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Abstract
Glycosylation is a common posttranslational modification, and glycan biosynthesis is regulated by a set of glycogenes. The role of
transcription factors (TFs) in regulating the glycogenes and related glycosylation pathways is largely unknown. In this work, we
performed data mining of TF–glycogene relationships from the Cistrome Cancer database (DB), which integrates chromatin
immunoprecipitation sequencing (ChIP-Seq) and RNA-Seq data to constitute regulatory relationships. In total, we observed 22,654
potentially significant TF–glycogene relationships, which include interactions involving 526 unique TFs and 341 glycogenes that
span 29 the Cancer Genome Atlas (TCGA) cancer types. Here, TF–glycogene interactions appeared in clusters or so-called commu-
nities, suggesting that changes in single TF expression during both health and disease may affect multiple carbohydrate structures.
Upon applying the Fisher’s exact test along with glycogene pathway classification, we identified TFs that may specifically regulate
the biosynthesis of individual glycan types. Integration with Reactome DB knowledge provided an avenue to relate cell-signaling
pathways to TFs and cellular glycosylation state. Whereas analysis results are presented for all 29 cancer types, specific focus is
placed on human luminal and basal breast cancer disease progression. Overall, the article presents a computational approach to
describe TF–glycogene relationships, the starting point for experimental system-wide validation.
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Introduction
The glycan signatures of cells and tissue are controlled by the
expression pattern of 300–350 glycosylating-related genes that
are together termed glycogenes [1,2]. These glycogenes include

the glycosyltransferases, glycosidases, sulfotransferases, trans-
porters, etc. The expression of these glycogenes is in turn driven
by the action of a class of proteins called transcription factors

https://www.beilstein-journals.org/bjoc/about/openAccess.htm
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Figure 1: A systems glycobiology framework to link multi-OMICs data. a) Cell signaling proceeds to trigger TF activity. The binding of TFs to sites
proximal to the TSS triggers glycogene expression. A complex set of reaction pathways then results in the synthesis of various carbohydrate types,
many of which are either secreted or expressed on the cell surface. b) Data available at various resources can establish the link between cell
signaling and glycan biosynthesis. The Reactome DB contains cell signaling knowledge. Chip-Seq and RNA-Seq data available at the Cistrome
Cancer DB describe the link between the TFs and glycogenes. Pathway curation at GlycoEnzDB establishes the link between glycogenes and glycan
structures. Cell illustration created using BioRender (https://biorender.com/).

(TFs). These TFs regulate gene expression by binding proximal
to the promoter regions of genes, facilitating the binding of
RNA polymerases. They may homotropically or heterotropi-
cally associate with additional TFs in order to directly or indi-
rectly control messenger RNA (mRNA) expression. Among the
TFs, some “pioneer factors” can pervasively regulate gene regu-
latory circuits and access chromatin despite it being in a
condensed state [3]. These TFs act as “master regulators”,
promoting the expression of several genes across many
signaling pathways, such as differentiation, apoptosis, and cell
proliferation. The precise targets of the TFs are controlled by
their tissue-specific expression, DNA binding domains, and
nucleosome interaction sequences [3]. Additional factors regu-
lating transcriptional activity include: i) cofactors and small
molecules that enable TF-DNA recognition and RNA poly-
merase recruitment [3]; ii) chromatin modifications, such as
acetylation, methylation, and phosphorylation, which alter TF
access; and iii) methylation of CpG islands in promoter regions
that inhibit gene expression [4,5].

There are currently several isolated studies of TF–glycogene
interactions, but a systematic “systems-level analysis” is absent.
Many of these previous studies are based on discrete glycogene
promoter region analysis and reporter assays. These studies
have established some notable TF–glycogene relationships,
though they are limited to distinct cell types. Examples include
the regulation of MGAT5 by ETS2 in NIH3T3 fibroblasts [6],
control of the α2-6 sialyltransferases ST6Gal-I/II by hypoxic

nuclear factor 1-α (HNF1-α) in HepG2 cells [7], c-JUN-
B3GNT8 regulatory relationships in gastric carcinoma cell lines
[8], and SP1-B4GALT1 relations in lung cancer A549 cells [9].
A recent study also used computational predictions and wet-lab
experiments to determine that ZNF263 is a potential heparin
sulfate master regulator [10]. This TF regulates two sulfotrans-
ferases, HS3ST1 and HS3ST3A1. The above approaches have
limitations: i) they do not consider the cellular epigenetic state
that could impact TF binding; ii) proximal regulators are
studied, but enhancers present several kilobases away from the
transcription state site (TSS) are neglected; and iii) most
of these reported TF–glycogene relationships only have
partial support in established bioinformatics databases
(DBs, see Supporting Information File 1). Thus, these are
limited hypothesis-based investigations that do not describe the
breadth of the regulatory landscape, based on current know-
ledge.

