region 1,388,653 35,309,674 0.55 3.06 0.03 0.06 0.65
Any 3,903,314 84,612,867 0.27 2.01 0.01 0.04 0.30
Share to Top 10 Connections na 70,630 51.18 11.03 36.28 52.07 64.71

NOTES: The table reports summary statistics of device ping activity occurring over a 14 day window in the pre-pandemic
period (January 20, to February 23, 2020). Statistics are taken over the visit rate and count only observations with nonzero ping
rates; The last row reports a share of total visits. There are 2018 counties included in the dataset. The NT column reports the

number of pair-day observations. Source: Couture et al. (2021).

The dataset of primary interest in this paper is their location expo-
sure index (LEX) measuring activity between counties. To protect con-

28 We have taken care to adjust the data for changes in reporting format or geography
(e.g., counties that report together in some periods and separately in others) and to exclude
outliers and values outside the domain of possible outcomes (e.g., negative new cases).
Nevertheless, the data are reported subject to some discretion by health care providers
and state and local health departments that introduces unavoidable measurement error.
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Table A3
Gravity Model of Visit Rates Between
County Pairs, Pre-Pandemic Period.

Day of Week (Sunday excluded)

Monday 0.036
(0.000)
Tuesday 0.065
(0.000)
Wednesday 0.068
(0.000)
Thursday 0.060
(0.000)
Friday 0.025
(0.000)
Saturday -0.010
(0.000)
Distance Between Counties
Log Miles Between Centroids —-0.807
(0.000)
Indicators for County Groupings
Neighbors 1.883
(0.002)
Same CBSA 1.036
(0.002)
Same State 1.243
(0.000)
Same Division 0.211
(0.000)
Same Region —-0.008
(0.000)
Constant -2.769
(0.001)
RrR? 0.368

NOTES: The table reports coefficient esti-
mates of Eq. (6), a gravity model of daily
visit rates using pre-pandemic period travel
data (January 20, to February 23, 2020).
Source: Couture et al. (2021).

present in the preceding two weeks. When limiting to the non-reflexive
counties, the average ping rate is dramatically lower by nature. There is
a clear geographic pattern. The average county pair has a ping rate of 0.3
percent. This rises to 0.5 percent within region, 3 percent within state,
19 percent within commuting zone, and 23 percent among neighboring
counties. The visit rates are also highly skewed, with some county pairs
showing frequent interaction (50 percent visit rate and above), and the
mean visit rates larger than the medians. As such, the typical county has
about half of its total trips between its top 10 most frequent connection
partners and the remaining half through its (thousands of) other less
frequent connections.

With the geographic pattern as guidance, in Eq. (6) we write down
a basic gravity model of log visit frequency as a function of distance
between county pairs. Various distance measures, denoted D*, including
log miles between county centroids and indicator variables for being in
the same discrete geographic areas, form a flexible distance function.
The model is run using daily data on the pre-pandemic period (January
20, to February 23, 2020), and we also include day-of-week (“dow™)

Table A4
Summary Statistics of Device Exposure Index.
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effects to adjust for correlation between county pairs and commuting
patterns.

In(;) = Y 8Dk + Y 740, DOW (1) + €, ()
k dow

Table A3 reports the coefficients §,,7,,,. These reflect the spatial
patterns suggested by Table A2: visit probability is strongly declining in
distance, with discrete jumps (on average) for counties within the same
delineated geographic boundaries of metro areas, states, and census re-
gions.

The projection of the pairwise visit rate from this regression forms
our instrument for expected case exposure detailed in Section 5.

A3. Measuring local activity from smartphones

In addition to the out-of-county mobility index measuring travel be-
havior, CDHGW use the same underlying smartphone location data to
construct a measure of within-county device activity. The device ex-
posure index, or the “DEX,” measures for a smartphone residing in
a given county, how many distinct devices also visited any of the
commercial venues that the device visited on a given day. We use
their county-level average DEX with adjustment for active devices (see
Couture et al. (2021) for details). Table A4 presents summary stats in
the pre-pandemic period for counties by size of commuting zone (CZ).
Larger counties tend to have higher device exposures.

Appendix B. Dynamics of the Mobility Indices

This appendix reports on the dynamics of mobility indices derived
from the smartphone data.

