Table 7.
Binary sentiment analysis results of the multi-modal model using the convolutional EEG decoding component.
Randomly initialized | GloVe | BERT | |||||||
---|---|---|---|---|---|---|---|---|---|
Model | P | R | F1 (std) | P | R | F1 (std) | P | R | F1 (std) |
Baseline | 0.572 | 0.573 | 0.552 (0.07) | 0.751 | 0.738 | 0.728 (0.08) | 0.900 | 0.899 | 0.893 (0.04) |
+ noise | 0.558 | 0.584 | 0.528 (0.11) | 0.780 | 0.767 | 0.762 (0.06) | 0.895 | 0.887 | 0.883 (0.05) |
+ ET | 0.617 | 0.623 | 0.610 (0.07) | 0.790 | 0.790 | 0.783 (0.06) | 0.896 | 0.887 | 0.881 (0.05) |
+ EEG full | 0.588 | 0.583 | 0.572 (0.04) | 0.778 | 0.774 | 0.772+ (0.05) | 0.928 | 0.927 | 0.926* 0.03 |
+ EEG θ | 0.564 | 0.569 | 0.535 (0.08) | 0.805 | 0.792 | 0.791+ (0.04) | 0.922 | 0.919 | 0.917* (0.03) |
+ EEG α | 0.596 | 0.593 | 0.563 (0.08) | 0.775 | 0.781 | 0.772* (0.08) | 0.920 | 0.917 | 0.916* (0.03) |
+ EEG β | 0.605 | 0.597 | 0.580 (0.08) | 0.802 | 0.797 | 0.792+ (0.05) | 0.920 | 0.914 | 0.914* (0.04) |
+ EEG γ | 0.640 | 0.625 | 0.611+ (0.09) | 0.787 | 0.780 | 0.776+ (0.05) | 0.905 | 0.905 | 0.901 (0.04) |
+θ+α+β+γ | 0.599 | 0.579 | 0.558 (0.07) | 0.800 | 0.794 | 0.786+ (0.05) | 0.909 | 0.910 | 0.907 (0.04) |
We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score with asterisks:
denotes p < 0.05 (uncorrected), + denotes p < 0.003 (Bonferroni corrected p-value).