In the current article, we propose that more global and higher-
throughput TF–glycogene relationships under biologically rele-
vant conditions may be discovered using multiomics data
mining. To this end, we sought to utilize multiomics experimen-
tal datasets and curated pathway DBs to relate cell-specific
signaling processes to TFs, TFs to glycogenes, and glycogenes
to glycosylation pathways (Figure 1A). These connections were
made using data available from Cistrome Cancer DB [11],
Reactome DB [12], and by the manual curation of various
human glycogenes into pathways at GlycoEnzDB (https://virtu-

https://biorender.com/
https://virtualglycome.org/GlycoEnzDB
https://virtualglycome.org/GlycoEnzDB
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alglycome.org/GlycoEnzDB, Figure 1B). Here, the Cistrome
Cancer DB uses TF–gene binding data from previously
published chromatin immunoprecipitation sequencing (ChIP-
Seq) studies for various cell systems and cancer tissue RNA-
Seq data from the Cancer Genome Atlas (TCGA) [13]. It
provides putative TF–gene relationships for 29 TCGA cancer
types provided they satisfy three inclusive criteria: i) TFs
should be expressed at a high level in a given tissue; ii) changes
in TF gene expression should correlate with RNA changes in
target genes; and iii) ChIP-Seq data must support the TF–gene
binding proximal to the TSS. Next, knowledge curated in the
Reactome DB [12] was used to establish links between TFs and
signaling pathways. In the final step, manually curated glyco-
gene classifications were utilized to determine TFs that dispro-
portionately regulate individual glycosylation pathways. It is
important to note that the findings from this study represent
computational inferences that are yet to be validated in the wet
lab. Nevertheless, it provides a systems-based framework for
the design and analysis of studies that link TFs to glycosylation
pathways and glycan structures.

Results
TF–glycogene interaction map and relation to
cell signaling pathways
The article follows a workflow shown in Figure 2. It mines
TF–glycosylation pathway relationships from the Cistrome
Cancer DB [14], which involves curating TF–gene relation-
ships by integrating ChIP-Seq data from Cistrome DB and
RNA-Seq data from TCGA. The Cistrome Cancer DB uses
three filtering criteria to determine putative TF–gene relation-
ships: i) The TF should be active in a cancer type, i.e., the reads
per kilobase million (RPKM) value in a cancer type must be
greater than the median RPKM expression of the TF across all
29 different cancer types; ii) the RNA expression of the TF and
target gene should be correlated. To determine this, Cistrome
first compares the selected TF–gene correlation with a null dis-
tribution computed by randomly selecting 1 million TF–gene
pairs. Linear regression and statistical analysis are then per-
formed on the top 5% hits (positive and negative coefficients) to
establish TF–gene correlations. This analysis accounts for target
gene copy number, tumor purity, and promoter methylation
extent; and iii) TF–gene relationships must be supported by
ChIP-Seq evidence. Here, a nonlinear weighted sum called
regulatory potential (RP) quantifies the strength of TF–gene
interactions based on the proximity of TF binding site to the
gene TSS and also the number of TF–gene binding interactions
based experimentally detected ChIP peaks [15,16].

In the current article, we passed the TF–gene relationships
established in Cistrome Cancer DB to identify TFs potentially

Figure 2: Analysis workflow: ChiP-Seq provides evidence of TF
binding to promoter regions with 0 ≤ RP ≤ 1, quantifying the likelihood
that this is functionally important. RNA-Seq quantifies Spearman’s
correlation (ρ) between TF and gene expression. Filtering these data
establishes potential TF–glycogene interactions in specific cancer
types. TFs disproportionately regulating specific glycosylation path-
ways were identified using the above TF–glycogene relationships as
well as biochemical knowledge available at GlycoEnzDB (green
region). Reactome DB analysis helped to establish cell signaling-
TF–glycosylation pathway connectivity that are visualized using allu-
vial plots. Independently, Cytoscape maps enabled visualization of
TF–glycogene relationships in different cancer types (orange region).
Clusters in the resulting interactomes were related to pathway maps
and signaling processes, and thus developing TF–community signaling
pathway relationships.

interacting with 341 glycogenes (Supporting Information File 3,
Table S1). The two metrics for this selection were RP ≥ 0.5 and
TF–glycogene expression correlation coefficient ρ ≥ 0.4. Such
analysis was performed for 29 cancer types listed in Supporting
Information File 3 (Table S2). Based on our selected thresh-
olding, the analysis revealed 22,654 potential TF–glycogene
interactions. The above data were used for two types of analy-
sis described below. Here, the number of putative TF–glyco-
gene relationships can be tuned by modifying the RP and ρ
values.

https://virtualglycome.org/GlycoEnzDB
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First, the Fisher’s exact test was used to infer TF–glycogene
interactions that may regulate individual glycosylation path-
ways. This analysis was based on pathway classifications from
GlycoEnzDB (Supporting Information File 3, Table S3) that
grouped 208 glycogenes into 20 glycosylation pathways/groups.
TFs having a disproportionately larger number of relationships
with individual glycosylation pathways were determined with
respect to all TF–glycogene relationships. Reactome DB was
then used to associate these TFs to potential signaling pathways.
This resulted in a relationship between cell signaling, TF activi-
ty regulation, and glycan structure changes (Supporting Infor-
mation File 3, Tables S4 and S5). The data are presented as
alluvial plots for the 29 cancer types (Supporting Information
File 1). Here, the TFs were linked to glycosylation pathways by
colored bands if they were found to regulate a disproportion-
ately high fraction of glycogenes belonging to that pathway.
Likewise, biological pathways were linked with TFs if that TF
was found to be enriched in the biological pathway. Reading
these alluvial plots from the left to the right, one can deduce
which biological pathways may be potentially involved in regu-
lating TFs, and how these TFs could regulate glycosylation.