B1. Out-of-county mobility index

Figure B1, panel A plots the two main pieces of information pro-
vided in the smartphone data set, the number of active devices in a focal
county j on day t, d;,, and the count of out-of-county trip frequencies,
2izj Oiji- To emphasize the changes over time, each of these is indexed
within county so that the period of January 20, to February 23, (the first
five weeks of data) averages to 100, and the graph plots the median in-
dex value.

The blue solid line depicts the number of devices registering. The
more spatially active a device is within or between counties, the more
likely it is to request GPS coordinates and register its location, and there-
fore the count of devices in the data forms a sort of mobility metric. (An
inactive device is not taking trips out of the county.) This index has a
clear downward cycle, falling about 30 percent from normal times to
the trough in mid-April and recovering somewhat by the end of May to
about a 15 percent reduction from normal times.

The red dashed line depicts the other key component of mobility,
the count of out-of-county location registrations for devices in a given
focal county. (Note that this is the sum of the binary event probabilities.)
This metric also shows a clear downward cycle, falling 40 percent to the
trough in mid April and recovering to only about 5-10 percent down by
the end of May.

County Type Counties NT Mean SD P10 P50 po0

Large CZ: Central Counties 383 13,405 181.2 132.8 73.6 147.9 310.5
Large CZ: Outlying Counties 150 5250 127.0 77.6 52.7 110.9 216.5
Small CZ 1485 51,975 105.1 73.1 42.3 87.5 184.5

NOTES: The table reports summary statistics of the local device exposure index for counties by
commuting zone (CZ) size; large and small CZs are respectively above and below a population
of one million residents. The device exposure index is the average over active devices of the
number of other devices present in a point of interest. Source: Couture et al. (2021).
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A. Component Indices
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B. Composite Index
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Fig. B1. Mobility Indices. NOTES: The figures present the median index value taken across counties in the 2018 national sample. Panel A displays the median of the
two subcomponents of device mobility, the count of active devices and the sum of out-of-county pings (“visit rate”). Panel B reports the composite index, the active

device-weighted visit rate. Source: Authors’ calculations using Couture et al. (2021).
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Fig. B2. Mobility Index Distribution Over Time. NOTES: The figure displays
the time series of the 10th, 50th, and 90th percentile of the composite mobility
index. Statistics are unweighted, taken across all 2018 counties in the national
sample. Source: Author’s calculations using Couture et al. (2021).

Panel B depicts a composite of the two mobility indices from panel
A as in Eq. (1) in the main text: my, = dj, 3;; 0;;;- We then index this

. . ~ m; R
composite series as i, = -2, where ni;, is the mean of the county’s
T hig JjO

index in the pre-pandemic period. Under this metric, mobility fell by
half from February to mid-April, recovering by late May to about 20
percent below normal.

Figure B2 plots the 90th and 10th percentiles in addition to the me-
dian, showing the entire distribution of mobility indices moved to the
left, though there is some heterogeneity in the magnitude of declines.
Some counties showed mobility declines greater than 60 percent while
others declined less than 40 percent.

B2. Within-county mobility index

Figure B3 plots the median, 90th and 10th percentiles of the 7-day
moving average of the county-level DEX during the study period. The
mobility dynamics are quite similar to the measures of out-of-county
travel. As cases grew rapidly in the early phase, more people stayed
home, or at least, avoided crowded points of interest, and the DEX de-
clined about 60 percent from its pre-pandemic average to the trough in
mid-April.
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Fig. B3. Device Exposure Index Distribution Over Time. NOTES: The figure dis-
plays the 7-day moving average time series of the 10th, 50th, and 90th per-
centile of the composite mobility index. Statistics are unweighted, taken across
all 2018 counties in the national sample. Source: Author’s calculations using
Couture et al. (2021).

Appendix C. Mobility and Local Case Counts

The national series mask a fair amount of regional heterogeneity.
States varied in the timing and intensity of their travel restrictions, and
case diagnoses varied substantially across the U.S. Did the mobility of
households in more affected areas respond more strongly?

To address this question, we leverage the spatial variation in the
mobility index and case counts by county in addition to state-level re-
strictions on mobility in the following model:

B = Beimizie + B I(RY) + ;. @)
q

The left-hand side is the indexed mobility rate, c;,_,5., denotes new case
diagnoses in the home county in the preceding two weeks,? and the R "
terms denote type g government restrictions of on activity. These take

the form of indicator variables, I(), for whether the restriction is in place
at time ¢.

