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a b s t r a c t 

We use U.S. county-level location data derived from smartphones to examine travel behavior and its relationship 

with COVID-19 cases in the early stages of the outbreak. People traveled less overall and notably avoided areas 

with relatively larger outbreaks. A doubling of new cases in a county led to a 3 to 4 percent decrease in trips to and 

from that county. Without this change in travel activity, exposure to out-of-county virus cases could have been 

twice as high at the end of April 2020. Limiting travel-induced exposure was important because such exposure 

generated new cases locally. We find a one percent increase in case exposure from travel led to a 0.21 percent 

increase in new cases added within a county. This suggests the outbreak would have spread faster and to a greater 

degree had travel activity not dropped accordingly. Our findings imply that the scale and geographic network 

of travel activity and the travel response of individuals are important for understanding the spread of COVID-19 

and for policies that seek to control it. 

1

 

d  

s  

r  

b  

b  

v  

h  

l  

t

 

U  

i  

o  

p  

C

 

n  

c  

t  

e  

e  

T  

i  

a  

i  

g

 

c  

fl  

t  

w  

c  

r  

t

 

p  

i  

eserve Bank of Philadelphia, the Board of Governors, or the Federal Reserve System. We 

t acknowledge Victor Couture, Jonathan Dingel, Allison Green, Jessie Handbury, and 

K his paper is based and for commenting on earlier versions of the manuscript. 

m@phil.frb.org (K. Mangum). 

data provided by PlaceIQ and generously made publicly available at https://github. 

c

h

R

A

0

. Introduction 

In the early stages of the COVID-19 outbreak, people drastically re-

uced their travel. Governments enacted numerous policies including

tay-at-home orders, business closures, and limits on mass gatherings to

educe exposure and slow the spread of the virus. The change in travel

ehavior may reflect the implementation of these policies but also may

e attributed to people responding to information about the number of

irus cases in their proximity. How did people reduce their travel be-

avior during the onset of the outbreak? Did they avoid places with

arger outbreaks? And how did this response affect exposure and slow

he spread of the disease? 

In this paper, we use data on the movement of smartphones between

.S. counties to study the change in travel behavior and virus exposure

n the early stages of the outbreak. The data provide daily measures

f the network of bilateral travel flows between counties. 1 Aggregate

atterns in the data confirm that travel between counties declined as

OVID-19 cases rose. 

People not only traveled less, they avoided locations that had higher

umbers of cases. Using gravity regressions of bilateral travel flows on

☆ The views expressed here are solely those of the authors and not of the Federal R
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evin Williams (cited below) for making publicly available the data on which t
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ase counts, we show that flows between locations declined in response

o increased cases in both the origin and destination. During a period of

xplosive growth in cases, the results suggest that a doubling of cases in

ither end of a trip led to roughly a 3.5 percent decline in travel flows.

his result holds even when controlling for government orders, suggest-

ng that people adjusted travel behavior based on available information

bout the geography of the outbreak. A policy implication of this result

s the importance of providing timely, accurate information about the

eography of an outbreak. 

Changes in mobility had large effects on overall virus exposure. We

onstruct a measure of nonlocal (out-of-county) exposure as a sum of

ows between counties weighted by the number of confirmed cases in

he counties visited. In counterfactual experiments, we find exposure

ould have been twice as high at the end of April 2020 had people not

hanged their travel behavior. Furthermore, a decomposition shows that

oughly one third of the difference in exposure came from changes in

he travel network, as opposed to overall declines in travel. 

The reduction in out-of-county exposure matters because such ex-

osure led to increases in new COVID-19 cases. Under our preferred

nstrumental variable method, we find that a 1 percent increase in the

https://doi.org/10.1016/j.jue.2021.103384
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jue
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jue.2021.103384&domain=pdf
mailto:Jeffrey.Brinkman@phil.frb.org
mailto:Kyle.Mangum@phil.frb.org
https://github.com/COVIDExposureIndices
https://doi.org/10.1016/j.jue.2021.103384
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3 These data were collected by the Institute for Health Metrics and Evaluation at the 

University of Washington. They were downloaded from https://covid19.healthdata.org/ 
4 CDGHW continue to update the data, but we chose to focus our analysis on the initial 

phase of the U.S. outbreak. 
5 According to CDGHW, a spatially inactive device is less likely to register its location 

and appear in the data–and active devices fell substantially as the pandemic took hold–but 

they caution against strict quantitative interpretation of active device counts. Clearly the 

variation is relevant for our study of travel across counties. 
6 
xposure measure led to a 0.21 percent increase in new cases. Therefore,

hanges in travel patterns likely had significant benefits in reducing the

pread of the disease by decreasing exposure. 

Finally, we provide a simple model of the spatial dynamics of an

utbreak. The model is used to illustrate the importance of the connect-

dness of locations and the mobility response of individuals to the ge-

graphic spread of new cases. The important takeaway from the model

s that travel can both speed the spread in the short run and amplify

he outbreak over the longer run, while a mobility response mitigates

oth of these effects. The model does not include important features of

n epidemiological model such as recovery rates, deaths, or immunity.

owever, it demonstrates the concept of how reductions in mobility re-

uce aggregate infections. 

Our findings on travel complement other recent research on de-

lines in local activity during the outbreak. Gupta et al. (2020) find

hat government policies led to significant declines in mobility, while

ngle et al. (2020) find that policy as well as local case levels re-

uced mobility. There is also evidence that reductions in mobility

nd government policies mitigated the outbreak, including work by

hinazzi et al. (2020) , Courtemanche et al. (2020) , Fang et al. (2020) ,

enichel et al. (2020) , Glaeser et al. (2020) , Kraemer et al. (2020) , and

ilson (2020) . In addition Coven and Gupta (2020) show that migration

ut of urban areas drove the spread of the outbreak. In contrast to these

tudies, our research explicitly considers changes to the travel network

n addition to declines in mobility levels. We also construct a measure

f case exposure in addition to generic trip rates, which we find is an

mportant determinant of case growth. 

Other researchers have looked at the role of networks during

he pandemic following work by Christakis and Fowler (2010) and

ailey et al. (2018) . Kuchler et al. (2021) show that social networks

n New York and Lodi, Italy predict the spread of COVID-19, while

oven et al. (2020) perform a similar analysis for New York, but also

onsider differences in mobility among demographic groups. In contrast

o these papers, we consider how the observed travel network changed

n response to the outbreak, and how this affected the spread of the

isease. Monte (2020) also shows how the connectedness of counties

hrank during the pandemic, but does not explicitly study the effects on

xposure or case growth. 

Several papers have used quantitative urban and trade models

o study spatial health and economic outcomes during a pandemic.

ajgelbaum et al. (2020) examine optimal commuting restrictions

n an epidemiology and trade model calibrated to several cities.

iannone et al. (2020) use cross-state flow data to understand optimal

obility restrictions. Relative to these papers, we focus on empirical

dentification of mobility responses, exposure, and disease spread using

 geographically richer data set. 

Lastly, our research connects other work that seeks to inform policies

hat restrict mobility. For example, Atalay et al. (2020) and Dingel and

eiman (2020) study the ability of workers to work from home in dif-

erent occupations and industries. By providing insights into spatial dy-

amics, our work can also help inform current theoretical research that

eeks to understand the tradeoff between health and economic welfare,

ncluding work by Farboodi et al. (2020) , Guerrieri et al. (2020) , and

aplan et al. (2020) . 

. Declining travel at the onset of the pandemic 

We briefly introduce the data and describe the key features. More de-

ailed discussion and summary of the data are provided in Appendix A .

There are two main data sets used in our analysis. The first is the

ecord of COVID-19 daily case diagnoses by county as reported by Johns

opkins University. 2 
2 Johns Hopkins University Coronavirus Resource Center. Data were retrieved from 

ttps://coronavirus.jhu.edu/ . 

C

w

i

2 
We combine this with a listing of state-level activity restrictions in-

luding stay-at-home orders and closure of “nonessential ” businesses. 3 

The second data set is an anonymized summary of movement be-

ween counties derived from a microdata record of smartphone loca-

ions. The measure was constructed and generously made publicly avail-

ble by Couture et al. (2021) (hereafter, CDGHW) using data provided

y vendor PlaceIQ. The individual device locations are collected when

n application requests GPS location data. These “pings ” are aggregated

t the county level. The data set consists of a time-consistent list of 2018

ounties in the U.S covering 97 percent of the U.S. population. In our

nalysis, we use data from January 20, 2020 to May 25, 2020. 4 

Specifically, the data report: (i) the number of devices registering in

 county each day, and (ii) the fraction of those devices that registered

n each county (of the 2018) sometime in the preceding 14 days. The

roduct of (i) and (ii) is a measure of the number of trips between two

ounties. 5 

Trips are best viewed as indicators of connectedness. There is no

efinitive notion of origin or destination, and the reported statistic is

he probability of a binary event, not a transition from a starting place

o ending place. In correspondence with the timing in the data construc-

ion procedure, we refer to the current location as “focal ” county and

he previous location as the “visit ” county. The data construction also in-

uces a moving average quality that we will account for in the analyses

hat follow. 6 

These data depict travel between counties as opposed to within coun-

ies. 7 By studying this form of mobility, our focus is on trips that are

ore likely to create contact between regions, rather than those that

reate contacts between neighbors (such as visits to a store or restau-

ant). We will refer to this out-of-county travel from here on as “travel

ctivity ” or “mobility. ”

To set the stage for analysis, we first show the dynamics of travel

ctivity in the early phase of the pandemic. To construct a consolidated

easure of mobility ( 𝑚 ) for a county 𝑗 on date 𝑡 , we summarize the out-

f-county trips as the product of active devices in the county, 𝑑 𝑗𝑡 , and

rip probabilities between 𝑗 and other counties 𝑖 (within the lag window

f two weeks) as reported on day 𝑡 , 𝜎𝑖𝑗𝑡 : 

 𝑗𝑡 = 𝑑 𝑗𝑡 

∑

𝑖 ≠𝑗 

𝜎𝑖𝑗𝑡 . (1)

e then index the series as 𝑚̃ 𝑗𝑡 = 

𝑚 𝑗𝑡 

𝑚̄ 𝑗0 
, where 𝑚̄ 𝑗0 is the mean of the

ounty’s index in the pre-pandemic period (January 20, to February 23).

dditional details about the components of the index can be found in

ppendix B . 

Figure 1 overlays the median county daily mobility index with gov-

rnment orders, cumulative cases, and new cases. Panel A plots the in-

ex versus the share of counties under the mobility restrictions of bans

n mass gatherings, closures of “nonessential ” businesses, and stay-at-

ome orders. Panel B compares the index to log national cumulative

ases, and Panel C compare it to new cases added. A vertical line marks

he national emergency declaration on March 13. 

One notable feature is that the first drop in mobility occurred im-

ediately following the initial run-up in cases–and before mobility re-

trictions were enacted–as it became clear that the U.S. was experienc-
CDGHW chose the lag window of two weeks based on public health guidance of 

OVID-19 incubation time. 
7 We focus on CDGHW’s location exposure index ( “LEX ”), but CDGHW also publish a 

ithin-county measure of activity (the device exposure index, “DEX ”) that we use as an 

mportant control in our case growth analysis in Section 5 . 

https://coronavirus.jhu.edu/
https://covid19.healthdata.org/
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Fig. 1. National Mobility Index, Mobility Restriction, and Case Growth. 