Second, we visualized TF–glycogene interactions using
Cytoscape maps for each of the cancer types individually (Sup-
porting Information File 2). Regulatory modules were identi-
fied with graph clustering methods to identify groups of TFs
that regulate common groups of glycogenes. Using our glyco-
sylation pathway definitions, we used Fisher’s exact test to
describe what kinds of glycosylation pathways were dispropor-
tionately over-represented in each cluster. This analysis
revealed 335 glycopathway enrichments in the TF–glycogene
communities across the 29 cancer types (Supporting Informa-
tion File 3, Table S6). Next, we determined, using the Reac-
tome DB overrepresentation API, if the TFs identified in these
clusters could be related to specific cell signaling pathways.
Here, we noted 901 pathway enrichments across the different
cancer types (Supporting Information File 3, Table S7).
Common TFs that we observed across all TF–glycogene
communities include the TCF and LEF families, FOXO and
FOXP, the RUNX family, and IRF family TFs, which were
found to regulate diverse glycosylation pathways, such as sialy-
lation pathways, complex N-linked glycan synthesis, as well as
chondroitin and dermatan sulfate synthesis.

Overall, the above analysis revealed the existence of communi-
ties of TF–glycogene relationships that could be linked to both
cell signaling processes and specific glycosylation pathways.

TF–pathway relationships in breast cancer
We provide a more detailed description of our findings in breast
cancer as an example. This disorder appears in 5 unique molec-

ular subtypes based on the PAM50 classification [17]. These
include the following: i) normal-like; ii) and iii) luminal A and
luminal B, respectively, which overexpress estrogen receptor
ESR1; iv) Her2+ tumors, which overexpress the epidermal
growth factor receptor (ERBB); and v) basal (triple negative),
which express neither ESR1 nor ERBB. Each of these subtypes
has unique signaling mechanisms that may contribute to differ-
ent glycan signatures.

In our analysis, TF–glycogene relationships for breast cancer
derived by filtering Cistrome Cancer DB were enriched for the
glycosylation pathways. Figure 3 summarizes these cancer-
related TF–glycosylation pathway relationships for luminal
(type A and B together) and basal breast cancer. Here, glycans
potentially affected by the enriched TFs are shown in SNFG
format [18,19]. The analysis suggests that TF transformations
accompanying cancer progression may impact all four major
classes of glycans: O- and N-glycans found on glycoproteins,
glycosaminoglycans, and glycolipids. Thus, multiple glycan
changes may accompany oncological transformation.

TF–glycogene communities in luminal and
basal breast cancer
Cytoscape plots were generated for luminal breast cancer
(Figure 4a). Here, using the bipartite graph community detec-
tion methods [20], we identified three large communities of
TF–glycogene interactions. The largest community detected in
this analysis had TFs enriched for RUNX3 signaling, IL-21
signaling, MECP2, and PTEN regulation. Overrepresentation
glycosylation pathway analysis performed on the TFs in this
community suggests that these TFs may regulate pathways
related to sialylation, hyaluronan synthesis, as well as chon-
droitin and dermatan sulfate elongation. Here, STAT1, 4, and 5
proteins were enriched in the IL-21 signaling pathway. Luminal
breast cancer types are known to express STAT1 and 3 as well
as STATs 2 and 4. STAT5 is known to be constitutively active
in luminal breast cancer and confers antiapoptotic characteris-
tics to cells [21]. The other two communities detected consisted
primarily of chromatin-modifying enzymes. Complex N-linked
glycan synthesis and the dolichol pathway were significantly
enriched in the second community. In the third community,
O-linked mannose and LacdiNAc synthesis were disproportion-
ately regulated. Overall, the pathway maps suggest that chro-
matin remodeling enzymes could potentially play roles in regu-
lating glycan synthesis in luminal breast cancer.

Like luminal, basal breast cancer TF–glycogene relationships
were also clustered into three communities. Here, the first
community was enriched for chromatin-modifying enzymes,
with complex N-linked glycan synthesis being the primary
glycosylation pathway being affected (Figure 5a). The second
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Figure 3: Summary of TFs enriched to glycosylation pathways for luminal and basal breast cancer: The TFs found to be enriched to glycosylation
pathways and the glycogenes they regulate are shown in pink for luminal and orange for basal breast cancer. Note that some of the TFs shown above
do not appear in the alluvial plots in the subsequent figures because they were not enriched to a signaling pathway in Reactome. The glycans synthe-
sized by the enriched glycogenes are shown in SNFG format [18]. All figures were generated using DrawGlycan-SNFG [19].

Figure 4: Luminal breast cancer signaling pathway enrichment and glycogene connections. a) TF-to-glycogene communities in luminal breast cancer:
Three large TF-to-glycogene communities were discovered in the luminal breast subnetwork. Community 1 was enriched for pathways involving
RUNX3, RUNX1, IL-21, and PTEN. Communities 2 and 3 consist primarily of chromatin-modifying enzymes. b) Signaling pathway enrichment analy-
sis for luminal breast cancer: Connections between signaling pathways and TFs found to be statistically significant for luminal breast cancer. Some
pathways enriched to TFs were condensed to conserve space. More TF-to-glycogene relationships exist in luminal breast cancer and these can be
viewed in the Cytoscape figures (Supporting Information File 1).
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Figure 5: Basal breast cancer signaling pathway enrichments and glycogene connections. a) TF-to-glycogene communities in basal breast cancer:
Three large TF-to-glycogene communities were discovered in the basal breast subnetwork. Community 1 has TFs enriched to chromatin-modifying
enzymes, and community 2 has TFs enriched to interferon α/β/γ signaling. Community 3 did not have any signaling pathways enriched. b) Signaling
pathway enrichment analysis for basal breast cancer: Connections between signaling pathways and TFs found to be statistically significant for basal
breast cancer. TFs displayed have been enriched to the displayed glycosylation pathways using Fisher's exact test.

community was enriched for interferon α/β/γ signaling path-
ways, with interferon regulatory factor (IRF) TFs being
enriched. In this regard, the TFs IRF-1 and IRF-5 have been
shown to act as tumor suppressors in breast cancer [22,23].
Their loss of function in breast cancer could potentially down-
regulate O-linked fucosylation. The third community did not
exhibit any specific TF pathway enrichments.