29 We have checked that these results hold for cumulative cases, cases per capita, new
cases per capita, and deaths.
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Table C1
Mobility Index: The Effect of State Restrictions and Observed Cases.
1 2 3 4 5 6
Case Activity (2 wk lag)
Log Case Growth, County —8.550 -3.473 -3.340
(2.213)  (0.454)  (0.438)
Log Cases Per Capita, County -6.721 -5.721
(1.675) (1.244)
Log Cases Per Capita, State -3.455
(1.229)
Log Cases Per Capita, Division -0.783
(0.967)
Closure Orders in County:
Nonessential Services -1.995 -2.993 -2.609 -2.167
(0.901) (1.014) (1.024) (0.963)
Stay Home -2.430 -3.587 -3.505 -3.093
(0.975)  (0.922) (0.935)  (0.975)
Constant 93.908 88.622 89.751 86.890 87.555 88.031
(5.355)  (0.495)  (0.670)  (0.293)  (0.343)  (0.332)
Time Effects y y y y y
R? 0.397 0.829 0.831 0.806 0.8098 0.8107
NT 18,153 18,153 18,153 18,153 18153 18153

NOTES: The outcome variable is the county-level index of mobility as defined in Eq. (1), and
indexed by the pre-pandemic average for each county. Units are percentage points. Standard
errors are clustered by county and time of observation. Each regression contains 2018 coun-
ties and 9 weeks for a total of 18,153 observations. Source: Authors’ calculations using data

retrieved as described in Section 2.

The gravity regression in Section 3 measures more precisely the ef-
fect of two-sided case prevalence on trip rates between county pairs,
but this simple regression provides a more descriptive, atheoretical ap-
proach to compare the travel activity in hard-hit (or heavily regulated)
counties to others. Our main objective for this analysis is simply to mea-
sure covariances in the data to explore whether cases and shutdown or-
ders independently correspond to changes in mobility. We do not intend
to make causal claims here, although most forms of endogenous threats
seem to work against detecting an effect: Most studies find mobility of
various forms to cause cases, and we find cases to reduce mobility, the
opposite of what reverse causality or simultaneity would suggest.

Table C1 reports coefficients from this regression of county-level mo-
bility rates on local cases and restrictions. We use a biweekly frequency
to correspond to the lookback period in the data and avoid overlapping
observations, although this limits somewhat the power of the regression
to detect the effect of cases (which can vary week to week). We have
found similar results using higher frequency data.

Column 1 is the univariate effect of log new cases. A 100 log point
increase in local cases corresponds to an 8.55 percentage point drop in
the mobility index.>* However, some of this mobility drop was common
across the U.S. as the country reacted to widespread news of the virus.
Column 2 adds week of observation fixed effects to isolate the effect of
local cases. The marginal effect drops by three-fifths to 3.47 percentage
points per 100 log points of new cases, a smaller but still economically
meaningful effect. (For some context, the average county saw about a
300 log point rise in new cases in April-and some as large as 1000 log
points).

Around the same time cases were growing, state and local govern-
ments enacted restrictions designed to limit mobility of residents and
suppress the spread of the virus. In column 3, we include indicator
variables for the presence of the two most common of these measures,
closure of nonessential businesses and stay-at-home orders, in order to
measure their effects on cross-county activity.®! Each independently de-
pressed activity to a significant degree, although their inclusion scarcely

30 Recall that each county has been indexed to a pre-period average of 100 so that av-
erage level differences in mobility between counties will not affect the covariances we
estimate.

31 Many of these restrictions were designed to limit within-county activity as much as
between county activity, which we do not study in this paper. These effects may show
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affects the estimate of local cases, suggesting people were still reacting
to public information about the virus. In column 4, we remove the lo-
cal new case variable to make the comparison. Failure to include public
information about local cases causes a larger estimate of the marginal
effect of government activity restrictions.

Many of the worst outbreaks were in large counties in major metro
areas, so the regression may be picking up the drop in mobility from
these hard-hit large areas. Column 5 scales the variable of interest, using
new case per capita, and the results hold. Scaling by population also
sets up a way to compare across geographic areas. In column 6, we
simultaneously include new cases in the local county, the state, and the
larger region (census division). The results show significant effects at
each spatial scale, but attenuating with distance, suggesting people are
attuned to general conditions but most responsive to outbreaks in their
local areas.

