Skip to main content
. 2021 Jul 13;15:659410. doi: 10.3389/fnhum.2021.659410

Table 7.

Binary sentiment analysis results of the multi-modal model using the convolutional EEG decoding component.

Randomly initialized GloVe BERT
Model P R F1 (std) P R F1 (std) P R F1 (std)
Baseline 0.572 0.573 0.552 (0.07) 0.751 0.738 0.728 (0.08) 0.900 0.899 0.893 (0.04)
+ noise 0.558 0.584 0.528 (0.11) 0.780 0.767 0.762 (0.06) 0.895 0.887 0.883 (0.05)
+ ET 0.617 0.623 0.610 (0.07) 0.790 0.790 0.783 (0.06) 0.896 0.887 0.881 (0.05)
+ EEG full 0.588 0.583 0.572 (0.04) 0.778 0.774 0.772+ (0.05) 0.928 0.927 0.926* 0.03
+ EEG θ 0.564 0.569 0.535 (0.08) 0.805 0.792 0.791+ (0.04) 0.922 0.919 0.917* (0.03)
+ EEG α 0.596 0.593 0.563 (0.08) 0.775 0.781 0.772* (0.08) 0.920 0.917 0.916* (0.03)
+ EEG β 0.605 0.597 0.580 (0.08) 0.802 0.797 0.792+ (0.05) 0.920 0.914 0.914* (0.04)
+ EEG γ 0.640 0.625 0.611+ (0.09) 0.787 0.780 0.776+ (0.05) 0.905 0.905 0.901 (0.04)
+θ+α+β+γ 0.599 0.579 0.558 (0.07) 0.800 0.794 0.786+ (0.05) 0.909 0.910 0.907 (0.04)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score with asterisks:

*

denotes p < 0.05 (uncorrected), + denotes p < 0.003 (Bonferroni corrected p-value).