Linking cell signaling to TF and glycogenes
for luminal breast cancer
The links between biological signaling pathways, TFs, and
glycosylation pathways are shown in alluvial plots for luminal
(Figure 4b) and basal breast cancer (Figure 5b), with additional
plots provided for additional cancer types in Supporting Infor-
mation File 1 for luminal breast cancer.

CREB3L4 and PRDM1 disproportionately affect the type I
and II LacNAc pathway in luminal breast cancer: Our anal-
ysis suggests that CREB3L4 (enrichment p-value = 0.036) and
PRDM1 (enrichment p-value = 0.039) may regulate the type 1
and 2 LacNAc pathways. CREB3L4 is known to primarily be
expressed in the prostate and some breast cancer cell lines and
has been linked to diverse roles involving chromatin organiza-
tion in spermiogenesis, adipocyte regulation, and dysregulation
in prostate cancer [24,25]. It has been found to be upregulated
in breast cancer with respect to normal-like. PRDM1, also

known as Blimp-1, is a transcriptional repressor, and its upregu-
lation in cancer is known to dysregulate other proteins [26]. The
increase poly-LacNAc structures have been shown to play roles
in cancer metastasis [27]. CREB3L4 was found to regulate
B4GALT3 glycogene (ρ = 0.56, RP = 0.94), which adds galac-
tose in a β1-4 linkage. PRDM1 was found to regulate B3GNT5,
which is critical for lacto/neolacto series of glycolipids
(ρ = 0.60, RP = 0.84).

MEF2C disproportionately regulates glycosaminoglycan
synthesis pathways: MEF2C was found to regulate several
genes in the chondroitin and dermatan sulfate synthesis path-
ways (p = 0.008). This TF plays roles in development, particu-
larly in the development of neurons and hematopoietic cell dif-
ferentiation towards myeloid lineages. It is known that MEF2C
is directly impacted by TGF-β signaling, and thus increasing the
metastatic potential of cancer [28]. MEF2C was found to be in-
hibited by MECP2 based on Reactome pathway enrichment.
Since the glycosaminoglycan elongation pathways positively
correlate to MEFC2 expression and MEFC2 is amplified in
cancer, it is possible that MECP2 may not be sufficiently
expressed to repress MEFC2 in call cancer cells. MEF2C was
found to regulate CSGALNACT1 (ρ = 0.66, RP = 0.71),
CHST3 (ρ = 0.50, RP = 0.74), CHST11 (ρ = 0.47, RP = 0.84),
DSEL (ρ = 0.40, RP = 0.81), and UST (ρ = 0.42, RP = 0.95).
Here, CSGALNACT1 is responsible for the addition of GalNAc
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to glucuronic acid to increase chondroitin polymer length,
CHST3, CHST11, and UST are involved in the sulfation of
GalNAc and iduronic acid, and DSEL is the epimerase which
converts glucuronic acid to iduronic acid in CS/DS chains.

MECP2 disproportionately regulates heparan sulfate chain
elongation: The MECP2 (enrichment p-value = 0.037) was
found to positively regulate heparan sulfate elongation. MECP2
regulates gene expression by binding to methylated promoters
and then by recruiting chromatin remodeling proteins to
condense DNA and repress gene expression [29,30]. MECP2
was found to regulate sulfotransferase NDST1 (ρ = 0.41,
RP = 0.67).

Linking cell signaling to TF and glycogenes
for basal breast cancer
Fewer TFs were found to be enriched to signaling pathways in
basal breast cancer compared to luminal cancer (Figure 4b).
Despite this, there are many other TF–glycosylation pathway
enrichments for basal breast cancer available for analysis in
Supporting Information File 1. The roles of two enriched
TFs and their relation to glycogenes and cancer is elaborated
below.

RUNX3 and fucosylation: The terminal fucosyltransferase
FUT7 (ρ = 0.49, RP = 0.89) was found to be positively regu-
lated by the RUNX3 TF (enrichment p-value = 0.033). The
RUNX family of TFs (including RUNX1–3), are involved in
several developmental processes, including hematopoiesis,
immune cell activation, and skeletal development. It was
discovered that RUNX3 acts as a tumor suppressor gene in
breast cancer. Upon cancer development, the RUNX3 promoter
is hypermethylated, leading to reduced TF activity and loss of
tumor suppression activity [31]. Our data suggest that this may
be associated with a reduction of FUT7 activity, and thus
impacting the expression of the sialyl Lewis-X antigens in basal
tumors. Sialyl Lewis-X is considered to be an important regu-
lator of cancer metastasis as it binds the selectins on various
vascular and blood cell types.