Appendix D. Cases predict the decline in mobility

The next exercise is meant to show whether the effect of cases on trip
rates that we estimate in the gravity regression of Eq. (2) can predict the
aggregate declines described in Sections 2, Appendix B, and Appendix C.

Figure D1 plots the median mobility index from predicted values
from the regression of Eq. (2) (column 3 from Table 1) alongside the
actual mobility index from Figs. 1, B1, and B2. There are two versions
of the projection: one with the time dummies factored in and one with
them excluded so that the projection relies only on case counts.®? In
either version, the projection does a remarkably good job of predicting
the fall in mobility, indicating that case avoidance was critically impor-
tant in explaining the drop in spatial activity. The version without time
dummies fails to predict two blips in activity—just before the emergency
declaration and the depths of the trough in mid-April-but more notably,
it fails to predict the rise in mobility in mid to late May, as cases were
still fairly prevalent. These turning points in the pandemic seem to de-
viate somewhat from the average pattern during the escalation phase of
case growth in late March and April 2020. A version of the projection

up in our measures to the extent that they depressed the number of active devices in a
county, d,.

32 The time dummies are used in the regression in both cases. The difference is whether
the time dummy coefficients are included in the projection.
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Fig. D1. Actual and Projected Median Mobility Index Over Time. NOTES: The
figure displays the median composite mobility index against the median mobil-
ity index as projected by the coefficients from the Table 1, column 3 estimate of
(2). One projection uses the time dummies in its forecasted values, and the other
uses the coefficient estimates from the same model but omits the time dummies.
Source: Authors’ calculations using data retrieved as described in Section 2.

using the stay-at-home orders produces similar results and only slightly
better predicts the recovery in activity in May, as some restrictions were
relaxed.

Table E1
Summary of Case Exposure.

Journal of Urban Economics 127 (2022) 103384
Appendix E. Measuring Case Exposure

This appendix provides greater detail about nonlocal (out-of-county)
case exposure as defined in Eq. (3).

E1. Summary and analysis of case exposure

Table E1 presents summary statistics of this exposure measure for the
counties in our mobility sample at each checkpoint as the case summary
in Table Al. This measure averages values in the hundreds, and like the
cases themselves, is highly skewed to the right tail. Exposure rose over
time even as mobility fell because cases became more widespread.

Exposure measured in this way could be high for a given county be-
cause of some combination of (i) high frequency of travel and (ii) travel
to high caseload areas. In Table E2, we present some decompositions
to illustrate the source of higher exposures. The general pattern is that
more exposed counties tend to have greater contact with extremely high
caseload areas and not necessarily higher levels of overall mobility.

The upper panel of Table E2 shows statistics for the whole sample
and for a split between the 50 highest exposure areas and the lesser
exposed areas. The highest exposure areas actually had relatively less
total mobility on average, making outside county trips at a rate of 287
percent compared to 317 percent for lesser exposed counties. (Recall
that the mobility measure is a sum of binary event probabilities and can
therefore sum to more than 100.)

The differences appear when splitting by destination. Columns 4, 5,
6 and 7 show statistics for contact with destinations among the highest
two percent of cases per capita in the U.S. The highest exposure areas
visited these drastically more often than the typical county, encounter-

Time Mean SD 25th 50th 75th 90th 99th

Last Week of March ~ 296.2 553.1 122.8 191.5  301.7 494.1 2,375.5
Last Week of April 798.3 937.2 321.1 506.8 897.2 1,554.2 5,316.3
Last Week of May 1,035.1 942.1 483.9 751.2  1,258.7 2,030.4 4,811.1

NOTES: The table reports summary statistics of exposure to nonlocal cases as defined in
Eq. (3) for each listed point in time. Source: Authors’ calculations using data retrieved as

described in Section 2.

Table E2
Sources of Case Exposure.

