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1Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria; 2Interdisciplinary Sleep Medicine Center, Charité-Universitätsmedizin Berlin, Berlin, Germany;
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Study Objectives: The objective of this study was to evaluate interrater reliability between manual sleep stage scoring performed in 2 European sleep centers
and automatic sleep stage scoring performed by the previously validated artificial intelligence–based Stanford-STAGES algorithm.
Methods: Full night polysomnographies of 1,066 participants were included. Sleep stages were manually scored in Berlin and Innsbruck sleep centers and
automatically scored with the Stanford-STAGES algorithm. For each participant, we compared (1) Innsbruck to Berlin scorings (INN vs BER); (2) Innsbruck to
automatic scorings (INN vs AUTO); (3) Berlin to automatic scorings (BER vs AUTO); (4) epochs where scorers from Innsbruck and Berlin had consensus to
automatic scoring (CONS vs AUTO); and (5) both Innsbruck and Berlin manual scorings (MAN) to the automatic ones (MAN vs AUTO). Interrater reliability was
evaluated with several measures, including overall and sleep stage-specific Cohen’s κ.
Results: Overall agreement across participants was substantial for INN vs BER (κ = 0.66 ± 0.13), INN vs AUTO (κ = 0.68 ± 0.14), CONS vs AUTO (κ = 0.73 ±
0.14), and MAN vs AUTO (κ = 0.61 ± 0.14), and moderate for BER vs AUTO (κ = 0.55 ± 0.15). Human scorers had the highest disagreement for N1 sleep (κN1 =
0.40 ± 0.16 for INN vs BER). Automatic scoring had lowest agreement with manual scorings for N1 and N3 sleep (κN1 = 0.25 ± 0.14 and κN3 = 0.42 ± 0.32 for
MAN vs AUTO).
Conclusions: Interrater reliability for sleep stage scoring between human scorers was in line with previous findings, and the algorithm achieved an overall
substantial agreement with manual scoring. In this cohort, the Stanford-STAGES algorithm showed similar performances to the ones achieved in the original
study, suggesting that it is generalizable to new cohorts. Before its integration in clinical practice, future independent studies should further evaluate it in
other cohorts.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Recent years have seen an increasing number of automatic methods based on artificial intelligence to perform
sleep stage scoring. Generalizability to new datasets constitutes a key factor for integration of these algorithms in clinical practice. Here, we independently
investigate generalizability of the previously validated Stanford-STAGES algorithm to a new cohort of more than 1,000 participants.
Study Impact: To our knowledge, this is the first study proposing a large-scale and independent evaluation of a previously validated algorithm for sleep
stage scoring. The Stanford-STAGES algorithm seems to be generalizable to new unseen cohorts, but other studies should further validate it in new cohorts
with different patient groups, with the perspective of integrating it in clinical practice.

INTRODUCTION

According to international standards redacted by the American
Academy of Sleep Medicine (AASM),1 sleep evaluation is
performed by recording of video polysomnography (PSG) and
sleep epochs lasting 30 seconds are manually scored by human
sleep experts as either wakefulness (W), rapid eye movement
(REM) sleep, non–REM sleep stage 1 (N1) sleep, non–REM
sleep stage 2 (N2) sleep, or non–REM sleep stage 3 (N3) sleep.
Manual sleep stage scoring has some important drawbacks,

including time consumption and the requirement of highly
trained personnel. Furthermore, as AASM rules to score sleep
are prone to a degree of subjective interpretation, sleep staging is
prone to interrater variability.2–7

Automatic sleep staging methods would significantly reduce
the time needed for analysis of video PSGs and would also
overcome the problem of interrater variability.8 Starting from
the late 1960s,9 hundreds of different methods for automated
sleep stage scoringhavebeenproposed (seePenzel et al,10 Boostani
et al,11 Lajnef et al,12 and Fiorillo et al13 for comprehensive
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reviews). However, such methods are still not used in clinical
routine. This is because of many reasons, which include (1) the
fact that most methods were validated only in cohorts with
young healthy controls and are thus unreliable when applied to
patients with sleep disorders; and (2) the lack of validation of
these methods in different cohorts, thus not ensuring their
generalizability to different populations.13,14

Because of the increase of computational power and the
availability of large datasets, the last years saw the increasing
development of automatic methods that use artificial intelli-
gence techniques (ie, based on deep neural networks). Com-
pared with automated methods based on other techniques,
algorithms based on artificial intelligence can easily deal with
large amount of data and can directly learn patterns from data,
without the need of humans to define relevant features for
correct sleep stage classification. These methods have shown
promising performances in terms of agreement with manual
sleep stage scoring.13

Among these methods, the Stanford-STAGES algorithm15

(a software program written in Python performing both auto-
mated sleep stage scoring as well as automatic identification of
narcolepsy patients based on automatic analysis of PSG sig-
nals; available at https://github.com/stanford-stages/stanford-
stages, accessed March 5, 2020) seems to be a promising tool
to be introduced in clinical sleep practice,16 mainly for 2
reasons. First, it showed good agreement with manual sleep
stage scoring in 4 different databases including healthy controls
and patients.15 Second, the algorithm describes sleep as a dy-
namic process, where each sleep epoch is represented as
a mixture of W, N1, N2, N3, and REM sleep. Such a dynamic
way of representing sleep has been shown to hold relevant
physiologic information to identify patients with narcolepsy
type 115 and might also help to identify and diagnose other
sleep disorders.