Regulation of GalNAc-type O-linked glycans by SMAD2:
SMAD2 was found to significantly affect core 1 and 2 O-linked
glycan structures (enrichment p-value = 0.035). SMAD pro-
teins are activated by TGF-β signaling and bind to DNA to act
as cofactors to recruit TFs. SMAD2 has been shown to act as a
tumor metastasis suppressor in cell lines [32,33]. This TF was
found to regulate GALNT1 (ρ = 0.54, RP = 1.00), which adds
GalNAc to serine or threonine residues to being core 1 and 2
O-linked glycan synthesis. Thus, SMAD2 may play a key role
in regulating Tn antigen expression in proteins such as MUC-1
that are associated with breast cancer progression.

Refinement of TF–glycopathway
enrichments after false discovery correction
The number of enrichments above is high. In order to reduce the
findings to a smaller set, we applied the Benjamini–Hochberg
correction to our TF–glycopathway enrichments. While
possibly reducing false positives, this may also reduce true posi-
tives. Nevertheless, after this correction, a total of 121
TF–glycopathway enrichments were found to be statistically
significant across all cancer types (Figure 6 and Supporting
Information File 3, Table S8). Here, basal breast cancer
(BRCA_2), adrenocortical carcinoma (ACC), liver hepatocel-
lular carcinoma (LIHC), lung squamous cell carcinoma
(LUSC), and skin cutaneous melanoma (SKCM) did not have
any TFs enriched to any glycopathway, and thus are not
depicted.

Filtering our TF–glycopathway enrichments illuminates the fact
that pancreatic cancer shows a high degree of enrichment to the
GalNAc-type O-glycan pathways, which is consistent with our
prior experiments [34]. FOXA1 (Padj = 0.00096), KLF5
(Padj = 0.0012), MECOM (Padj = 0.029), and TCF7L2
(Padj = 0.000087) were found to regulate several GalNAc trans-
ferases. FOXA1 is an important regulatory TF involved in the
development of endoderm-derived organs. Upon pancreatic
cancer development, FOXA1 expression is known to decrease,
which drives the epithelial to mesenchymal transition [35].
Kruppel-like factor 5 (KLF5) is commonly upregulated in
several cancer types and promotes pancreatic cancer prolifera-
tion by targeting the cell cycle [36]. MECOM (also known as
PRDM3) is a nuclear TF known to ablate inflammatory
responses and tumorigenesis in pancreatic cancer contexts [37].
Transcription factor 7-like 2 (TCF7L2) is regulated by Wnt
β-catenin signaling. This TF is important in gluconeogenesis in
the liver, adipogenesis, regulation of hormone synthesis, and
pancreas homeostasis. TCF7L2 exhibits polymorphisms which
results in loss of function and can promote metastatic pheno-
types in colorectal cancer [38]. O-Linked glycosylation via
GALNT3 and B3GNT3 has been shown to regulate differentia-
tion of pancreatic cancer stem cells [39]. FOXA1 (RP = 0.97,
ρ = 0.49) and KLF5 (RP = 0.71, ρ = 0.68) were found to regu-
late GALNT3, and KLF5 (RP = 0.98, ρ = 0.67) and TCF7L2
(RP = 0.95, ρ = 0.62) were found to regulate B3GNT3. Since
KLF5 and TCF7L2 have been shown to be upregulated in
pancreatic cancer stem cells, it would be interesting to validate
if GALNT3 and B3GNT3 are driven by any of these TFs.

Discussion
In the current analysis, we mined public high-throughput ChIP-
Seq and RNA-Seq data to identify putative TF–glycogene rela-
tionships across 29 different cancer types. Approximately three
glycogenes were regulated by a given TF based on our filtering
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Figure 6: Summary of TF–glycopathway enrichments across all cancer types: TF enrichments to glycopathways across all cancer types are depicted
as dots (Fisher’s exact test adjusted P < 0.05 for overrepresentation). The dot size corresponds to the number of TFs that were found to regulate the
pathway. The degree of regulation is defined as the sum of all −log10 (adjusted enrichment p-values) across all TFs for a given cancer–glycopathway
pair.

criteria, with this number ranging from 1–10. These findings are
tissue-specific, as TF and glycogene expression vary widely
among the different cell types. The analysis also suggests puta-
tive TF–glycogene interactions that disproportionately impact
specific glycosylation pathways. Knowing which TF regulates
which glycogene and pathway in a context-dependent manner
can provide insight as to how signaling pathways contribute to
altered glycan structures in diseases such as diabetes and
cancer. Thus, this work represents a rich starting point for wet-
lab validation and glycoinformatics DB construction.

Visualizing TF–glycogene interaction networks revealed
communities of glycogenes in each cancer type. The presence
of chromatin-modifying enzymes in large regulatory communi-
ties in both luminal and basal breast cancer suggests a role of
epigenetics in glycogene regulation. To date, a systems-level in-
vestigation evaluating the epigenetic states of cell systems on
the resulting glycome has not been performed. Our results
suggest that complex N-linked branching and glycosylation
may be sensitive to these processes. The signaling pathways
enriched in the largest community in luminal breast cancer were
reflected in our pathway enrichment findings. RUNX3, inter-
leukin signaling, and the involvement of MECP2 regulation
were all found to disproportionately regulate sialic acid and
GAG synthesis pathways.