Panel A: Highly and Lesser Exposed Counties

1 2 3 4 5 6 7 8 9 10 11
Destinations in Top 2 Pct. Of Cases Top 50 Destinations
Counties, N Average Total Cases Per Visits Visit Exposure Exposure Visits Visit Exposure Exposure
Exposure  Visits 1k Residents  To Share In Share To Share In Share
All, 2018 464.0 3.16 0.58 0.14 0.05 216.6 0.53 2.30 0.73 293.6 0.67
Lesser Exposed, 1968 451.6 3.17 0.56 0.14 0.04 209.7 0.52 2.31 0.73 285.9 0.67
Top 50 Most Exposed, 50 4,448.5 2.87 7.54 1.60 0.58 4,289.2 0.96 2.26 0.81 4,357.7 0.98
Panel B: Selected Cities
1 2 3 4 5 6 7 8 9 10 11
Destinations in Top 2 Pct. Of Cases New York Metro
Location, N Counties Average Total Cases Per Visits Visit Exposure Exposure Visits Visit Exposure Exposure
Exposure  Visits 1k Residents  To Share In Share To Share In Share
Philadelphia, 11 2,456.2 3.04 3.48 1.21 0.41 1,901.1 0.77 0.26 0.09 518.6 0.20
Pittsburgh, 7 453.8 2.61 0.88 0.12 0.05 218.0 0.48 0.03 0.01 92.9 0.20
Chicago, 13 4,052.6 3.19 1.85 0.63 0.22 3,512.2 0.82 0.02 0.01 43.2 0.01
Miami, 3 959.4 1.42 2.50 0.70 0.49 917.3 0.95 0.05 0.04 25.5 0.03
Houston, 10 1,761.5 2.84 0.76 0.72 0.27 1,562.2 0.83 0.01 0.00 13.6 0.01
Los Angeles, 2 1,406.3 1.10 1.10 0.49 0.42 1,263.4 0.69 0.01 0.01 8.1 0.02
San Francisco, 5 410.0 2.19 0.97 0.15 0.07 104.6 0.26 0.02 0.01 135 0.03

NOTES: The table reports summary statistics of the visit rates, cases per capita, and exposure to nonlocal cases as defined in Eq. (3) for each listed point in time.

Source: Authors’ calculations using data retrieved as described in Section 2.
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Fig. E1. Actual Exposure Compared With “Business As Usual” Exposure.
NOTES: The figure plots the median exposure index across the sample of coun-
ties in the smartphone data. The unit of measure is number of cases per unit of
mobility in the pre-pandemic period; its scale is comparable across counties.

ing a high case area at a trip rate of 160 percent (or 58 percent share
of all out-of-county visits) versus 14 percent (4 percent share) for lesser
exposed counties. These high case areas comprise nearly all of a highly
exposed county’s exposures (and still a significant fraction of the lesser
exposed places too).

As a benchmark, columns 8 to 11 show the travel to the counties’ top
50 most visited destinations. The more exposed counties did not travel
to their usual partners at any higher frequency than the lesser exposed,
but they accumulated much more exposure because these partners had
larger outbreaks. Thus, exposure is largely a function of outbreak size
in a county’s usual network.

To illustrate these patterns, the bottom panel of the table shows
statistics for selected metro areas from various regions of the country
and with differing levels of outbreaks. In this panel, we replace the “top
50 destinations” with a particularly hard-hit region, the New York metro
area.

The cities of Philadelphia and Pittsburgh provide a telling exam-
ple because, among several other similarities, they were both under
the guidance of the same state government, Pennsylvania. Philadel-
phia, however, had much greater exposure to high caseload areas in
the Northeast corridor, including a relatively high contact rate with the
New York metro area. Hence, its case exposure level was far greater than
Pittsburgh, and its size of outbreak far greater as well.

E2. Dynamics of exposure

Next we examine the importance of changes in travel behavior on
exposure. To do so, we compare actual exposure to counterfactual ex-
posure measures that assume travel behavior did not change despite the
increase in cases.

Figure E1 plots the median actual exposure, measured in counts of
cases, and the median exposure that would have obtained had each
county continued with business as usual. (To obtain these series, each
county’s exposure was scaled by its pre-pandemic mobility in order to
allow cross-sectional comparisons.) Clearly, the pullback in mobility sig-
nificantly altered the degree of outside exposure to virus cases: The me-
dian county would have been exposed to twice as many cases if travel
behavior had not adjusted.

In Table 2 in the main text, we decompose the differences in exposure
to understand the importance of declines in overall travel activity versus
the avoidance of highly affected locations.
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Appendix F. New Cases and Exposure

This appendix section provides additional robustness checks for the
new cases model reported in Section 5, Table 3.