NOTES: The figures plot the median composite mobility index against: the 

fraction of counties under government restrictions (A), the log of the national 

case count (B), and the number of new cases reported nationally in the preced- 

ing two weeks (C). In A, “Close NE Business ” means a mandated site closure 

of businesses deemed “nonessential. ” Sources: Couture et al. (2021) , all pan- 

els; healthdata.org (2020), panel A; Johns Hopkins University Coronavirus 

Resource Center (2020) , panels B and C. 

3 

http://www.healthdata.org
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ng community spread and not just isolated cases due to foreign travel.

rom March 1, to March 14, though no county was yet under stay-at-

ome order, mobility dropped by 20 percent as cases rose 500%. 

Travel activity continued its downward trend from that point into

pril as case counts continued an exponential rise and stay-at-home or-

ers and other mobility restrictions were more widely enacted. Mobility

eached a bottom in mid-April at 56 percentage points below its pre-

irus average but recovered as the level of new cases tapered in May.

hese patterns suggest that households may have been responding to

nformation about virus prevalence as well as formal emergency decla-

ations and restrictions. 8 

. The changing geography of travel activity 

Did travel activity drop in a uniform way, or were some locations

ffected more than others? We next exploit the full geographic structure

f the data to see which sets of visits changed to produce the decline in

obility. 

To study the geography of the change in activity, we use a gravity

egression of travel flows on local case counts. Specifically, we regress

ecorded visits between county pairs on the case counts on each side of

 trip. The model is 

𝑛 ( 𝑑 𝑗𝑡 𝜎𝑖𝑗𝑡 ) = 𝜔 𝑗 𝑙𝑛 (1 + 𝑛 𝑗,𝑡 −14∶ 𝑡 −1 ) + 𝜔 𝑖 𝑙𝑛 (1 + 𝑛 𝑖,𝑡 −14∶ 𝑡 −1 ) + 𝛽𝑗 𝐼( 𝑅 𝑗𝑡 ) 

+ 𝛽𝑖 𝐼( 𝑅 𝑖𝑡 ) + 𝜌𝑖𝑗 + 𝜌𝑡 + 𝜖𝑖𝑗𝑡 , (2) 

here 𝑑 𝑗𝑡 𝜎𝑖𝑗𝑡 is the number of visits (number of active devices observed

n focal county 𝑗 times the probability of a visit to county 𝑖 in the lag

indow before 𝑡 ), and 𝑛 𝑗,𝑡 −14∶ 𝑡 −1 , 𝑛 𝑖,𝑡 −14∶ 𝑡 −1 are new cases reported 9 in

he focal and visited counties, respectively, in the preceding two weeks

the travel window). 10 𝑅 𝑖𝑡 and 𝑅 𝑗𝑡 represent mobility restrictions (stay-

t-home orders) in the focal and visit counties, respectively. 

This model recovers, via parameters 𝜔 𝑗 and 𝜔 𝑖 , the observed relation-

hip between visits and cases in the locations on each side of a trip (the

ocal and visited place). This is to test whether the pullback in over-

ll mobility shown in the last section is associated with the locations’

everity of outbreak. 

The specifications include fixed effects for each dimension of the

anel: time ( 𝜌𝑡 ) and directed county pair ( 𝜌𝑖𝑗 ). 
11 Therefore, the iden-

ifying variation is within a given trip route over time, relative to the

ational average change in trips. The effect measured is how the visits

n a route change with case counts compared with the baseline period,

re-pandemic. Because of the moving-average nature of the visit rate

efinition, the daily data have a mechanical degree of serial correla-

ion. To reduce this but still account for the fast-moving dynamics of

he outbreaks, our main specifications use one observation per week

Wednesdays). Standard errors are clustered by county pair and time. 

Table 1 reports the results of the gravity regressions from Eq. (2) .

olumn 1 shows the coefficients on the two-week new case count in the

ocal and visit counties. Cases in the focal county reduce trips outside

he county ( 𝜔 𝑗 < 0 ). A doubling of new cases in the focal county (an

ncrease of about 69 log points) reduces recorded trips by 3.7 percent ( ≈
 . 69 × 0 . 054 ). New cases in the visit county also limit the visit probability

 𝜔 𝑖 < 0 ). That is, conditional on making a trip, devices are less likely to

isit counties with relatively higher infection rates. A doubling of new

ases in the visit county reduces trips by 3.5 percent ( ≈ 0 . 69 × 0 . 0498 ). 
8 We provide additional evidence in Appendix C using a panel of county-level data that 

hile mobility declined in response to government orders, there was also an independent 

nd quantitatively significant response to proximate virus cases. 
9 Throughout the paper, we focus on new case diagnoses reported within the travel 

indow, although we have found similar results when measuring total cases and deaths. 
10 The timing is such that the cases are being publicly reported within the travel win- 

ow, so they would be salient to travelers and and would produce exposure as defined in 

ection 4 . 
11 Pairs are “directed ” in that they are potentially asymmetric ( 𝜌𝑖𝑗 ≠ 𝜌𝑗𝑖 ). 
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4 
Column 2 adds controls for shut-down orders on either side of a trip.

he estimates show that stay-at-home orders reduced travel, but con-

itioning on case counts, the magnitude of these effects was relatively

mall. Stay-at-home orders in the focal county reduced trips by 1.5 per-

ent, and orders in the visit county reduced trips by 3 percent. Notably,

he inclusion of the shut-down orders does not change the marginal ef-

ects of new cases. 

The distribution of visit frequency is highly skewed and distance-

ependent, and perhaps not all trips were affected by cases in the same

ay. In column 3 we add an interaction of cases in the visit county with

re-pandemic visit probability to allow the case elasticity to depend on

he base rate. The negative coefficient indicates that visits declined more

in proportional terms) to places that were visited regularly (as opposed

o episodically) prior to cases arising. We add in column 4 an indicator

or whether the counties are neighbors, allowing the nearest places to be

ffected at different rates. The coefficient on neighbors is positive, and

he coefficient on the baseline visit rate interaction increases. Together,

hese results show that the trips declining the most were those to regu-

arly visited counties, but with some persistence in the most proximate

laces. 

Column 5 includes all controls together and the results are consistent

ith previous specifications. Finally, in column 6, we test the robustness

f the model to using biweekly observations instead of weekly to corre-

pond with the two-week lookback in the visit construction. We find the

esults very much consistent with the weekly data, even in the standard

rrors. 

A natural question is whether these estimated effects can be inter-

reted causally. Two potential threats to causal interpretation are omit-

ed variables and reverse causality. On omitted variables, a two-way

xed effects design accounts for a host of potential problems. In this de-

ign, we are comparing trip frequency within a focal-visit county pair

elative to the national average change for all pairs in a given week. Re-

ults are driven not by cross sectional differences in mobility rates but

y visits decreasing in proportionally greater amounts along routes with

elatively more cases on either side of the trip. Any remaining threat

ould have to be a local, time-varying omitted factor driving cases and

obility in opposite ways. Likely more relevant, given the evidence in

ection 2 , is the potential for reverse causality. The extant evidence is

hat more mobility leads to more cases, while here we find that more

ases lead to less mobility, suggesting our coefficients are if anything

iased downwards. 12 

In summary, the results indicate households were not only traveling

ess, they were avoiding places with more severe outbreaks. This sug-

ests that households were less exposed to virus cases than if they had

ontinued travel activity as in the days before the pandemic, a topic we

reat in more detail in the next section. 

. Case avoidance and the effect on exposure 

Travel between counties likely results in people coming in contact

ith outbreaks outside their local area. Are these encounters consequen-

ial for case growth? To examine this question, we begin by defining

onlocal case exposure and then consider how the pattern of case avoid-

nce shown above affected exposure and altered the trajectory of virus

pread. 

To summarize the case contacts a county is incurring via out-of-

ounty travel, we construct a measure of nonlocal case exposure as 

 𝑗𝑡 = 

∑

𝑖 ≠𝑗 

𝑚 𝑖𝑗𝑡 𝑛 𝑖𝑡 , (3)

here 𝑛 𝑖𝑡 represents new cases in the visit county at time 𝑡 , and 𝑚 𝑖𝑗𝑡 =
𝑖𝑗𝑡 𝑑 𝑗𝑡 is a pairwise mobility measure as in Eq. (1) . The index is a sum-

ary of contacts with cases encountered outside the focal county: a
12 Even under this caveat, we show in Appendix D that case-induced mobility changes 

an explain the dynamics of mobility over our study period. 
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Fig. 2. Simulated Viral Spread Across Loca- 

tions. NOTES: The figures report the time path 

of the variables in the dynamic system repre- 

sented by Eqs. (5a) , (5b) , and (5c) . Each line 

refers to a separate scenario using different as- 

sumptions about the reaction of mobility to lo- 

cal and nonlocal cases. Source: Authors’ calcu- 

lations using estimates from Tables 1 and 3 . 
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ase-weighted sum of the travel flows. We refer to this index simply

s “exposure. ”

The exposure index could be high for a given county because of

ome combination of (i) high frequency of travel and (ii) travel to high

aseload areas. In Appendix E.1 , we decompose the sources of exposure.

he general pattern is that more exposed counties have greater contact

ith high caseload areas and not necessarily higher levels of overall

obility. That is, the severity of the outbreak within the geography of

 county’s network is far more consequential for case exposure than the

evel of trips. For example, early in the U.S. outbreak, places connected

o the New York metro area exhibited high levels of exposure, irrespec-

ive of their overall mobility. 

Following from the results in Section 3 , we examine the impor-

ance of case avoidance for exposure, comparing realized exposure to

ounterfactual exposure measures that assume travel activity did not

hange despite the increase in cases. Specifically, we calculate the ex-

osure measure in Eq. (3) , letting the number of cases 𝑛 𝑖𝑡 evolve as in

he data, but holding mobility constant at pre-pandemic averages (as if

𝑖𝑗𝑡 𝑑 𝑗𝑡 = 𝜎𝑖𝑗0 𝑑 𝑗0 ). 

Table 2 shows the ratio of counterfactual exposures to actual expo-

ures at month-end checkpoints. Column 1 shows the total effect declin-

ng mobility had on exposure. Had travel activity continued as usual,

he median county would have had exposure to 54 percent more cases

t the end of March, 109 percent more cases at the end of April, and 40

ercent more cases at the end of May. Thus, at the springtime height of

he pandemic, the median county would have been exposed to twice as

any cases had mobility not adjusted. 

Columns 2 through 4 show decompositions of the effects of the com-

onents of mobility on exposure. 13 From Eqs. (1) and (3) , there are

hree components to mobility and therefore three ways the contact in-

ensity could change. First, the number of devices registering as active

ould change. 14 Second, the total frequency of out-of-county visits could
13 The decompositions do not add to the total because each is a median of a univariate 

alculation. 
14 Devices could become active with or without registering out-of-county trips. 

s  

𝑚

𝑗

5 
hange. Third, for a fixed amount of mobility, the network of visited

laces could change. 15 

We find that each of the three components of the exposure measure

ontributed to the decrease in exposure. For example, in April, had ac-

ive devices counts continued as usual (column 2), case exposure would

ave been 24 percent higher. Had total visit frequency continued as

sual (column 3), case exposure would have been 34 percent higher.

ad the network of visited counties remained as usual (column 4), case

xposure would have been 22 percent higher. 