Several of the TFs enriched to glycosylation pathways were
either regulated by or involved in TGF-β signaling and Wnt
β-catenin signaling. These TFs primarily affected glycosamino-
glycan synthesis pathways, sialylation, and type-2 LacNAc syn-
thesis. Cell cycle and metabolic regulatory TFs were shown to
regulate some glycogenes involved in the dolichol pathway.
The crosstalk between cell cycle and glycosylation is not well
explored and may potentially be important for understanding
N-linked glycosylation flux in cancer. Some TFs were found to
interact with methyl CpG-binding TFs when regulating
glycosaminoglycan proteins, implicating methylation as a
possible modulator of glycosylation in cancer.

Our TF–glycogene relationships, mined from Cistrome Cancer
DB, represent a starting point for experimentally discovering
the TFs regulating glycosylation. The findings would likely
vary between cell types, and thus additional efforts are neces-
sary before a wet-lab-validated framework emerges. Orthogo-
nal datasets containing other ChIP-Seq and omics data may also
enhance in silico validation. Some examples include: i) data
from the Gene Transcription Regulatory Database (GTRD)
[40], which has analyzed publicly available ChIP-Seq data with
multiple algorithms to systematically catalog TF–gene relation-
ships across several organisms and cellular contexts; ii) the
Regulatory Circuits DB [41], which relies on the activity of
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promoter and enhancer regions through cap analysis of gene
expression (CAGE), TF motif instances, and expression quanti-
tative trait loci (eQTL) to evaluate weights (evidence scores) for
TF–gene isoform relationships; and iii) integration of
TF-binding motifs, protein–protein interactions, and coexpres-
sion networks using data from GTEx and a method called
PANDAS [42]. Such analyses represent next steps in this proj-
ect, as extensive data harmonization is required for cross-plat-
form validation. Care should be taken when integrating these
data, however, as the kind of omics data, degree of experimen-
tal evidence, and the statistical approaches taken by other inves-
tigators can influence the set of TF–gene relationships found. In
addition to in silico validation, perturbational experiments, such
as performing CRISRP-Cas9 knockouts with single-cell RNA-
Seq, followed by glycomics/glycoproteomics-based mass spec-
trometry, would further support the proposed TF–glycogene
relationships [43].

Some caveats in our analysis are important to note. First, we
only used selected values of RP and ρ to filter TF–glycogene
relationships from the Cistrome Cancer DB. Further studies are
needed in order to determine how the selected thresholds affect
the discovered relationships. A full list of TF–glycogene rela-
tionships found Cistrome Cancer DB are provided in Support-
ing Information File 3 (Table S9) for readers to test alternative
thresholds. Second, the glycogenes in individual pathways in
this article were classified using current knowledge of glycobi-
ology. Different classification methods meant to address differ-
ent glycosylation pathways may result in different TF–glyco-
pathway enrichments [44]. Third, while Cistrome Cancer DB
systematically filters TF–gene relationships based on ChIP-Seq
and RNA-Seq evidence, the DB has some biases. In one aspect,
only TFs that were considered to be sufficiently expressed were
considered in this analysis. Lower expressed TFs that may also
be functional are excluded. Additionally, while RNA-Seq rela-
tionships in Cistrome Cancer DB are selected based on the spe-
cific tissue type, supporting ChIP-Seq evidence is not cell-type-
specific. Regardless of these limitations, the current study
presents a framework for thinking in the glycosciences, so that
knowledge of genes and transcripts can be linked to glycans and
their function [2].

Conclusion
A majority of current studies in the Glycoscience field use ex-
perimental data and curations related to glycans only. Fewer in-
vestigations examine the links between the glycans, glycogenes
and glycosylation pathways, and other nonglyco datasets. We
set out to identify these relationships by mining publicly-avail-
able data. Using this, we describe putative regulatory relation-
ships between TFs and glycogenes across 29 cancer types.
Some TFs appear to regulate glycogenes in communities, indi-

cating potential cross-talk across pathways in regulating glyco-
sylation. The communities varied with cancer type, even in a
single tissue, suggesting that these TF–glycogene interactions
are dynamic in nature. Groups of TFs enriched to glycosylation
pathways were also associated with signaling pathways. Thus, a
connection between cell signaling, TF activity and glycosyla-
tion begins to emerge. Overall, the putative TF–glycosylation
pathway enrichments found here represent the starting point for
wet-lab and orthogonal dataset validation. Such studies could
enhance our fundamental understanding of glycosylation path-
way regulation, and lead to novel ways to control the glyco-
genes and glycan structures during health and disease.

Experimental
Glycogene-pathway classification
A list of 208 unique glycogenes involved in 20 different glyco-
sylation pathways were used in this work (Supporting Informa-
tion File 3, Table S3). These data were collated from
GlycoEnzDB (https://virtualglycome.org/GlycoEnzDB), with
original data coming from various sources in literature [45,46].
The following is a summary of the pathways studied and the en-
zymes involved:

1) Glycolipid core: The enzymes in this group are involved in
the biosynthesis of the glucosylceramide (GlcCer) and galacto-
sylceramide (GalCer) lipid core. Here, the GlcCer core is
formed by the UDP-glucose:ceramide glucosyltransferase
(UGCG), which transfers the first glucose. Following this,
lactosylceramide is formed by the action of the β1-4GalT activi-
ty of B4GalT5 (and possibly also B4GalT3, 4, and 6). The
GalCer core is typically structurally small and is made by UDP-
Gal:ceramide galactosyltransferase (UGT8). These structures
can be further sulfated by GAL3ST1 or sialylated by
ST3GAL5.