First, Table F1 presents robustness checks that focus on the spatial
nature of the outbreaks. Table 3 found that higher out-of-county case
exposure lead to higher levels of new cases added locally. However,
there was regional heterogeneity in the severity of the outbreak and
a predictable geographic component to the observed travel network,
and thus an alternative explanation to the effect of exposure is spatial
correlation in travel and case outcomes. In other words, the exposure
measure could be simply picking up overlap in the regional components
of each variable.

Table 3, column 3, addressed this question by comparing exposure
obtained nearby and farther away counties, finding a significant role for
each source of exposure. Column 1 of Table F1 provides another version
of this check, splitting exposure into in-state and out-of-state in order to
correspond the level of governance at which most emergency policy was
handed down. We find results consistent with those in Table 3.

As another way to address the issue of spatial correlation, in columns
2 to 5, we add to the OLS specification increasingly fine nonparametric
controls, interacting the week of observation with geographic areas from
region to commuting zone. To some extent, this reduces variation we ac-
tually want to capture-that Pennsylvania, for example, is more exposed
to the New York metro area than, say, North Carolina. Hence, unsur-
prisingly, the coefficients shrink as the spatial-temporal nonparametric
controls shrink narrower. Even so, we find statistically and economi-
cally significant effects of exposure. Column 5 uses the finest controls of
commuting zone by week,>* and the effect is mechanically smaller, but
still significant. While the controls soak up too much relevant variation
to be our preferred model, these specifications indicate that variation
in exposure even at the most local level is meaningfully predictive of
future new cases added.

Our baseline exposure measure followed the timing of the mobil-
ity data construction, weighting trips out from the focal county by the
cases encountered in the visited county. In columns 6 and 7 we experi-
ment with a reverse method of measuring exposure, the “exposure in” in-
dex. This flips from our baseline, weighting visits by cases in the visited
county and applying to the focal county (A — B), to instead weighting
visits by cases from the focal counties into the visited counties (B — A).
Our preferred measure follows the time structure of the data (devices
today observed in visited counties 1 to 13 days prior), but as we de-
scribed in Section 2, the mobility data has no definitive notion of the
direction of a trip, so these measures turn out to be highly correlated,
and the results look similar to the exposure out metric we use in the
baseline. They are not perfectly correlated, however, due to the timing
difference, and when entered simultaneously, both show effect on new
cases added.

Table F2 presents robustness checks for the new cases model featured
in Table 3 that focus on the instrumental variable specifications and the
mobility alone index. Column 1 presents an alternative instrument for
exposure, a projected exposure using realized pre-pandemic mobility
weights. The coefficient arrives between the OLS and our preferred IV
estimates (columns 1 and 5 in Table 3), suggesting it reduces but does
not eliminate the omitted variable bias present in the OLS specifications.

Columns 2 to 5 examine the mobility index separately from the ex-
posure measure. Columns 2, 3 and 4 use an instrument for mobility
derived from weather conditions, a predicted mobility from a regres-
sion model of total travel activity based on focal county weather and
a travel-weighted measure of visit county weather.>* Column 2 enters

33 Because our level of observation is county by week, we assemble small commuting
zones of one or two counties into state-level units.

34 This exercise was inspired by Wilson (2020). We have experimented with several
weather-based models and arrived at similar results with all of them. The observation
count falls because some counties lack weather observations.
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Table F1
Case Exposure and New Cases: Robustness to Spatial Definitions .
1 2 3 4 5 6 7
Model OLS OLS FE OLS FE OLS FE OLS FE OLS OLS
Case Expo.: Visits Out 0.099 0.107 0.088 0.042 0.083
(0.024) (0.027) (0.025) (0.018) (0.045)
Case Expo.: Visits In 0.098 0.026
(0.023) (0.022)
Case Expo: Same State 0.075
(0.018)
Case Expo.: Other States 0.041
(0.011)
Lagged Local Case Growth 0.740 0.746 0.744 0.714 0.677 0.745 0.744
(0.024) (0.028) (0.029) (0.032) (0.038) (0.029) (0.029)
Within-County Device Expo. 0.123 0.143 0.142 0.190 0.203 0.118 0.118
(0.050) (0.058) (0.062) (0.056) (0.048) (0.048) (0.047)
Population 0.172 0.188 0.190 0.246 0.321 0.173 0.159
(0.043) (0.035) (0.034) (0.036) (0.045) (0.039) (0.035)
Pop. Density 0.040 0.033 0.029 0.025 0.021 0.048 0.047
(0.011) (0.011) (0.012) (0.013) (0.013) (0.011) (0.011)
Constant -1.674 -1.677 —-1.802 -1.779 -1.473 -1.565 -1.645
(0.289) (0.361) (0.357) (0.337) (0.292) (0.358) (0.401)
Level(s) Week Region Division  State X CzZX Week Week
Number 12 48 108 600 4427 12 12
R 0.861 0.863 0.865 0.863 0.865 0.861 0.861
NT 24,038 24,038 24,038 24,038 24,038 24,038 24,038

