Table 4.
Binary sentiment analysis results of the multi-modal model using the recurrent EEG decoding component.
Randomly initialized | GloVe | BERT | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | P | R | F1 (std) | P | R | F1 (std) | P | R | F1 (std) |
Baseline | 0.572 | 0.573 | 0.552 (0.07) | 0.751 | 0.738 | 0.728 (0.08) | 0.900 | 0.899 | 0.893 (0.04) |
+ noise | 0.599 | 0.574 | 0.541 (0.08) | 0.721 | 0.715 | 0.709 (0.09) | 0.914 | 0.916 | 0.913 (0.03) |
+ ET | 0.615 | 0.605 | 0.586 (0.06) | 0.795 | 0.786 | 0.781 (0.06) | 0.913 | 0.907 | 0.904 (0.05) |
+ EEG full | 0.540 | 0.538 | 0.525 (0.06) | 0.738 | 0.729 | 0.725 (0.07) | 0.913 | 0.909 | 0.906 (0.04) |
+ EEG θ | 0.602 | 0.599 | 0.584* (0.08) | 0.789 | 0.785 | 0.783+ (0.05) | 0.917 | 0.916 | 0.913* (0.04) |
+ EEG α | 0.610 | 0.590 | 0.565 (0.05) | 0.763 | 0.758 | 0.753 (0.05) | 0.912 | 0.908 | 0.906 (0.03) |
+ EEG β | 0.587 | 0.578 | 0.555 (0.07) | 0.781 | 0.777 | 0.774+ (0.06) | 0.911 | 0.911 | 0.907* (0.04) |
+ EEG γ | 0.614 | 0.591 | 0.553 (0.08) | 0.777 | 0.773 | 0.769* (0.07) | 0.917 | 0.917 | 0.915* (0.04) |
+θ+α+β+γ | 0.597 | 0.597 | 0.569 (0.08) | 0.766 | 0.764 | 0.760* (0.07) | 0.913 | 0.913 | 0.911* (0.04) |
We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score with asterisks:
denotes p < 0.05 (uncorrected), + denotes p < 0.003 (Bonferroni corrected p-value).