2) P1-Pk blood group: The Pk, P1, and P antigens are synthe-
sized on lactosylceramide glycolipid core. The activity of
α1-4GalT (A4GALT) on this core results in the Pk antigen, fol-
lowed by β1-3GalNAcT (B3GALNT1) to form the P antigen.
The P1 antigen, on the other hand, is formed by the sequential
action of β1-3GlcNAcT (B3GNT5), β1-4GalT (B4GALT1-6),
and α1-4GalT (A4GALT) on the glycolipid core.

3) Gangliosides: This pathway encompasses all glycogenes re-
sponsible for synthesizing a/b/c gangliosides. UGCG is
included to consider the addition of glucose to ceramide.
ST3GAL5 and ST8SIA enzymes are added to take the core
ganglioside structures to the a, b, and c levels. B4GALTs and
B4GALNT1 are included to account for ganglioside elongation.
Decoration of the gangliosides with sialic acid occurs using
ST6GALNAC3-6 and also ST8SIA1/3/5.

https://virtualglycome.org/GlycoEnzDB
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4) Dolichol pathway: This results in the formation of the
dolichol-linked 14-monosaccharide precursor oligosaccharide.
This glycan is cotranslationally transferred en bloc onto Asn-X-
Ser/Thr sites of the newly synthesized protein as it enters the
endoplasmic reticulum. The enzymes involved is such synthe-
sis include the ALG (asparagine-linked N-glycosylation) en-
zymes and additional proteins (part of OSTA and OSTB)
involved in the transfer of the glycan to the nascent protein.

5) Complex N-glycans: This pathway includes glycogenes re-
sponsible for processing the N-linked precursor structure
emerging from the dolichol pathway into complex structures.
Enzymes involved include mannosidases, glucosidases, some
enzymes facilitating protein folding, and also enzymes that
direct acid hydrolases to the lysosome.

6) N-glycan branching: These glycogenes are responsible for
the addition of GlcNAc to processed N-linked glycan structures.
These include all the MGAT enzymes.

7) GalNAc-type O-glycans: O-linked glycans are attached to
serine (Ser) or threonine (Thr) on peptides, where GalNAc is
the root carbohydrate. This is mediated by a family of about 20
Golgi-resident polypeptide N-acetylgalactosaminyltransferases
(ppGalNAcTs or GALNTs). Core 1 structures result from the
attachment of β1-3 linked galactose to the core GalNAc using
C1GALT1 and the corresponding chaperone C1GALT1C1.
Core 2 structures then form upon addition of β1-6-linked
GlcNAc by GCNT1. Modifications of core 3 and core 4 glycans
can occur during disease, and thus this classification includes
core 3-forming B3GNT6 and core 4-forming GCNT3. Other
O-glycan core types are rare in nature.

8) Chondroitin sulfate and heparan sulfate initiation: Chon-
droitin and heparan sulfate glycosaminoglycans all have a
common core carbohydrate sequence attaching them to the cor-
responding proteins. These are constructed by the activity of
specific xylotransferases (XYLT1 and XYLT2), galactosyl-
transferses B4GALT7 and B3GALT6 that sequentially add two
galactose residues to xylose, and the glucuronyltransferase
B3GAT3 that adds glucuronic acid to the terminal galactose.
Also involved in the formation of this core is FAM20B, a
kinase that 2-O-phosphorylates xylose. At this point, the addi-
tion of GalNAc to GlcA by CSGALNACT1 and 2 results in the
initiation of chondroitin sulfate chains. The attachment of
GlcNAc by EXTL3 to the same GlcA results in heparan
sulfates.

9) Chondroitin sulfate and dermatan sulfate extension:
Chondroitin sulfates and dermatan sulfates are extended via the
addition of GalNAc-GlcA repeat units. This is catalyzed by

CSGALNACT1, which is better suited for the initial GalNAc
attachment, followed by CSGALNACT2, which is preferred for
synthesizing disaccharide repeats. CHSY1, CHSY3, CHPF, and
CHPF2 all exhibit dual β1-3GlcAT and β1-4GlcAT activity.
Additional enzymes mediate sulfation. Epimerization of
glucuronic acid to iduronic acid by DSE and DSEL results in
the conversion of chondroitin sulfates to dermatan sulfates.

10) Heparan sulfate extension: EXT1 and EXT2 both have
GlcUA and GlcNAc transferase activities and are together re-
sponsible for HS chain polymerization. EXTL1–3 are addition-
al enzymes with GlcNAc transferase activity that facilitate
heparin sulfate biosynthesis. Additional enzymes that are criti-
cal for heparin sulfate function include the HS2/3/6ST sulfo-
transferases, the GlcA epimerase GLCE, and additional en-
zymes mediating N-sulfation (i.e., NDSTs).

11) Hyaluronan synthesis: This pathway consists of the three
hyaluronan synthases, HAS1–3.

12) Glycophosphatidylinositol (GPI) anchor extension:
This pathway includes glycogenes responsible for the synthesis
of GPI-anchored proteins in the ER. This involves the synthesis
of a glycan–lipid precursor that is en bloc transferred to pro-
teins.