NOTES: The table reports regression results of the model represented by Eq. (4). The outcome variable

is the natural log of one plus the number of new cases in the county. The observation level is county
by week. Standard errors are double clustered by state and week. Source: Authors’ calculations using

data retrieved as described in Section 2.

Table F2

Case Exposure and New Case: IV Specifications for Mobility .

1 2 3 4 5
Model v v v v v
Case Exposure 0.142 0.286 0.382 0.165
(0.032) (0.040)  (0.040)  (0.076)
Mobility Index —-0.008 -0.023 —-0.028  0.011
(0.005)  (0.006)  (0.005)  (0.015)
Lagged Local Case Growth 0.740 0.720 0.648 0.624 0.759
(0.030)  (0.027)  (0.036)  (0.036)  (0.040)
Within-County Device Expo. 0.112 0.289 0.465 0.524 —-0.043
(0.048) (0.095) (0.106) (0.106) (0.194)
Population 0.129 0.297 0.108 0.044 0.094
(0.036) (0.059)  (0.051)  (0.053)  (0.069)
Pop. Density 0.043 0.073 0.022 0.005 0.045
(0.009)  (0.011)  (0.021)  (0.025)  (0.011)
Fixed Effects
Level(s) Week Week Week Week Week
Number 12 12 12 12 12
Instrumented:
Exposure y y y
Mobility y y y y
Instruments:
Projected Exposure (Pre-period) y
Projected Exposure (Model) y y
Weather Conditions y y y
Shutdown Orders y
R? 0.805 0.806 0.802 0.794 0.793
NT 24,038 18,205 18,205 18,205 24,038

NOTES: The table reports regression results of the model represented by Eq. (4). The
outcome variable is the log number of new cases in the county. The observation level
is county by week. Standard errors are double clustered by state and week. Source:
Authors’ calculations using data retrieved as described in Section 2.

the mobility index alone to compare with column 2 of Table 3. The co-
efficient is again negative, suggesting the issue is reverse causality and
not its being conditionally negative only when exposure is included, and
the weather-based instruments do not affect this result. Neither does the
instrument affect the result when exposure is included again in column
3. Column 4 instruments for exposure with predicted exposure and for

mobility with weather, and the results are much the same. Finally, col-
umn 5 uses shutdown orders as instrument for mobility. These cause the
mobility coefficient to turn positive, but it is small and not statistically
different from zero. We note that shutdown orders-enacted when cases
were rising and deemed a threat-probably fail the exclusion restriction.
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Table F3
Case Exposure and New Cases: Robustness to Func-
tional Form .

1 2 3 4
@ : 1 2 2

@ =1

[mean]  [8.331] [10.86] [14.07]  [17.63]
Coef. 0.125 0.145 0.124 0.101
(s&) (0.032)  (0.032)  (0.023)  (0.018)
R 0.859 0.860 0.860 0.860
a =1

[mean]  [10.11] [12.48] [15.50]  [18.93]
Coef. 0.103 0.111 0.097 0.083
(s€) (0.033)  (0.028)  (0.021)  (0.017)
R 0.860 0.861 0.861 0.861
@ =3

[mean] [12.76] [14.87]1 [17.54]  [20.68]
Coef. 0.059 0.068 0.066 0.060
(s€) (0.019)  (0.019)  (0.016)  (0.013)
R? 0.860 0.861 0.861 0.861
a =

[mean]  [15.84] [17.75] [20.12]  [22.91]
Coef. 0.037 0.044 0.046 0.044
(se&) (0.012)  (0.012)  (0.012)  (0.010)
R? 0.859 0.860 0.860 0.861

NOTES: The table reports robustness results for the
model represented by Eq. (4). The outcome variable
is the log number of new cases in the county. The
observation level is county by week. The table runs
through different calibrations for the exponents in
the exposure measure, Eq. (3), as indicated by col-
umn and row of the table. The means of the expo-
sure metric are reported in each specification block
in brackets. The boxed specification is the preferred
model in Table 3. Source: Authors’ calculations using
data retrieved as described in Section 2.