The last column is especially interesting because it shows a substan-

ial amount of the change in exposure resulted not just from staying

ome, but from avoiding places with higher levels of cases when travel-

ng. Notably, even as the level of total mobility edged higher in May, a

eduction in exposure resulted from people avoiding counties with high

aseloads. 16 

. The effect of exposure on new case growth 

The remaining question is whether out-of-county exposure causes

ncreases in new cases. To test this, we regress new cases in a county

n our index of exposure to out-of-county cases, controlling for lagged

ases and other county attributes. The baseline model is 

𝑛 (1 + 𝑛 𝑗,𝑡 ) = 𝜃1 𝑙𝑛 (1 + 𝑛 𝑗,𝑡 −1 ) + 𝜃2 𝑙𝑛 (1 + 𝑥 𝑗,𝑡 −1 ) + 𝑍 

′
𝑗,𝑡 −1 𝛼 + 𝑍 

′
𝑗 
𝛾 + 𝜌𝑡 + 𝜀 𝑗𝑡 , 

(4) 

here county 𝑗 at time 𝑡 is the unit of analysis, 𝑛 denotes new cases, 𝑥

s the out-of-county exposure from Eq. (3) , and the 𝑍’s are county-level

ontrols. In this specification, time is measured in weeks. 

The 𝜃s are parameters of interest, and principally, the expo-

ure parameter 𝜃2 . 𝑍 𝑗𝑡 is a set of controls for time-varying county

haracteristics–mainly, a within-county device exposure index, and in

ome specifications, the mobility index from Eq. (1) . The within-county
15 To see this, consider a decomposition of the contact from county 𝑗 to county 𝑖 as 

 𝑖𝑗𝑡 = 𝑑 𝑗𝑡 𝜎𝑖𝑗𝑡 = 𝑑 𝑗𝑡 𝑀 𝑗𝑡 𝜋𝑖𝑗𝑡 , the number of devices in 𝑗 ( 𝑑 𝑗𝑡 ), the total number of trips from 

( 𝑀 𝑗𝑡 ) , and the share of those trips from 𝑗 to 𝑖 ( 𝜋𝑖𝑗𝑡 ) . 
16 In Appendix E.2 we provide more detail on the evolution of exposure over time. 
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Table 1 

Changes in Mobility - Gravity Regressions. 

1 2 3 4 5 6 

Cases in Focal County − 0.0540 − 0.0535 − 0.0541 − 0.0544 − 0.0540 − 0.0504 

(0.0054) (0.0053) (0.0054) (0.0054) (0.0053) (0.007) 

Cases in Visited County − 0.0498 − 0.0491 − 0.0486 − 0.0478 − 0.0471 − 0.0430 

(0.0056) (0.0055) (0.0055) (0.0055) (0.0053) (0.0074) 

Stay at Home in Focal County − 0.0153 − 0.0152 − 0.0186 

(0.0064) (0.0064) (0.0084) 

Stay at Home in Visited County − 0.0308 − 0.0310 − 0.0320 

(0.0062) (0.0063) (0.0086) 

Cases in Visited X Baseline Visit Rate − 0.2700 − 0.5420 − 0.5426 − 0.5139 

(0.0308) (0.0411) (0.0414) (0.051) 

Cases in Visited X Neighbors 0.1266 0.1271 0.1158 

(0.0092) (0.0093) (0.011) 

Constant 1.5693 1.5814 1.5691 1.5690 1.5811 1.6014 

(0.0161) (0.0179) (0.016) (0.016) (0.0178) (0.0263) 

𝑅 2 0.875 0.875 0.875 0.875 0.875 0.871 

𝑁𝑇 41,253,269 41,253,269 41,253,269 41,253,269 20,344,813 20,308,351 

Pairs 3,564,207 3,564,207 3,564,207 3,564,207 3,564,207 3,188,031 

Weeks 18 18 18 18 18 9 

NOTES: The table reports results from a gravity regression of log visits in the two weeks preceding observation date on 

new cases and stay-at-home orders; see Eq. (2) . The observation level is a weekly observation of a directed county pair 

(i.e., 𝐴 → 𝐵 ≠ 𝐵 → 𝐴 ). All specifications include directed county pair and week of year fixed effects. Standard errors are 

clustered by directed county pair and time of observation. Source: Authors’ calculations using data retrieved as described 

in Section 2 . 

Table 2 

Decomposition of Actual Exposure Relative to “Business As Usual, ” By Mobility 

Component. 

Partial Effect Of: 

Time Combined Device Count Visit Rate Visit Geo. Network 

1 2 3 4 

Last Week of March 1.54 1.17 1.16 1.13 

Last Week of April 2.09 1.24 1.34 1.22 

Last Week of May 1.40 1.14 1.02 1.19 

NOTES: The table reports the median ratio of counterfactual exposure, projected 

using pre-pandemic period mobility rates, relative to actual exposure for each listed 

point in time. Nonlocal case exposure is defined in Eq. (3) . Column 1 is the com- 

bined exposure index, and columns 2 through 4 are its components. Column 2 holds 

fixed total active devices, column 3 holds fixed out-of-county pings per device, and 

column 4 holds fixed the visit county share in the focal county’s travel network. 

Source: Authors’ calculations using data retrieved as described in Section 2 . 
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evice exposure index (also provided by CDHGW) is a measure of the

umber of other devices a typical device encounters at points of interest

e.g., stores) within the focal county. 17 This is distinct from the out-of-

ounty travel activity in focus in our study, but it is similar to other

easures of device activity in the literature. 18 𝑍 𝑗 is a set of controls

or fixed county characteristics, such as population size and density, or

xed effects to capture attributes nonparametrically. Specifications in-

lude time fixed effects, 𝜌𝑡 . The 𝜀 is the error term. 

The outcome variable is the natural logarithm of one plus the number

f new cases reported in the last week. The observation level is county

y week beginning the first week of March, when community-spread

ases began to emerge in the U.S. The exposure index is lagged one

eek (representing activity one to three weeks prior to the observation

ate) so as not to overlap with the new case period in the outcome

ariable, and lagged new cases are measured over the same window

s exposure. Because the model includes time fixed effects, estimates

re identified off of spatial-temporal variation relative to the national

verage. Standard errors are clustered by week and state. 19 
17 See Appendices Appendix A and Appendix B for more details. 
18 For example see Engle et al. (2020) ; Glaeser et al. (2020) , and Gupta et al. (2020) . 
19 We use state instead of county to account for potential correlation in outcomes when 

any policy decisions were made by state governments. 

w

p

6 
Column 1 of Table 3 presents results using ordinary least squares

OLS) regression. The regression shows two features of viral spread.

irst, and unsurprisingly, lagged cases in the county create new cases.

 one-percent rise in past cases is associated with a 0.74 percent rise

n new case growth. Second, and more novel, exposure to out-of-county

ases increases local new cases. A one percent rise in outside exposure

s associated with a 0.11 percent increase in new case growth. Moving

rom the median to 90th percentile county in terms of network exposure

roughly, from Ohio to New Jersey) would mean a 24 percent increase

n new cases added in a given week. The control variables indicate that

arger and denser counties, and places with more within-county device

xposure (i.e., fewer people staying at home), have higher case growth.

Next, we consider some alternative explanations to the causal effect

f exposure. One hypothesis is that the exposure measure is picking up

omething about overall mobility that is predictive of new cases. 20 Col-

mn 2 adds the county’s mobility index directly, and its coefficient is

arginally negative. 21 In light of the results of Sections 2 and 3 , we

ttribute this to reverse causality–the pullback in mobility during the
20 Note that any threat would have to concern out-of-county travel, as we control for 

ithin-county contacts with the device exposure index. 
21 Recall the mobility index compares the change in mobility within a county to its pre- 

andemic average, not cross-sectional differences in the level of travel. 
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Table 3 

Nonlocal Case Exposure and Local New Cases. 

1 2 3 4 5 6 

Model OLS OLS OLS OLS FE IV IV FE 

Case Exposure 0.111 0.127 0.162 0.213 0.417 

(0.028) (0.030) (0.051) (0.035) (0.148) 

Case Expo., Neighbors 0.036 

(0.006) 

Case Expo., Non-Neighbors 0.070 

(0.025) 

Lagged Local Case Growth 0.744 0.736 0.730 0.630 0.731 0.620 

(0.029) (0.029) (0.021) (0.071) (0.031) (0.074) 

Within-County Device Expo. 0.119 0.159 0.125 0.185 0.098 0.048 

(0.047) (0.041) (0.043) (0.111) (0.052) (0.142) 

Mobility Index − 0.003 

(0.000) 

Population 0.157 0.148 0.178 0.068 

(0.035) (0.036) (0.035) (0.042) 

Pop. Density 0.046 0.043 0.036 0.035 

(0.010) (0.010) (0.011) (0.010) 

Implied Marginal Effect to Case Growth Rate 

90-50 Expo Gap 0.246 0.286 0.139 0.380 0.527 1.110 

(0.070) (0.077) (0.025) (0.140) (0.107) (0.505) 

Non-neighbor 1.119 

(0.045) 

Fixed Effects 

Level(s) Week Week Week County; Week County; 

Week Week 

Number 12 12 12 2018; 12 12 2018; 12 

Instruments: 

Projected Exposure y y 

𝑅 2 0.8609 0.8612 0.8627 0.8672 0.8018 0.873 

𝑁𝑇 24,038 24,038 24,023 24,038 24,038 24,038 

NOTES: The table reports regression results of the model represented by Eq. (4) ; “Expo ” is shorthand for out-of- 

county case exposure. The outcome variable is the natural log of one plus the number of new cases in the county. 

The observation level is county by week. Standard errors are double clustered by county and week. Source: Authors’ 

calculations using data retrieved as described in Section 2 . 
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23 We use a distance-based model of trip frequency instead of the “business-as-usual ”

mobility from Section 4 in order to more plausibly satisfy the exclusion restriction, in 
eriods of higher case growth. The results suggest that any effect of mo-

ility on new cases is operable via exposure to outside cases. 

There was regional heterogeneity in the severity of the outbreak and

 predictable geographic component to the observed travel network, and

hus another alternative explanation to exposure is spatial correlation

n travel and case outcomes. As one way to address the possibility, 22 in

olumn 3 we split exposure by nearby (neighboring county) and farther-

way (non-neighboring county) exposure. (Together, these sum to the

ounty’s total exposure.) If all the exposure effect were coming from

earby counties, the exposure result may actually be spurious and due

o spatial correlation. Instead, we find significant effects for each source

f exposure independently. 

Another potential concern is that unobserved local attributes were

riving both exposure and local virus spread. In column 4 we add county

xed effects in order to sweep out time-invariant features and focus on

xposure variance within a county over time. The coefficient estimate

ises relative to column 1, showing that even within a county, periods

f greater exposure are followed by periods of greater increase in cases.

These results indicate case exposure through travel creates new cases

ithin a focal county. However, the preceding sections showed that mo-

ility dropped, and especially to and from counties with higher levels of

ew cases, which reduced the amount of exposure a county would ex-

erience. Hence, there is potential for reverse causality that may down-

ard bias the estimated effects. With this concern, we seek an instru-

ent correlated with exposure but not itself generating new cases. 