However, the Stanford-STAGES algorithm has only been
tested in 1 study, and thus does not guarantee its generaliz-
ability to other cohorts and populations. The aim of this study
is to evaluate interrater reliability (IRR) for sleep stage
scoring between human scorers from 2European sleep centers
and the automatic Stanford-STAGES algorithm in a cohort of
more than 1,000 participants.

METHODS

Study participants
The participants included in this study were part of Study of
Health in Pomerania-TREND, which is 1 of the 2 cohorts
within the framework of the Study of Health in Pomerania17

in northeastern Germany. Of the 4,420 participants included in
the Study of Health in Pomerania-TREND baseline examina-
tions, 1,249 underwent an optional 1-night full PSG. Because
183 participants were excluded for technical issues, our final
study population included 1,066 participants. The population-
based study was approved by the ethical committee of the
University ofGreifswald,Germany. The presented analysiswas
additionally approved by the ethical committee of the Medical
University of Innsbruck, Austria.

PSG recordings and manual sleep scoring
Specific details concerning PSG recordings have been pre-
viously described.18 Briefly, PSGs were recorded according to
the AASM 2007 standards19 with ALICE 5 devices (Philips
Respironics, Eindhoven, The Netherlands), and the re-
cordings included electroencephalogram (EEG; 6 deriva-
tions: F4A1, C4A1, O2A1, F3A2, C3A2, and O1A2), 2
electrooculographic channels, electromyogram recorded at
chin and both anterior tibialis muscles, 1 electrocardiogram
channel, pulse oximetry, nasal pressure, inductive pleth-
ysmography detecting respiratory effort, tracheal micro-
phone, and body position sensor. EEG, electrooculographic,
and electromyogram signals were sampled at 200 Hz. PSG
recordings were digitally transferred in European Data
Format (EDF) to the University Hospital Charité, Center of
Sleep Medicine Berlin, Germany, where 30-second sleep
epochs were manually scored by certified sleep technicians
according to the AASM 2007 criteria.18,19 Scoring of respira-
tory events was also performed according to AASM 2007,18,19

and the apnea-hypopnea index (AHI) was calculated for each
participant. As part of a research collaboration, the EDF files
were also transferred to the Sleep Laboratory of the Department
of Neurology, Medical University of Innsbruck (Austria), where
the same sleep 30-second epochs were manually scored by 1
experienced sleep technician according to AASM 2012
criteria.20,21 Furthermore, limb and periodic limb movements
(PLMS) were scored and the PLMS index calculated for
each participant.21

Automatic sleep stage scoring
To automatically score PSGs, the Python code of the Stanford-
STAGES algorithmwas retrieved from the repositories indicated
in theoriginal publication15 (https://github.com/stanford-stages/
stanford-stages, accessed March 5, 2020), and the provided
instructions for installation and setup of the code were carefully
followed to ensure correct implementation.

Figure 1 shows an overview of the steps of the automatic
scoring. EDF files were given as input to the algorithm,
which automatically performed the following steps. First,
chin electromyogram, left and right electrooculographic
signals, and 1 central (C3 or C4) and 1 occipital (O1 or O2)
EEG signals referencing to the contralateral mastoid (A2 or
A1, respectively) were extracted from the EDF file. The
algorithm automatically selected whether to use the left or
right EEG channels by choosing the less noisy ones fol-
lowing the procedure described in the original work.15

Afterward, the signals were resampled at 100 Hz, band-pass
filtered between 0.2 and 49 Hz, and encoded with cross-
correlation. The encoded signals were given as input to 16
already trained long short-term memory deep networks. For
each 15-second segment of the EDF file, the algorithm returned
the probabilities that that segment was W, N1, N2, N3, and
REM sleep.

To allow comparison of the automatic sleep stage scorings
to the manual ones, we averaged the probabilities of W,
N1, N2, N3, and REM sleep over the two 15-second seg-
ments included in a 30-second epoch. The values of sleep
stages probabilities for each epoch allowed us to generate a
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hypnodensity graph. The hypnogram was obtained by assigning
to each epoch the sleep stage with the highest probability.
Figure 2, C and D, shows the automatic hypnogram and

hypnodensity obtained for 1 participant in comparison to the
manual hypnograms scored in Innsbruck (Figure 2A) and in
Berlin (Figure 2B).

