Skip to main content
. 2021 Jul 13;15:659410. doi: 10.3389/fnhum.2021.659410

Table 8.

Ternary sentiment analysis results of the multi-modal model using the convolutional EEG decoding component.

Randomly initialized GloVe BERT
Model P R F1 (std) P R F1 (std) P R F1 (std)
Baseline 0.408 0.384 0.351 (0.07) 0.510 0.507 0.496 (0.06) 0.722 0.714 0.710 (0.05)
+ noise 0.359 0.388 0.334 (0.09) 0.494 0.484 0.476 (0.07) 0.715 0.683 0.684 (0.05)
+ ET 0.417 0.399 0.372 (0.05) 0.509 0.512 0.500 (0.07) 0.721 0.687 0.670 (0.05)
+ EEG full 0.365 0.384 0.333 (0.08) 0.488 0.484 0.476 (0.06) 0.738 0.724 0.723+ (0.04)
+ EEG θ 0.389 0.372 0.330 (0.06) 0.511 0.495 0.477 (0.06) 0.727 0.718 0.716+ (0.05)
+ EEG α 0.357 0.382 0.331 (0.11) 0.534 0.525 0.515+ (0.06) 0.732 0.715 0.713+ (0.04)
+ EEG β 0.425 0.418 0.378 (0.08) 0.534 0.529 0.520+ (0.05) 0.727 0.717 0.715 (0.04)
+ EEG γ 0.404 0.406 0.360 (0.08) 0.539 0.521 0.514 (0.06) 0.733 0.725 0.721+ (0.04)
+θ+α+β+γ 0.384 0.402 0.354 (0.10) 0.517 0.504 0.488 (0.05) 0.733 0.717 0.715 (0.06)

We report precision (P), recall (R), F1-score and the standard deviation (std) between five runs. The best results per column are marked in bold. Significance is indicated on the F1-score with asterisks: * denotes p < 0.05 (uncorrected), + denotes p < 0.003 (Bonferroni corrected p-value).