Our strategy is to build a predicted exposure measure based on pre-

etermined features of a county. Using a gravity regression of trips on

 flexible county-pair distance function (detailed in Appendix A ), we

ecover a predicted county-pair visit rate, 𝜎̂𝑖𝑗 , based on proximity of
22 In Appendix Table F1 , we present other robustness checks addressing spatial correla- 

ion. 

t

(

n

7 
ounties. The predicted mobility then enters an expected exposure in-

ex, 𝑥̂ 𝑗𝑡 = 

∑
𝑖 𝜎̂𝑖𝑗 𝑛 𝑖𝑡 , which is used an instrument for actual exposure.

he exclusion restriction is that the distance to other county’s cases af-

ect the focal county’s case rate only through potential travel-related

xposure. 23 

Column 5 reports the results of the IV regression. The coefficient

n exposure rises to 0.21, indicating attenuation from reverse causal-

ty is indeed present in the OLS specification. Column 6 uses the IV

ith county fixed effects. Because the predicted visit weight used in

onstructing the instrument is distance-based and hence invariant for

ach county pair, the instrument loses power when adding fixed effects.

he point estimate with fixed effects rises to 0.41 but is less precise. 24 

hile these are broadly consistent, the IV model without fixed effects

s our preferred specification because it mostly relies on pre-determined

ariation coming from the way a county’s point in space would affect

ts travel network. 

In summary, we find consistent evidence that out-of-county exposure

ia the travel network affects new case diagnoses. Appendix F provides

 number of additional robustness checks. 

. Geographic connectedness and virus spread 

We have marshaled evidence for three important facts: (i) Travel ac-

ivity dropped significantly as case counts rose, with a particular avoid-

nce of areas with relatively larger outbreaks; (ii) Such a drop in ac-

ivity limited exposure to out-of-county virus cases; (iii) Out-of-county
he event that abnormal connectedness is the result of unobserved links between counties 

e.g., the level of trade) that also correlated with case growth. 
24 A test of equivalence between the point estimates from columns 5 and 6 rejects the 

ull with a p-value of 8.6 percent. 
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xposure affects the rate of new cases added. Together, these facts sug-

est cases would have been higher had travel activity not dropped in

esponse to cases. Our last exercise is to combine these insights into a

ingle model in order to evaluate conjectures about spread of the virus

n alternative travel scenarios. 

We construct the following spatial vector autoregressive model of

obility, case exposure, and case growth. The primary outcome of inter-

st is new cases added, in Eq. (5a) , which is affected by own-county and

ut-of-county exposure. For the rate of transmission from local and non-

ocal case exposure, we take point estimates from our preferred model

n Table 3 , column 5. Nonlocal case exposure, in (5b) , is a function of

utside cases and mobility, which is itself affected by the path of cases

ocally and nonlocally ( Eq. (5c) ). To calibrate the responsiveness of mo-

ility to cases, we take point estimates of Eq. (2) from Table 1 , column

. 25 Appendix G shows sensitivity of the model to alternative calibra-

ions. 

 𝑗𝑡 = 𝜃1 𝑛 𝑗,𝑡 −1 + 𝜃2 𝑥 𝑗,𝑡 −1 (5a) 

 𝑗,𝑡 = 

∑

𝑖 ≠𝑗 

𝜎𝑖𝑗,𝑡 𝑛 𝑖,𝑡 (5b) 

𝑖𝑗,𝑡 = 𝛿1 𝑛 𝑗,𝑡 + 𝛿2 𝑛 𝑖,𝑡 + 𝛿3 ̄𝜎𝑖𝑗, 0 𝑛 𝑖,𝑡 (5c) 

We emphasize that this is an autoregressive process and not an epi-

emiological model. There are no notions of recovery, death, or immu-

ity among the population. (Indeed, our unit of analysis is a spatial area,

ot a person.) We will note the values the model produces for the sake

f exposition, but we intend this exercise to be more illustrative than

mpirical. 26 

Accordingly, to keep the model simple, we illustrate a three loca-

ion system. Two locations are calibrated with symmetric mobility rates

o represent two closely connected counties and another more distant

ounty. We set the baseline visit rate to 7.5 percent for the closely con-

ected locations and 0.55 percent for the distant one. 27 

The model is used for the following thought experiment: if an out-

reak of new cases exogenously appears in one of the two connected

ocations, what happens to the spread of the disease locally and through-

ut the system? To illustrate the importance of endogenous travel for the

ate of disease spread, we simulate the model in three scenarios: (i) a de-

ault without mobility (i.e., a purely autoregressive process, (5a) alone),

ii) with mobility but without the feedback effect of cases on travel ( (5a)

nd (5b) ), and (iii) with mobility and endogenous feedback ( (5a), (5b) ,

nd (5c) ). Plots the impulse responses for an experiment of 10 new cases

ropped into the “treated ” location Fig. 2 . 

The path of new cases added is depicted in the first row of figures.

he rate of own-location spread is below one, so that if there were no

obility (and consequently no exposure), the virus would asymptoti-

ally die out in the treated location, as illustrated by the “isolated/no

obility ” lines. 

In scenarios with mobility and exposure, the outbreak jumps loca-

ions, which themselves grow through local spread. Exposure then leads

o the subsequent re-infection of other places in the system, keeping the

isease alive. The impact of exposure then depends on the degree of

obility. 

In the treated location, the path of cases shows an initially oscil-

ating pattern, as own-location case contribution slows but exposure to
25 We use the model with the baseline visit rate-cases interaction to account for the 

iffering elasticities between frequently and infrequently visited places. 
26 In particular, we suspect that the parameters measuring the mobility response to cases 

ould be downward biased, but the central point of the model can be made by contrasting 

esponsive and unresponsive mobility. 
27 We have in mind connected but distinct economic regions. A visit rate of 7.5 percent 

epresents the integrated counties of the Philadelphia and New York CBSAs, for example. 

ee also Table A2 . 

C

A

 

c

8 
utside cases rises. New case rates then rise to a steady state. In the

nitially virus-free connected location, nonlocal exposure seeded the lo-

al outbreak, and it eventually reaches the same steady-state level as

he treated location. The distant location experiences its own outbreak,

lthough its lower connectivity translates into a lower long run aver-

ge rate of exposure, so its steady state is lower than the two closely

ntegrated counties. 

Among the two steady states with mobility, the level of new cases is

bout 60 percent higher in the scenario without response to cases. To

ee why, the second row of figures shows the mobility rate. The “unre-

ponsive ” scenario is fixed to have no endogenous change in mobility

nd mechanically results in the flat lines. In the endogenous mobility

cenario, we see travel fall as the outbreak occurs. In the two connected

ounties, mobility falls by 42 percent. There is consequently a reduc-

ion in exposure, shown in the third row of figures, which is only 45

ercent as high in the responsive scenario as the unresponsive, because

f a combination of less travel and a lower level of cases. 

The difference in exposure alters the total rate of disease transmis-

ion, creating the gap in new cases among scenarios shown in the first

ow of figures. Thus, when mobility does not decline in response to the

utbreak, the rate of new cases added is faster and steady-state level is

igher. 

In summary, the model shows why spatial connectedness matters

or both the spread and the perpetuation of the virus. Most directly,

onlocal exposure allows the virus to jump from one area to another.

erhaps less obvious, however, is how travel also affects the rate of

rowth of cases and the steady state level. Connectedness generates

igher caseloads as travel compounds local transmission through rein-

ection across areas. 

. Conclusion 

This paper has used county level location data from smartphones to

ocument the change in travel activity during the early phase of the

OVID-19 pandemic in the U.S. We find that mobility across counties

ropped substantially as case counts rose. Relatively larger case counts

ecreased spatial activity on both sides of a trip: Mobility decreased

ore in counties with more cases, and the activity that did occur tended

o avoid areas with higher caseloads. 

Understanding the nature of the change in activity is important be-

ause mobility across county lines produces contact with nonlocal cases.

uch case exposure contributes to local case growth which in turn has

 feedback effect on nonlocal case growth, creating exposure for other

ocalities in a continuing loop. 

Our findings have several implications for policy and practice. First,

ublic information about the spread of the virus is important. We find

eople responding to such information by restricting their activity in

ational ways–both in level and in direction. In a sense, a “healthy fear ”

f the virus appears to provide motivation for social distancing and sim-

lar behavioral interventions, perhaps even more so than government

andates. 

Second, because spatial activity never entirely disappears, localities

ould benefit from coordinated responses and shared information. Con-

ectedness means there are spatial externalities. A policy that suits one

rea may inadvertently produce a threat to a connected area. Frag-

ented policy across regions could inhibit society’s ability to control

he spread of COVID-19. 

redit Author Statement 

All authors contributed to all aspects of the research. 

ppendix A. Data 

This appendix reports additional details regarding the underlying
ase and mobility data sets. 
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1. Case prevalence 

First we present some basic statistics from the daily COVID-19 case

ata. 28 In the spring of 2020, the early phase of the pandemic, COVID-19

ases were relatively concentrated in the Northeast U.S., and especially

he New York City metro area, although there was some presence of

ases throughout the country. 

Table A1 reports summary statistics on case prevalence in terms of

er capita cumulative diagnoses and rates of new diagnoses in each

onth of our period of interest. The distribution of cases is skewed with

 long right tail, with many counties having low rates but some hav-

ng major outbreaks. The ratio of the 99th percentile to the median per

apita infection rate is at or above 19 for each month in our sample.

he mass of the distribution shifted to the right as the virus percolated

hroughout the country. The peak of new infections was in early to mid

pril (although these rates were then surpassed by surges in the summer

f 2020 and winter of 2020–2021). 

2. Measuring travel behavior from smartphones 

The empirical basis of this paper are measures of mobility con-

tructed by Couture et al. (2021) that are derived from GPS locations

ecorded by smartphones. This appendix contains additional details not

overed in Section 2 ; see Couture et al. (2021) for a complete description

f the data. 

Table A1 

Summary of Case Prevalence. 

Time Mean SD 

Cases per 1k Residents 

Last Week of March 0.150 0.459 

Last Week of April 1.582 2.991 

Last Week of May 3.000 5.087 

New Cases in Preceding 2 Weeks 

Last Week of March 65.99 578.89 

Last Week of April 192.08 893.21 

Last Week of May 150.99 644.21 

NOTES: The table reports summary st

cases for selected months in the spring of 

Table A2 

Summary Statistics of Device Ping Rates by Geography. 

Pairs 𝑁𝑇 

Same County na 70,630 

Other Counties: 

Neighbor 9366 327,653 

Within Commuting Zone 8562 299,670 

Within State 128,351 4,429,513 

Within Division 573,239 17,131,215

Within Region 1,388,653 35,309,674

Any 3,903,314 84,612,867

Share to Top 10 Connections na 70,630 

NOTES: The table reports summary statistics of device pi

period (January 20, to February 23, 2020). Statistics are taken

rates; The last row reports a share of total visits. There are 2

number of pair-day observations. Source: Couture et al. (2021

The dataset of primary interest in this paper is their location expo-

ure index (LEX) measuring activity between counties. To protect con-
28 We have taken care to adjust the data for changes in reporting format or geography 

e.g., counties that report together in some periods and separately in others) and to exclude 

utliers and values outside the domain of possible outcomes (e.g., negative new cases). 

evertheless, the data are reported subject to some discretion by health care providers 

nd state and local health departments that introduces unavoidable measurement error. 