Table F3 reports robustness checks on the functional form of the
exposure-to-new cases model in Table 3. We alter the baseline exposure
measure of (3), using

= Ym

i#j

&0
ijt"ie -

Varying the exponents «; and «, changes the degree of variance at-
tributed to differences in mobility vis-a-vis contact with out-of-county
cases. Our baseline set a; = a, = 1. In F3, we use permutations of the ex-
ponents in increments of 1/2 up to 2. The baseline regression, appearing
in Table 3, is highlighted by a box in column 2.

Coefficients decline mechanically as the mean of the index increases,
but otherwise results are similar across specifications. The baseline
model with unitary weights on the mobility components provides a
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slightly better fit. Over-weighting the mobility component relative to
the case count component depresses coefficients, likely because what
matters for variance in exposure is contact with high caseload areas
(see Table E2).

Appendix G. Alternative Calibrations of Spatial Autoregressive
Model

Figure G1 displays some alternative calibrations of the model in
Section 6. We emphasize that we intend the model to be an illustrative
proof of concept and not a quantitative model. But in demonstrating the
concept, it is useful to know how the size of the results is sensitive to
the underlying parameters. For brevity, the figure reports only the time
path of new cases. Plots within Fig. G1 are on the same scale to facilitate
comparison, although the vertical axes are increased slightly relative to
Fig. 2) to accommodate larger values.

Panel A illustrates the impact of the exposure transmission rate, the
rate at which nonlocal exposure converts to local new cases. There are
low and high scenarios: low transmission of 0.11 (from column 1 of
Table 3), and high transmission of 0.21 (from column 5 of Table 3).
We use the higher transmission rate in our baseline because it derives
from our preferred instrumental variable specification. In panel A1, the
model assumes mobility is unresponsive to cases (i.e., Eq. (5c¢) is set to
0), while A2 allows mobility to be reduced by the observation of cases.
The magnitude of the transmission rate is consequential in determining
the size of the steady level of new cases, especially when mobility is
not responding to cases (and hence exposure is higher). An increase
from 0.11 to 0.21 transmission rate leads new cases to be 70 percent
higher when mobility does not react to cases and 23 percent higher
when mobility does respond.

Panel B illustrates the impact of the baseline mobility rate, the de-
gree of connectedness between locations. There are low and high sce-
narios: low mobility of a 7.5 percent visit rate, the calibration featured
in Section 6, representative of two highly connected but spatially dis-
tinct economic areas (e.g., New York and Philadelphia metro areas), and
high mobility of a 10 percent visit rate, typical of same-commuting zone
counties. In the high mobility calibrations, the distant county visit rate
is also increased by one third from 0.55 percent to 0.72 percent. In panel
B1, the model assumes mobility is unresponsive to cases, while B2 al-
lows mobility to be reduced by the observation of cases. The magnitude
of the mobility rate is greatly important in determining the size of the
steady level of new cases, especially when mobility is not responding to
cases. An increase in the baseline mobility of just one third leads new
cases to double when mobility does not react to cases. When mobility
does respond, the increase in baseline mobility causes cases to rise 32
percent.
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Fig. G1. Simulated Viral Spread Across Loca-
tions Under Alternative Calibrations. NOTES:
The figures report the time path of new
cases from the dynamic system represented by
Egs. (5a), (5b), and (5c¢). Figures are labeled
with the county location. The ‘1’ panels ignore
mobility response to cases, while the ‘2’ pan-
els uses the change in mobility from Table 1. In
Panel A, each figure has a line from each of two
scenarios quantifying transmission rate from
nonlocal exposure as measured by Table 3:
- Al. Low transmission, column 1, nonlocal
. ® 9 transmission rate of 0.11, local transmission of
0.74; - A2. High transmission, column 2, nonlo-
cal transmission rate of 0.21, local transmission
of 0.73 (used in Fig. 2).
In Panel B, each figure has a line from each
of two scenarios specifying the initial mobil-
ity rate: - B1. Low Connectedness of 7.5% visit
rate between connected and 0.55% visit rate
between distant locations (used in Fig. 2); - B2.
High Connectedness of 10% visit rate between
connected and 0.72% visit rate between distant
locations; Source: Authors’ calculations using
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