13) O-Mannose: This is initiated by the addition of mannose to
Ser/Thr using POMT1 or POMT2. β1-2 or β1-4 GlcNAc link-
ages can then be made using POMGNT1 or POMGNT2 to yield
M1 or M3 O-linked mannose structures, respectively.
MGAT5B can facilitate β1-4 GlcNAc linkage onto the M1
structure to yield the M2 core. Additional carbohydrates typi-
cally found on complex N-linked glycan antennae can then be
attached. In particular, such extensions may be initiated by
members of the B4GALT family or B3GALNT2. Specific vari-
ants are noted on α-dystroglycans.

14) O-linked fucose: This pathway includes POFUT1, the en-
zyme responsible for the addition of fucose to Ser/Thr residues.
MFNG, LFNG, and RFNG can attach β3GlcNAc to this fucose.

15) Type 1 and 2 LacNAc: These enzymes help construct
either Galβ1-3GlcNAc (type 1) or Galβ1-4GlcNAc (type 2)
lactosamine chains on antennae of N-linked glycan, O-linked
glycans, and glycolipids. Also included are GCNT1–3 that can
facilitate formation of I-branches on N-glycans.

16) Sialylation: This group encompasses all kinds of sialyl-
transferases: ST6GAL, ST3GAL, ST8SIA, and ST6GALNACs.
Enrichments to this pathway capture overall increase in sialyla-
tion regardless of context.
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17) Fucosylation: these include α1-2 (FUT1, 2) and α1-3
(FUT3–7, 9) fucosyltransferases that can act on N-glycans,
O-glycans and glycolipids.

18) ABO blood group synthesis: these are enzymes involved
in the biosynthesis of ABO antigens.

19) LacDiNAc: glycogenes involved in the synthesis of LacD-
iNac structures.

20) Sulfated glycan epitopes: this includes the enzymes
attaching sulfate to different types of carbohydrates.

Mining TF–glycogene relationships in
Cistrome Cancer DB
Regulatory potential and gene correlation data were down-
loaded from the Cistrome Cancer DB in tab-delimited form
(http://cistrome.org/CistromeCancer/CancerTarget/) [14].
TF–gene relationships were filtered for the 341 glycogenes in
this article (Supporting Information File 3, Table S1). In total,
the full dataset contained 45,238 TF-to-glycogene relationships,
including relational data for 570 unique TFs found in the
29 cancer systems across all the glycogenes. Positive regula-
tory relationships between TFs and glycogenes were selected
based on RP ≥ 0.5 and ρ ≥ 0.4 (Figure 2). This filtering resulted
in 22,654 TF–glycogene relationships including 526 unique TFs
across 29 cancer types.

Cytoscape was used to visualize TF–glycogene regulatory rela-
tionships [47]. To achieve this, all TF–glycogene relationship
data were loaded into Cytoscape as a network. These data were
filtered based on RP and ρ thresholds defined previously. A
binding potential (BP) score was computed by taking the prod-
uct of RP and ρ for each TF–glycogene relationship. TF–glyco-
gene relationships for each cancer type were separated into
subnetworks. The Prefuse Force Directed Layout algorithm in
Cytoscape was used to arrange nodes in each cancer subnet-
work. The closeness of nodes to one another is weighted by
1-BP. Thus, nodes with high BPs will be placed closer together,
whereas smaller BPs will be placed further away. Since there
are two classes of nodes (TFs and glycogenes), we treated
TF–glycogene networks as bipartite and applied the correspond-
ing procedure for community detection [20]. Firstly, the bipar-
tite TF–glycogene graphs are projected into two different
unipartite graphs, where TFs and glycogenes are placed
into separate graphs. The edge weights connecting TFs is
computed as the number of shared glycogenes they regulate.
The TF unipartite graph was then subjected to a greedy
modularity optimization-based approach implemented in
the igraph R package [48]. TF–glycogene interactions in
each community were subjected to overrepresentation

analyses to identify enriched signaling and glycosylation path-
ways.

Relating TF–glycogene interactions to
glycosylation and signaling pathways
A one-sided Fisher’s exact test was applied to determine if a
particular TF disproportionately regulates one of the 20 glyco-
sylation pathways described in Supporting Information File 3
(Table S3). Input data to the test consisted of all TF–gene inter-
actions that passed the RP and ρ thresholds for the cancer type
being analyzed. TFs were considered to be disproportionately
regulating a glycosylation pathway if Fisher’s exact test resulted
in a p-value ≤ 0.05. These p-values were then adjusted using the
Benjamini–Hochberg method to identify the strongest enrich-
ments across all cancer types.

TFs enriched to glycosylation pathways were associated
with putative regulatory pathways using the Reactome DB
overrepresentation analysis API, which also uses Fisher’s
exact test, to associate the TFs with signaling pathways
[12].  Signaling pathway enrichments with adjusted
p(FDR) < 0.1 were kept. A high p-value cutoff was chosen
to allow users to gain a high-level perspective as to what
potential pathways may be regulating enriched TFs. The
connection between cell signaling pathways and TFs and
that between the TFs and glycosylation pathways were
visualized using alluvial plots generated using the R package
ggalluvial. Only signaling pathways with <30 members are
presented for brevity. A comprehensive listing of enriched
signaling pathways is available in Supporting Information File 3
(Table S5).

Supporting Information
Supporting Information File 1
Comparison of wet-lab studies and entries in DBs as well
as Alluvial plots for all cancer types.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-17-119-S1.pdf]

Supporting Information File 2
Cistrome Cancer TF-to-glycogene subnetworks.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-17-119-S2.cys]

Supporting Information File 3
Supplementary tables.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-17-119-S3.zip]
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