9 
50th 75th 90th 99th 

 0.059 0.135 0.278 1.413 

 0.716 1.548 3.280 16.499 

 1.414 3.252 6.757 26.790 

3.00 13.00 60.00 843.00 

15.93 70.14 267.43 4,318.71 

17.79 78.43 278.57 2,350.00 

s of COVID-19 cases per capita and new 

 as reported by Johns Hopkins University. 

Mean SD P10 P50 p90 

89.08 4.78 82.69 90.01 94.19 

23.14 17.33 5.44 18.32 49.42 

19.77 19.02 1.95 12.81 49.98 

3.08 7.82 0.09 0.62 6.97 

1.00 4.29 0.02 0.12 1.43 

0.55 3.06 0.03 0.06 0.65 

0.27 2.01 0.01 0.04 0.30 

51.18 11.03 36.28 52.07 64.71 

tivity occurring over a 14 day window in the pre-pandemic 

 the visit rate and count only observations with nonzero ping 

ounties included in the dataset. The 𝑁𝑇 column reports the 

dentiality and to limit the size of matrix, CDGHW limited the reported

ounties to those that had at least 1000 devices registering over a one

eek period from November 2019 to early January 2020. The result-

ng dataset consists of a time-consistent list of 2018 counties in the U.S,

omprising 4,072,324 possible pairs, some of which may be zero if no

evice from the focal county has visited the destination county in the

revious two weeks. The average county exhibits 1732 unique nonzero

airs per week in the base period of January 20, to February 23, the

rst five weeks of data and before the onset of widespread COVID-19

iagnoses. We do not observe activity outside the 2018 county network,

ut the observed counties encompass 97 percent of the U.S. population.

Under CDGHW’s selection method of a 1000 device threshold, larger

ounties are more likely to register in the data, but some rural areas and

mall towns are represented as well. Among metro areas, 90 percent of

ounties (comprising 99 percent of metro population) appear in the data.

ounties in metro areas making up 86 percent of total U.S. population

omprise the same percentage of the devices registering in the dataset.

ural and micropolitan counties appear at a rate of 48 percent, although

0 percent of the population in these areas is represented. These smaller

ounties, making up 11 percent of U.S. population, account for the re-

aining 14 percent of devices we observe. 

Table A2 reports summary statistics for one of the main objects of

nterest, the fraction of devices in the focal county present in the visit

ounties in the previous 14 days, which includes the own-county rate as

 “visit. ” The typical county has a same-county ping rate of 90 percent,

eaning 10 percent of devices present today are “new ” and were not



J. Brinkman and K. Mangum Journal of Urban Economics 127 (2022) 103384 

Table A3 

Gravity Model of Visit Rates Between 

County Pairs, Pre-Pandemic Period. 

Day of Week (Sunday excluded) 

Monday 0.036 

(0.000) 

Tuesday 0.065 

(0.000) 

Wednesday 0.068 

(0.000) 

Thursday 0.060 

(0.000) 

Friday 0.025 

(0.000) 

Saturday − 0.010 

(0.000) 

Distance Between Counties 

Log Miles Between Centroids − 0.807 

(0.000) 

Indicators for County Groupings 

Neighbors 1.883 

(0.002) 

Same CBSA 1.036 

(0.002) 

Same State 1.243 

(0.000) 

Same Division 0.211 

(0.000) 

Same Region − 0.008 

(0.000) 

Constant − 2.769 

(0.001) 

𝑅 2 0.368 

NOTES: The table reports coefficient esti- 

mates of Eq. (6) , a gravity model of daily 

visit rates using pre-pandemic period travel 

data (January 20, to February 23, 2020). 

Source: Couture et al. (2021) . 
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50 
resent in the preceding two weeks. When limiting to the non-reflexive

ounties, the average ping rate is dramatically lower by nature. There is

 clear geographic pattern. The average county pair has a ping rate of 0.3

ercent. This rises to 0.5 percent within region, 3 percent within state,

9 percent within commuting zone, and 23 percent among neighboring

ounties. The visit rates are also highly skewed, with some county pairs

howing frequent interaction (50 percent visit rate and above), and the

ean visit rates larger than the medians. As such, the typical county has

bout half of its total trips between its top 10 most frequent connection

artners and the remaining half through its (thousands of) other less

requent connections. 

With the geographic pattern as guidance, in Eq. (6) we write down

 basic gravity model of log visit frequency as a function of distance

etween county pairs. Various distance measures, denoted 𝐷 

𝑘 , including

og miles between county centroids and indicator variables for being in

he same discrete geographic areas, form a flexible distance function.

he model is run using daily data on the pre-pandemic period (January

0, to February 23, 2020), and we also include day-of-week ( “dow ”)

Table A4 

Summary Statistics of Device Exposure Inde

County Type Counties 𝑁

Large CZ: Central Counties 383 13

Large CZ: Outlying Counties 150 52
Small CZ 1485 51,975 

NOTES: The table reports summary statistics of the

commuting zone (CZ) size; large and small CZs are

of one million residents. The device exposure ind

number of other devices present in a point of inte

10 
ffects to adjust for correlation between county pairs and commuting

atterns. 

𝑛 ( 𝜎𝑖𝑗𝑡 ) = 

∑

𝑘 

𝛿𝑘 𝐷 

𝑘 
𝑖𝑗 
+ 

∑

𝑑𝑜𝑤 

𝜏𝑑𝑜𝑤 𝐷𝑂𝑊 ( 𝑡 ) + 𝜖𝑖𝑗𝑡 (6)

Table A3 reports the coefficients 𝛿𝑘 , 𝜏𝑑𝑜𝑤 . These reflect the spatial

atterns suggested by Table A2 : visit probability is strongly declining in

istance, with discrete jumps (on average) for counties within the same

elineated geographic boundaries of metro areas, states, and census re-

ions. 

The projection of the pairwise visit rate from this regression forms

ur instrument for expected case exposure detailed in Section 5 . 

3. Measuring local activity from smartphones 

In addition to the out-of-county mobility index measuring travel be-

avior, CDHGW use the same underlying smartphone location data to

onstruct a measure of within-county device activity. The device ex-

osure index, or the “DEX, ” measures for a smartphone residing in

 given county, how many distinct devices also visited any of the

ommercial venues that the device visited on a given day. We use

heir county-level average DEX with adjustment for active devices (see

outure et al. (2021) for details). Table A4 presents summary stats in

he pre-pandemic period for counties by size of commuting zone (CZ).

arger counties tend to have higher device exposures. 

ppendix B. Dynamics of the Mobility Indices 

This appendix reports on the dynamics of mobility indices derived

rom the smartphone data. 

1. Out-of-county mobility index 

Figure B1 , panel A plots the two main pieces of information pro-

ided in the smartphone data set, the number of active devices in a focal

ounty 𝑗 on day 𝑡 , 𝑑 𝑗𝑡 , and the count of out-of-county trip frequencies,

𝑖 ≠𝑗 𝜎𝑖𝑗𝑡 . To emphasize the changes over time, each of these is indexed

ithin county so that the period of January 20, to February 23, (the first

ve weeks of data) averages to 100, and the graph plots the median in-

ex value. 

The blue solid line depicts the number of devices registering. The

ore spatially active a device is within or between counties, the more

ikely it is to request GPS coordinates and register its location, and there-

ore the count of devices in the data forms a sort of mobility metric. (An

nactive device is not taking trips out of the county.) This index has a

lear downward cycle, falling about 30 percent from normal times to

he trough in mid-April and recovering somewhat by the end of May to

bout a 15 percent reduction from normal times. 

The red dashed line depicts the other key component of mobility,

he count of out-of-county location registrations for devices in a given

ocal county. (Note that this is the sum of the binary event probabilities.)

his metric also shows a clear downward cycle, falling 40 percent to the

rough in mid April and recovering to only about 5–10 percent down by

he end of May. 

Mean SD P10 P50 p90 

181.2 132.8 73.6 147.9 310.5 

127.0 77.6 52.7 110.9 216.5 
105.1 73.1 42.3 87.5 184.5 

 local device exposure index for counties by 

 respectively above and below a population 

ex is the average over active devices of the 

rest. Source: Couture et al. (2021) . 
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Fig. B1. Mobility Indices. NOTES: The figures present the median index value taken across counties in the 2018 national sample. Panel A displays the median of the 

two subcomponents of device mobility, the count of active devices and the sum of out-of-county pings ( “visit rate ”). Panel B reports the composite index, the active 

device-weighted visit rate. Source: Authors’ calculations using Couture et al. (2021) . 

Fig. B2. Mobility Index Distribution Over Time. NOTES: The figure displays 

the time series of the 10th, 50th, and 90th percentile of the composite mobility 

index. Statistics are unweighted, taken across all 2018 counties in the national 

sample. Source: Author’s calculations using Couture et al. (2021) . 
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Fig. B3. Device Exposure Index Distribution Over Time. NOTES: The figure dis- 

plays the 7-day moving average time series of the 10th, 50th, and 90th per- 

centile of the composite mobility index. Statistics are unweighted, taken across 

all 2018 counties in the national sample. Source: Author’s calculations using 

Couture et al. (2021) . 
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Panel B depicts a composite of the two mobility indices from panel

 as in Eq. (1) in the main text: 𝑚 𝑗𝑡 = 𝑑 𝑗𝑡 
∑
𝑖 ≠𝑗 𝜎𝑖𝑗𝑡 . We then index this

omposite series as 𝑚̃ 𝑗𝑡 = 

𝑚 𝑗𝑡 

̄𝑚 𝑗0 
, where 𝑚 𝑗0 is the mean of the county’s

ndex in the pre-pandemic period. Under this metric, mobility fell by

alf from February to mid-April, recovering by late May to about 20

ercent below normal. 

Figure B2 plots the 90th and 10th percentiles in addition to the me-

ian, showing the entire distribution of mobility indices moved to the

eft, though there is some heterogeneity in the magnitude of declines.

ome counties showed mobility declines greater than 60 percent while

thers declined less than 40 percent. 

2. Within-county mobility index 

Figure B3 plots the median, 90th and 10th percentiles of the 7-day

oving average of the county-level DEX during the study period. The

obility dynamics are quite similar to the measures of out-of-county

ravel. As cases grew rapidly in the early phase, more people stayed

ome, or at least, avoided crowded points of interest, and the DEX de-

lined about 60 percent from its pre-pandemic average to the trough in

id-April. 
c

11 
ppendix C. Mobility and Local Case Counts 

The national series mask a fair amount of regional heterogeneity.

tates varied in the timing and intensity of their travel restrictions, and

ase diagnoses varied substantially across the U.S. Did the mobility of

ouseholds in more affected areas respond more strongly? 

To address this question, we leverage the spatial variation in the

obility index and case counts by county in addition to state-level re-

trictions on mobility in the following model: 

̃  𝑗𝑡 = 𝛽𝑐 𝑐 𝑗,𝑡 −13∶ 𝑡 + 

∑

𝑞 

𝛽𝑞 𝐼( 𝑅 

𝑞 

𝑗𝑡 
) + 𝜖𝑡 . (7)

he left-hand side is the indexed mobility rate, 𝑐 𝑗,𝑡 −13∶ 𝑡 denotes new case

iagnoses in the home county in the preceding two weeks, 29 and the 𝑅 𝑞 

erms denote type 𝑞 government restrictions of on activity. These take

he form of indicator variables, 𝐼() , for whether the restriction is in place

t time 𝑡 . 
We have checked that these results hold for cumulative cases, cases per capita, new 

ases per capita, and deaths. 
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Table C1 

Mobility Index: The Effect of State Restrictions and Observed Cases. 

