Skip to main content
. 2021 Jul 13;15:659410. doi: 10.3389/fnhum.2021.659410

Table 4.

Binary sentiment analysis results of the multi-modal model using the recurrent EEG decoding component.

Randomly initialized GloVe BERT
Model P R F1 (std) P R F1 (std) P R F1 (std)
Baseline 0.572 0.573 0.552 (0.07) 0.751 0.738 0.728 (0.08) 0.900 0.899 0.893 (0.04)
+ noise 0.599 0.574 0.541 (0.08) 0.721 0.715 0.709 (0.09) 0.914 0.916 0.913 (0.03)
+ ET 0.615 0.605 0.586 (0.06) 0.795 0.786 0.781 (0.06) 0.913 0.907 0.904 (0.05)
+ EEG full 0.540 0.538 0.525 (0.06) 0.738 0.729 0.725 (0.07) 0.913 0.909 0.906 (0.04)
+ EEG θ 0.602 0.599 0.584* (0.08) 0.789 0.785 0.783+ (0.05) 0.917 0.916 0.913* (0.04)
+ EEG α 0.610 0.590 0.565 (0.05) 0.763 0.758 0.753 (0.05) 0.912 0.908 0.906 (0.03)
+ EEG β 0.587 0.578 0.555 (0.07) 0.781 0.777 0.774+ (0.06) 0.911 0.911 0.907* (0.04)
+ EEG γ 0.614 0.591 0.553 (0.08) 0.777 0.773 0.769* (0.07) 0.917 0.917 0.915* (0.04)
+θ+α+β+γ 0.597 0.597 0.569 (0.08) 0.766 0.764 0.760* (0.07) 0.913 0.913 0.911* (0.04)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score with asterisks:

*

denotes p < 0.05 (uncorrected), + denotes p < 0.003 (Bonferroni corrected p-value).