1 2 3 4 5 6 

Case Activity (2 wk lag) 

Log Case Growth, County − 8.550 − 3.473 − 3.340 

(2.213) (0.454) (0.438) 

Log Cases Per Capita, County − 6.721 − 5.721 

(1.675) (1.244) 

Log Cases Per Capita, State − 3.455 

(1.229) 

Log Cases Per Capita, Division − 0.783 

(0.967) 

Closure Orders in County: 

Nonessential Services − 1.995 − 2.993 − 2.609 − 2.167 

(0.901) (1.014) (1.024) (0.963) 

Stay Home − 2.430 − 3.587 − 3.505 − 3.093 

(0.975) (0.922) (0.935) (0.975) 

Constant 93.908 88.622 89.751 86.890 87.555 88.031 

(5.355) (0.495) (0.670) (0.293) (0.343) (0.332) 

Time Effects y y y y y 

𝑅 2 0.397 0.829 0.831 0.806 0.8098 0.8107 

𝑁𝑇 18,153 18,153 18,153 18,153 18153 18153 

NOTES: The outcome variable is the county-level index of mobility as defined in Eq. (1) , and 

indexed by the pre-pandemic average for each county. Units are percentage points. Standard 

errors are clustered by county and time of observation. Each regression contains 2018 coun- 

ties and 9 weeks for a total of 18,153 observations. Source: Authors’ calculations using data 

retrieved as described in Section 2 . 
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The gravity regression in Section 3 measures more precisely the ef-

ect of two-sided case prevalence on trip rates between county pairs,

ut this simple regression provides a more descriptive, atheoretical ap-

roach to compare the travel activity in hard-hit (or heavily regulated)

ounties to others. Our main objective for this analysis is simply to mea-

ure covariances in the data to explore whether cases and shutdown or-

ers independently correspond to changes in mobility. We do not intend

o make causal claims here, although most forms of endogenous threats

eem to work against detecting an effect: Most studies find mobility of

arious forms to cause cases, and we find cases to reduce mobility, the

pposite of what reverse causality or simultaneity would suggest. 

Table C1 reports coefficients from this regression of county-level mo-

ility rates on local cases and restrictions. We use a biweekly frequency

o correspond to the lookback period in the data and avoid overlapping

bservations, although this limits somewhat the power of the regression

o detect the effect of cases (which can vary week to week). We have

ound similar results using higher frequency data. 

Column 1 is the univariate effect of log new cases. A 100 log point

ncrease in local cases corresponds to an 8.55 percentage point drop in

he mobility index. 30 However, some of this mobility drop was common

cross the U.S. as the country reacted to widespread news of the virus.

olumn 2 adds week of observation fixed effects to isolate the effect of

ocal cases. The marginal effect drops by three-fifths to 3.47 percentage

oints per 100 log points of new cases, a smaller but still economically

eaningful effect. (For some context, the average county saw about a

00 log point rise in new cases in April–and some as large as 1000 log

oints). 

Around the same time cases were growing, state and local govern-

ents enacted restrictions designed to limit mobility of residents and

uppress the spread of the virus. In column 3, we include indicator

ariables for the presence of the two most common of these measures,

losure of nonessential businesses and stay-at-home orders, in order to

easure their effects on cross-county activity. 31 Each independently de-

ressed activity to a significant degree, although their inclusion scarcely
30 Recall that each county has been indexed to a pre-period average of 100 so that av- 

rage level differences in mobility between counties will not affect the covariances we 

stimate. 
31 Many of these restrictions were designed to limit within-county activity as much as 

etween county activity, which we do not study in this paper. These effects may show 

c  

u

c

t

12 
ffects the estimate of local cases, suggesting people were still reacting

o public information about the virus. In column 4, we remove the lo-

al new case variable to make the comparison. Failure to include public

nformation about local cases causes a larger estimate of the marginal

ffect of government activity restrictions. 

Many of the worst outbreaks were in large counties in major metro

reas, so the regression may be picking up the drop in mobility from

hese hard-hit large areas. Column 5 scales the variable of interest, using

ew case per capita, and the results hold. Scaling by population also

ets up a way to compare across geographic areas. In column 6, we

imultaneously include new cases in the local county, the state, and the

arger region (census division). The results show significant effects at

ach spatial scale, but attenuating with distance, suggesting people are

ttuned to general conditions but most responsive to outbreaks in their

ocal areas. 

ppendix D. Cases predict the decline in mobility 

The next exercise is meant to show whether the effect of cases on trip

ates that we estimate in the gravity regression of Eq. (2) can predict the

ggregate declines described in Sections 2, Appendix B , and Appendix C .

Figure D1 plots the median mobility index from predicted values

rom the regression of Eq. (2) (column 3 from Table 1 ) alongside the

ctual mobility index from Figs. 1, B1 , and B2 . There are two versions

f the projection: one with the time dummies factored in and one with

hem excluded so that the projection relies only on case counts. 32 In

ither version, the projection does a remarkably good job of predicting

he fall in mobility, indicating that case avoidance was critically impor-

ant in explaining the drop in spatial activity. The version without time

ummies fails to predict two blips in activity–just before the emergency

eclaration and the depths of the trough in mid-April–but more notably,

t fails to predict the rise in mobility in mid to late May, as cases were

till fairly prevalent. These turning points in the pandemic seem to de-

iate somewhat from the average pattern during the escalation phase of

ase growth in late March and April 2020. A version of the projection
p in our measures to the extent that they depressed the number of active devices in a 

ounty, 𝑑 𝑗𝑡 . 
32 The time dummies are used in the regression in both cases. The difference is whether 

he time dummy coefficients are included in the projection. 
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Fig. D1. Actual and Projected Median Mobility Index Over Time. NOTES: The 

figure displays the median composite mobility index against the median mobil- 

ity index as projected by the coefficients from the Table 1 , column 3 estimate of 

(2) . One projection uses the time dummies in its forecasted values, and the other 

uses the coefficient estimates from the same model but omits the time dummies. 

Source: Authors’ calculations using data retrieved as described in Section 2 . 
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sing the stay-at-home orders produces similar results and only slightly

etter predicts the recovery in activity in May, as some restrictions were

elaxed. 

v  

Table E1 

Summary of Case Exposure. 

Time Mean SD 25th 

Last Week of March 296.2 553.1 122.8 

Last Week of April 798.3 937.2 321.1 

Last Week of May 1,035.1 942.1 483.9 

NOTES: The table reports summary statistics of

Eq. (3) for each listed point in time. Source: Au

described in Section 2 . 

able E2 

ources of Case Exposure. 

Panel A: Highly and Lesser Exposed Counties 

1 2 3 4

D

Counties, 𝑁 Average Total Cases Per V

Exposure Visits 1k Residents T

All, 2018 464.0 3.16 0.58 0

Lesser Exposed, 1968 451.6 3.17 0.56 0

Top 50 Most Exposed, 50 4,448.5 2.87 7.54 1

Panel B: Selected Cities 

1 2 3 4

D

Location, 𝑁 Counties Average Total Cases Per V

Exposure Visits 1k Residents T

Philadelphia, 11 2,456.2 3.04 3.48 1

Pittsburgh, 7 453.8 2.61 0.88 0

Chicago, 13 4,052.6 3.19 1.85 0

Miami, 3 959.4 1.42 2.50 0

Houston, 10 1,761.5 2.84 0.76 0

Los Angeles, 2 1,406.3 1.10 1.10 0

San Francisco, 5 410.0 2.19 0.97 0

OTES: The table reports summary statistics of the visit rates, cases per capita, and

ource: Authors’ calculations using data retrieved as described in Section 2 . 
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ppendix E. Measuring Case Exposure 

This appendix provides greater detail about nonlocal (out-of-county)

ase exposure as defined in Eq. (3) . 

1. Summary and analysis of case exposure 

Table E1 presents summary statistics of this exposure measure for the

ounties in our mobility sample at each checkpoint as the case summary

n Table A1 . This measure averages values in the hundreds, and like the

ases themselves, is highly skewed to the right tail. Exposure rose over

ime even as mobility fell because cases became more widespread. 

Exposure measured in this way could be high for a given county be-

ause of some combination of (i) high frequency of travel and (ii) travel

o high caseload areas. In Table E2 , we present some decompositions

o illustrate the source of higher exposures. The general pattern is that

ore exposed counties tend to have greater contact with extremely high

aseload areas and not necessarily higher levels of overall mobility. 

The upper panel of Table E2 shows statistics for the whole sample

nd for a split between the 50 highest exposure areas and the lesser

xposed areas. The highest exposure areas actually had relatively less

otal mobility on average, making outside county trips at a rate of 287

ercent compared to 317 percent for lesser exposed counties. (Recall

hat the mobility measure is a sum of binary event probabilities and can

herefore sum to more than 100.) 

The differences appear when splitting by destination. Columns 4, 5,

 and 7 show statistics for contact with destinations among the highest

wo percent of cases per capita in the U.S. The highest exposure areas

isited these drastically more often than the typical county, encounter-
50th 75th 90th 99th 

191.5 301.7 494.1 2,375.5 

506.8 897.2 1,554.2 5,316.3 

751.2 1,258.7 2,030.4 4,811.1 

 exposure to nonlocal cases as defined in 

thors’ calculations using data retrieved as 

 5 6 7 8 9 10 11 

estinations in Top 2 Pct. Of Cases Top 50 Destinations 

isits Visit Exposure Exposure Visits Visit Exposure Exposure 

o Share In Share To Share In Share 

.14 0.05 216.6 0.53 2.30 0.73 293.6 0.67 

.14 0.04 209.7 0.52 2.31 0.73 285.9 0.67 

.60 0.58 4,289.2 0.96 2.26 0.81 4,357.7 0.98 

 5 6 7 8 9 10 11 

estinations in Top 2 Pct. Of Cases New York Metro 

isits Visit Exposure Exposure Visits Visit Exposure Exposure 

o Share In Share To Share In Share 

.21 0.41 1,901.1 0.77 0.26 0.09 518.6 0.20 

.12 0.05 218.0 0.48 0.03 0.01 92.9 0.20 

.63 0.22 3,512.2 0.82 0.02 0.01 43.2 0.01 

.70 0.49 917.3 0.95 0.05 0.04 25.5 0.03 

.72 0.27 1,562.2 0.83 0.01 0.00 13.6 0.01 

.49 0.42 1,263.4 0.69 0.01 0.01 8.1 0.02 

.15 0.07 104.6 0.26 0.02 0.01 13.5 0.03 

 exposure to nonlocal cases as defined in Eq. (3) for each listed point in time. 



J. Brinkman and K. Mangum Journal of Urban Economics 127 (2022) 103384 

Fig. E1. Actual Exposure Compared With “Business As Usual ” Exposure. 

NOTES: The figure plots the median exposure index across the sample of coun- 

ties in the smartphone data. The unit of measure is number of cases per unit of 

mobility in the pre-pandemic period; its scale is comparable across counties. 
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33 Because our level of observation is county by week, we assemble small commuting 

zones of one or two counties into state-level units. 
34 This exercise was inspired by Wilson (2020) . We have experimented with several 
ng a high case area at a trip rate of 160 percent (or 58 percent share

f all out-of-county visits) versus 14 percent (4 percent share) for lesser

xposed counties. These high case areas comprise nearly all of a highly

xposed county’s exposures (and still a significant fraction of the lesser

xposed places too). 

As a benchmark, columns 8 to 11 show the travel to the counties’ top

0 most visited destinations. The more exposed counties did not travel

o their usual partners at any higher frequency than the lesser exposed,

ut they accumulated much more exposure because these partners had

arger outbreaks. Thus, exposure is largely a function of outbreak size

n a county’s usual network. 

To illustrate these patterns, the bottom panel of the table shows

tatistics for selected metro areas from various regions of the country

nd with differing levels of outbreaks. In this panel, we replace the “top

0 destinations ” with a particularly hard-hit region, the New York metro

rea. 

The cities of Philadelphia and Pittsburgh provide a telling exam-

le because, among several other similarities, they were both under

he guidance of the same state government, Pennsylvania. Philadel-

hia, however, had much greater exposure to high caseload areas in

he Northeast corridor, including a relatively high contact rate with the

ew York metro area. Hence, its case exposure level was far greater than

ittsburgh, and its size of outbreak far greater as well. 

2. Dynamics of exposure 

Next we examine the importance of changes in travel behavior on

xposure. To do so, we compare actual exposure to counterfactual ex-

osure measures that assume travel behavior did not change despite the

ncrease in cases. 

Figure E1 plots the median actual exposure, measured in counts of

ases, and the median exposure that would have obtained had each

ounty continued with business as usual. (To obtain these series, each

ounty’s exposure was scaled by its pre-pandemic mobility in order to

llow cross-sectional comparisons.) Clearly, the pullback in mobility sig-

ificantly altered the degree of outside exposure to virus cases: The me-

ian county would have been exposed to twice as many cases if travel

ehavior had not adjusted. 

In Table 2 in the main text, we decompose the differences in exposure

o understand the importance of declines in overall travel activity versus

he avoidance of highly affected locations. 

w

c

14 
ppendix F. New Cases and Exposure 

This appendix section provides additional robustness checks for the

ew cases model reported in Section 5, Table 3 . 

First, Table F1 presents robustness checks that focus on the spatial

ature of the outbreaks. Table 3 found that higher out-of-county case

xposure lead to higher levels of new cases added locally. However,

here was regional heterogeneity in the severity of the outbreak and

 predictable geographic component to the observed travel network,

nd thus an alternative explanation to the effect of exposure is spatial

orrelation in travel and case outcomes. In other words, the exposure

easure could be simply picking up overlap in the regional components

f each variable. 

Table 3 , column 3, addressed this question by comparing exposure

btained nearby and farther away counties, finding a significant role for

ach source of exposure. Column 1 of Table F1 provides another version

f this check, splitting exposure into in-state and out-of-state in order to

orrespond the level of governance at which most emergency policy was

anded down. We find results consistent with those in Table 3 . 

As another way to address the issue of spatial correlation, in columns

 to 5, we add to the OLS specification increasingly fine nonparametric

ontrols, interacting the week of observation with geographic areas from

egion to commuting zone. To some extent, this reduces variation we ac-

ually want to capture–that Pennsylvania, for example, is more exposed

o the New York metro area than, say, North Carolina. Hence, unsur-

risingly, the coefficients shrink as the spatial-temporal nonparametric

ontrols shrink narrower. Even so, we find statistically and economi-

ally significant effects of exposure. Column 5 uses the finest controls of

ommuting zone by week, 33 and the effect is mechanically smaller, but

till significant. While the controls soak up too much relevant variation

o be our preferred model, these specifications indicate that variation

n exposure even at the most local level is meaningfully predictive of

uture new cases added. 

Our baseline exposure measure followed the timing of the mobil-

ty data construction, weighting trips out from the focal county by the

ases encountered in the visited county. In columns 6 and 7 we experi-

ent with a reverse method of measuring exposure, the “exposure in ” in-

ex. This flips from our baseline, weighting visits by cases in the visited

ounty and applying to the focal county ( 𝐴 → 𝐵), to instead weighting

isits by cases from the focal counties into the visited counties ( 𝐵 → 𝐴 ).

ur preferred measure follows the time structure of the data (devices

oday observed in visited counties 1 to 13 days prior), but as we de-

cribed in Section 2 , the mobility data has no definitive notion of the

irection of a trip, so these measures turn out to be highly correlated,

nd the results look similar to the exposure out metric we use in the

aseline. They are not perfectly correlated, however, due to the timing

ifference, and when entered simultaneously, both show effect on new

ases added. 

Table F2 presents robustness checks for the new cases model featured

n Table 3 that focus on the instrumental variable specifications and the

obility alone index. Column 1 presents an alternative instrument for

xposure, a projected exposure using realized pre-pandemic mobility

eights. The coefficient arrives between the OLS and our preferred IV

stimates (columns 1 and 5 in Table 3 ), suggesting it reduces but does

ot eliminate the omitted variable bias present in the OLS specifications.

Columns 2 to 5 examine the mobility index separately from the ex-

osure measure. Columns 2, 3 and 4 use an instrument for mobility

erived from weather conditions, a predicted mobility from a regres-

ion model of total travel activity based on focal county weather and

 travel-weighted measure of visit county weather. 34 Column 2 enters
eather-based models and arrived at similar results with all of them. The observation 

ount falls because some counties lack weather observations. 
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Table F1 

Case Exposure and New Cases: Robustness to Spatial Definitions . 

1 2 3 4 5 6 7 

Model OLS OLS FE OLS FE OLS FE OLS FE OLS OLS 

Case Expo.: Visits Out 0.099 0.107 0.088 0.042 0.083 

(0.024) (0.027) (0.025) (0.018) (0.045) 

Case Expo.: Visits In 0.098 0.026 

(0.023) (0.022) 

Case Expo: Same State 0.075 

(0.018) 

Case Expo.: Other States 0.041 

(0.011) 

Lagged Local Case Growth 0.740 0.746 0.744 0.714 0.677 0.745 0.744 

(0.024) (0.028) (0.029) (0.032) (0.038) (0.029) (0.029) 

Within-County Device Expo. 0.123 0.143 0.142 0.190 0.203 0.118 0.118 

(0.050) (0.058) (0.062) (0.056) (0.048) (0.048) (0.047) 

Population 0.172 0.188 0.190 0.246 0.321 0.173 0.159 

(0.043) (0.035) (0.034) (0.036) (0.045) (0.039) (0.035) 

Pop. Density 0.040 0.033 0.029 0.025 0.021 0.048 0.047 

(0.011) (0.011) (0.012) (0.013) (0.013) (0.011) (0.011) 

Constant − 1.674 − 1.677 − 1.802 − 1.779 − 1.473 − 1.565 − 1.645 

(0.289) (0.361) (0.357) (0.337) (0.292) (0.358) (0.401) 

Level(s) Week Region Division State X CZ X Week Week 

Number 12 48 108 600 4427 12 12 

𝑅 2 0.861 0.863 0.865 0.863 0.865 0.861 0.861 

𝑁𝑇 24,038 24,038 24,038 24,038 24,038 24,038 24,038 

NOTES: The table reports regression results of the model represented by Eq. (4) . The outcome variable 

is the natural log of one plus the number of new cases in the county. The observation level is county 

by week. Standard errors are double clustered by state and week. Source: Authors’ calculations using 

data retrieved as described in Section 2 . 

Table F2 

Case Exposure and New Case: IV Specifications for Mobility . 

1 2 3 4 5 

Model IV IV IV IV IV 

Case Exposure 0.142 0.286 0.382 0.165 

(0.032) (0.040) (0.040) (0.076) 

Mobility Index − 0.008 − 0.023 − 0.028 0.011 

(0.005) (0.006) (0.005) (0.015) 

Lagged Local Case Growth 0.740 0.720 0.648 0.624 0.759 

(0.030) (0.027) (0.036) (0.036) (0.040) 

Within-County Device Expo. 0.112 0.289 0.465 0.524 − 0.043 

(0.048) (0.095) (0.106) (0.106) (0.194) 

Population 0.129 0.297 0.108 0.044 0.094 

(0.036) (0.059) (0.051) (0.053) (0.069) 

Pop. Density 0.043 0.073 0.022 0.005 0.045 

(0.009) (0.011) (0.021) (0.025) (0.011) 

Fixed Effects 

Level(s) Week Week Week Week Week 

Number 12 12 12 12 12 

Instrumented: 

Exposure y y y 

Mobility y y y y 

Instruments: 

Projected Exposure (Pre-period) y 

Projected Exposure (Model) y y 

Weather Conditions y y y 

Shutdown Orders y 

𝑅 2 0.805 0.806 0.802 0.794 0.793 

𝑁𝑇 24,038 18,205 18,205 18,205 24,038 

NOTES: The table reports regression results of the model represented by Eq. (4) . The 

outcome variable is the log number of new cases in the county. The observation level 

is county by week. Standard errors are double clustered by state and week. Source: 

Authors’ calculations using data retrieved as described in Section 2 . 
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w  
he mobility index alone to compare with column 2 of Table 3 . The co-

fficient is again negative, suggesting the issue is reverse causality and

ot its being conditionally negative only when exposure is included, and

he weather-based instruments do not affect this result. Neither does the

nstrument affect the result when exposure is included again in column

. Column 4 instruments for exposure with predicted exposure and for
15 
obility with weather, and the results are much the same. Finally, col-

mn 5 uses shutdown orders as instrument for mobility. These cause the

obility coefficient to turn positive, but it is small and not statistically

ifferent from zero. We note that shutdown orders–enacted when cases

ere rising and deemed a threat–probably fail the exclusion restriction.
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Table F3 

Case Exposure and New Cases: Robustness to Func- 

tional Form . 

1 2 3 4 

𝛼2 = 
1 
2 

1 3 
2 

2 

𝛼1 = 
1 
2 

[mean] [8.331] [10.86] [14.07] [17.63] 

Coef. 0.125 0.145 0.124 0.101 

(se) (0.032) (0.032) (0.023) (0.018) 

𝑅 2 0.859 0.860 0.860 0.860 

𝛼1 = 1 
[mean] [10.11] [12.48] [15.50] [18.93] 

Coef. 0.103 0.111 0.097 0.083 

(se) (0.033) (0.028) (0.021) (0.017) 

𝑅 2 0.860 0.861 0.861 0.861 

𝛼1 = 
3 
2 

[mean] [12.76] [14.87] [17.54] [20.68] 

Coef. 0.059 0.068 0.066 0.060 

(se) (0.019) (0.019) (0.016) (0.013) 

𝑅 2 0.860 0.861 0.861 0.861 

𝛼1 = 2 
[mean] [15.84] [17.75] [20.12] [22.91] 

Coef. 0.037 0.044 0.046 0.044 

(se) (0.012) (0.012) (0.012) (0.010) 

𝑅 2 0.859 0.860 0.860 0.861 

NOTES: The table reports robustness results for the 

model represented by Eq. (4) . The outcome variable 

is the log number of new cases in the county. The 

observation level is county by week. The table runs 

through different calibrations for the exponents in 

the exposure measure, Eq. (3) , as indicated by col- 

umn and row of the table. The means of the expo- 

sure metric are reported in each specification block 

in brackets. The boxed specification is the preferred 

model in Table 3 . Source: Authors’ calculations using 

data retrieved as described in Section 2 . 
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Table F3 reports robustness checks on the functional form of the

xposure-to-new cases model in Table 3 . We alter the baseline exposure

easure of (3) , using 

 𝑗𝑡 = 

∑

𝑖 ≠𝑗 

𝑚 
𝛼1 
𝑖𝑗𝑡 
𝑛 
𝛼2 
𝑖𝑡 
. 

Varying the exponents 𝛼1 and 𝛼2 changes the degree of variance at-

ributed to differences in mobility vis-a-vis contact with out-of-county

ases. Our baseline set 𝛼1 = 𝛼2 = 1 . In F3 , we use permutations of the ex-

onents in increments of 1/2 up to 2. The baseline regression, appearing

n Table 3 , is highlighted by a box in column 2. 

Coefficients decline mechanically as the mean of the index increases,

ut otherwise results are similar across specifications. The baseline

odel with unitary weights on the mobility components provides a
16 
lightly better fit. Over-weighting the mobility component relative to

he case count component depresses coefficients, likely because what

atters for variance in exposure is contact with high caseload areas

see Table E2 ). 

ppendix G. Alternative Calibrations of Spatial Autoregressive 

odel 

Figure G1 displays some alternative calibrations of the model in

ection 6 . We emphasize that we intend the model to be an illustrative

roof of concept and not a quantitative model. But in demonstrating the

oncept, it is useful to know how the size of the results is sensitive to

he underlying parameters. For brevity, the figure reports only the time

ath of new cases. Plots within Fig. G1 are on the same scale to facilitate

omparison, although the vertical axes are increased slightly relative to

ig. 2 ) to accommodate larger values. 

Panel A illustrates the impact of the exposure transmission rate, the

ate at which nonlocal exposure converts to local new cases. There are

ow and high scenarios: low transmission of 0.11 (from column 1 of

able 3 ), and high transmission of 0.21 (from column 5 of Table 3 ).

e use the higher transmission rate in our baseline because it derives

rom our preferred instrumental variable specification. In panel A1, the

odel assumes mobility is unresponsive to cases (i.e., Eq. (5c) is set to

), while A2 allows mobility to be reduced by the observation of cases.

he magnitude of the transmission rate is consequential in determining

he size of the steady level of new cases, especially when mobility is

ot responding to cases (and hence exposure is higher). An increase

rom 0.11 to 0.21 transmission rate leads new cases to be 70 percent

igher when mobility does not react to cases and 23 percent higher

hen mobility does respond. 

Panel B illustrates the impact of the baseline mobility rate, the de-

ree of connectedness between locations. There are low and high sce-

arios: low mobility of a 7.5 percent visit rate, the calibration featured

n Section 6 , representative of two highly connected but spatially dis-

inct economic areas (e.g., New York and Philadelphia metro areas), and

igh mobility of a 10 percent visit rate, typical of same-commuting zone

ounties. In the high mobility calibrations, the distant county visit rate

s also increased by one third from 0.55 percent to 0.72 percent. In panel

1, the model assumes mobility is unresponsive to cases, while B2 al-

ows mobility to be reduced by the observation of cases. The magnitude

f the mobility rate is greatly important in determining the size of the

teady level of new cases, especially when mobility is not responding to

ases. An increase in the baseline mobility of just one third leads new

ases to double when mobility does not react to cases. When mobility

oes respond, the increase in baseline mobility causes cases to rise 32

ercent. 
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Fig. G1. Simulated Viral Spread Across Loca- 

tions Under Alternative Calibrations. NOTES: 

The figures report the time path of new 

cases from the dynamic system represented by 

Eqs. (5a) , (5b) , and (5c) . Figures are labeled 

with the county location. The ‘1’ panels ignore 

mobility response to cases, while the ‘2’ pan- 

els uses the change in mobility from Table 1 . In 

Panel A, each figure has a line from each of two 

scenarios quantifying transmission rate from 

nonlocal exposure as measured by Table 3 : 

- A1. Low transmission, column 1, nonlocal 

transmission rate of 0.11, local transmission of 

0.74; - A2. High transmission, column 2, nonlo- 

cal transmission rate of 0.21, local transmission 

of 0.73 (used in Fig. 2 ). 

In Panel B, each figure has a line from each 

of two scenarios specifying the initial mobil- 

ity rate: - B1. Low Connectedness of 7.5% visit 

rate between connected and 0.55% visit rate 

between distant locations (used in Fig. 2 ); - B2. 

High Connectedness of 10% visit rate between 

connected and 0.72% visit rate between distant 

locations; Source: Authors’ calculations using 

estimates from Tables 1 and 3 . 

R

A  

B  

C  

 

C  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eferences 

talay, E. , Fujita, S. , Mahadevan, S. , Michaels, R. , Roded, T. , 2020. Reopening the econ-

omy: what are the risks, and what have states done? Res. Brief . 

ailey, M. , Cao, R. , Kuchler, T. , Stroebel, J. , Wong, A. , 2018. Social connectedness: mea-

surement, determinants, and effects. J. Econ. Perspect. 32 (3), 259–280 . 

hinazzi, M. , Davis, J.T. , Ajelli, M. , Gioannini, C. , Litvinova, M. , Merler, S. , Piontti, A.P.y. ,

et al. , 2020. The effect of travel restrictions on the spread of the 2019 novel coron-

avirus (COVID-19) outbreak. Science 368 (6489), 395–400 . 

hristakis, N.A. , Fowler, J.H. , 2010. Social network sensors for early detection of conta-

gious outbreaks. PLoS ONE 5 (9) . 

Courtemanche, C. , Garuccio, J. , Le, A. , Pinkston, J. , Yelowitz, A. , 2020. Strong social

distancing measures in the united states reduced the COVID-19 growth rate: study

evaluates the impact of social distancing measures on the growth rate of confirmed

COVID-19 cases across the united states. Health Aff. 10–1377 . 

Couture, V. , Dingel, J.I. , Green, A.E. , Handbury, J. , Williams, K.R. , 2021. JUE insight:

measuring movement and social contact with smartphone data: a real-time application

to COVID-19. J. Urban Econ. . 

Coven, J. , Gupta, A. , 2020. Disparities in Mobility Responses to COVID-19. NYU Stern

Working Paper . 

Coven, J. , Gupta, A. , Yao, I. , 2020. Urban Flight Seeded the COVID-19 Pandemic Across

the United States. SSRN 3711737 . 

 

17 
Dingel, J.I. , Neiman, B. , 2020. How Many Jobs Can be Done at Home? No. w26948. Na-

tional Bureau of Economic Research . 

Engle, S. , Stromme, J. , Zhou, A. , 2020. Staying at Home: Mobility Effects of COVID-19.

Available at SSRN . 

Fajgelbaum, P. , Khandelwal, A. , Kim, W. , Mantovani, C. , Schaal, E. , 2020. Optimal Lock-

down in a Commuting Network. No. w27441. National Bureau of Economic Research .

Fang, H. , Wang, L. , Yang, Y. , 2020. Human Mobility Restrictions and the Spread of the

Novel Coronavirus (2019-nCoV) in China. No. w26906. National Bureau of Economic

Research . 

Farboodi, M. , Jarosch, G. , Shimer, R. , 2020. Internal and External Effects of Social Dis-

tancing in a Pandemic. No. w27059. National Bureau of Economic Research . 

Fenichel, E.P. , Berry, K. , Bayham, J. , Gonsalves, G. , 2020. A cell phone data driven time

use analysis of the COVID-19 epidemic. medRxiv . 

Giannone, E. , Paixao, N. , Pang, X. , 2020. Pandemic in an Inter-Regional Model - Staggered

Restart. Manuscript (2020) . 

Glaeser, E.L. , Gorback, C.S. , Redding, S.J. , 2020. JUE insight: how much does COVID-19

increase with mobility? Evidence from new york and four other u.s. cities. J. Urban

Econ. . 

Guerrieri, V. , Lorenzoni, G. , Straub, L. , Werning, I. , 2020. Macroeconomic Implications

of COVID-19: Can Negative Supply Shocks Cause Demand Shortages? No. w26918.

National Bureau of Economic Research . 

Gupta, S. , Nguyen, T.D. , Rojas, F.L. , Raman, S. , Lee, B. , Bento, A. , Simon, K.I. , Wing, C. ,

2020. Tracking Public and Private Response to the COVID-19 Epidemic: Evidence

http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0001
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0001
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0001
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0001
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0001
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0001
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0002
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0002
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0002
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0002
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0002
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0002
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0003
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0004
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0004
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0004
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0005
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0005
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0005
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0005
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0005
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0005
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0006
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0006
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0006
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0006
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0006
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0006
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0007
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0007
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0007
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0008
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0008
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0008
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0008
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0009
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0009
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0009
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0010
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0010
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0010
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0010
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0011
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0011
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0011
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0011
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0011
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0011
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0012
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0012
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0012
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0012
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0013
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0013
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0013
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0013
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0014
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0014
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0014
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0014
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0014
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0015
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0015
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0015
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0015
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0016
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0016
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0016
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0016
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0017
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0017
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0017
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0017
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0017
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018


J. Brinkman and K. Mangum Journal of Urban Economics 127 (2022) 103384 

 

J  

K  

 

K  

 

K  

 

M

W

from State and Local Government Actions. No. W27027. National Bureau of Economic

Research . 

ohns Hopkins University Coronavirus Resource Center, 2020. https://

coronavirus.jhu.edu/ . 

aplan, G. , Moll, B. , Violante, G.L. , 2020. The Great Lockdown and the Big Stimulus:

Tracing the Pandemic Possibility Frontier for the US. No. w27794. National Bureau

of Economic Research . 
18 
raemer, M.U.G. , Yang, C.-H. , Gutierrez, B. , Wu, C.-H. , Klein, B. , Pigott, D.M. , Plessis, L.D. ,

et al. , 2020. The effect of human mobility and control measures on the COVID-19

epidemic in China. Science 368 (6490), 493–497 . 

uchler, T. , Russel, D. , Stroebel, J. , 2021. JUE insight: the geographic spread of COVID-19

correlates with structure of social networks as measured by facebook. J. Urban Econ. .

onte, F. , 2020. Mobility Zones. No. w27236. National Bureau of Economic Research . 

ilson, D.J. , 2020. Weather, social distancing, and the spread of COVID-19. medRxiv . 

http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0018
https://coronavirus.jhu.edu/
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0020
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0020
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0020
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0020
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0021
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0022
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0022
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0022
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0022
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0023
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0023
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0024
http://refhub.elsevier.com/S0094-1190(21)00066-8/sbref0024

	JUE Insight: The Geography of Travel Behavior in the Early Phase of the COVID-19 Pandemic
	1 Introduction
	2 Declining travel at the onset of the pandemic
	3 The changing geography of travel activity
	4 Case avoidance and the effect on exposure
	5 The effect of exposure on new case growth
	6 Geographic connectedness and virus spread
	7 Conclusion
	Credit Author Statement
	Appendix A Data
	A1 Case prevalence
	A2 Measuring travel behavior from smartphones
	A3 Measuring local activity from smartphones

	Appendix B Dynamics of the Mobility Indices
	B1 Out-of-county mobility index
	B2 Within-county mobility index

	Appendix C Mobility and Local Case Counts
	Appendix D Cases predict the decline in mobility
	Appendix E Measuring Case Exposure
	E1 Summary and analysis of case exposure
	E2 Dynamics of exposure

	Appendix F New Cases and Exposure
	Appendix G Alternative Calibrations of Spatial Autoregressive Model
	References