Figure 1—Schematic overview of the automatic sleep stage scoring with the Stanford-STAGES algorithm.

From the EDF files, the C3A2, C4A1, O2A1, and O1A2 electroencephalographic channels were extracted, as well as the electromyographic chin channel and
the left and right electrooculographic channels. The algorithm automatically selected which of the 2 central and occipital channels to use. Then, the signals were
resampled at 100 Hz, filtered between 0.2 and 49 Hz, and encoded with cross-correlation. The encoded signals were given in input to the deep neural network.
For each 15-second segment, the network returned the probabilities that such segment was wakefulness (p(W)), N1 sleep (p(N1)), N2 sleep (p(N2)), N3 sleep
(p(N3)), and rapid eye movement sleep (p(REM)). The figure reports an example epoch for which the obtained probability values are shown. For each
30-second sleep epoch, the average values of probabilities across the two 15-second segments were calculated, thus obtaining the values of probabilities
for each sleep epoch. The hypnodensity was obtained as the graphical representation of the sleep stage probabilities for each sleep epoch. From
the hypnodensity, the hypnogram was built by scoring each sleep epoch as the sleep stage with the highest probability. EDF = European data format;
EOGL = electrooculogram left; EOGR= electrooculogram right; N1 = non-REM stage 1 sleep; N2 = non-REM stage 2 sleep; N3 = non-REM stage 3 sleep; REM
= rapid eye movement sleep; W = wakefulness.
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Further details concerning the methodology of the Stanford-
STAGES algorithm can be found in the original publication.15

IRR evaluation
To evaluate IRR for sleep stage scoring, we built 5 confusion
matrices (CMs) for each participant:

· The first CM was obtained bycomparing the hypnogram
manually scored in Innsbruck to the one manually scored in
Berlin (INN vs BER), as shown in Figure 3. The CM
summarizes the relationship between the 2 hypnograms.
The diagonal elements correspond to the number of epochs
where the scorers were in agreement (ie, number of epoch
that both scorers scored as W, N1, N2, N3, and REM
sleep). The off-diagonal elements correspond to the number
of epochs for which the scorers were not in agreement and
indicate also the type of disagreement (eg, in Figure 3C,
the element in {row 1, column 2} implies that 10 epochs
were scored as W by the scorer in Innsbruck, but as N1 by
the scorer in Berlin).

· The second CM was derived by comparing the hypnogram
obtained frommanual scoring in Innsbruck to the one obtained
from the automatic scoring (INN vs AUTO). This CM was
built similarly to the one in INN vs BER.

· The third CM was made by comparing the manual
hypnogram from Berlin to the automatic one (BER vs
AUTO). This CM was built similarly to the one in INN
vs BER.

· The fourth CM was obtained by comparing the sleep
epochs for whichmanual scorers from Innsbruck and Berlin
agreed (ie, consensus epochs) to the respective sleep epochs
automatically scored (CONS vs AUTO), as shown in
Figure S1 in the supplemental material.

· The fifth CM was derived by comparing both manual
hypnograms to the automatic one (MAN vs AUTO). In case
of disagreement between the 2 manual scorings for 1 sleep
epoch, an epoch was counted equally in the 2 sleep stages
that weremanually assigned (Figure S2 in the supplemental
material). This is the same approach presented in the
original publication of the Stanford-STAGES algorithm.15

Each CM was used to compute several IRR measures. More
specifically, the overall Cohen’s κ and the overall accuracy (A;

Figure 2—Visual comparison of hypnograms and
hypnodensity for the same polysomnographic recording.

(A)Manual hypnogram scored in Innsbruck. (B)Manual hypnogram scored
in Berlin. (C) Hypnogram obtained by applying the automatic Stanford-STAGES
algorithm. For each epoch, the sleep stage assigned was the one having the
highest probability in the hypnodensity (D). Color codes for probabilities in the
hypnodensity: white, W; red, N1; light blue, N2; dark blue, N3; black, REM.
W =wakefulness, REM= rapid eyemovement sleep, N1 = non-REM stage
1 sleep, N2 = non-REM stage 2 sleep, N3 = non-REM stage 3 sleep.

Figure 3—Hypnograms and relative confusion matrix.

(Left) Hypnograms for the samePSG recording scored by human scorers in Innsbruck (A) and Berlin (B) are shown. The confusionmatrix (C) reports in the diagonal the
numberofepochs forwhich thescorerswere inagreementandoutof thediagonal thenumberof epochs forwhich therewasdisagreementand the typeofdisagreement (eg,
the element in {row1, column2} indicates that 10epochswere scoredasW in the INNhypnogrambut asN1 in theBERhypnogram).BER=Berlin, INN= Innsbruck,PSG=
polysomnography,W=wakefulness,REM= rapid eyemovement sleep, N1 =non-REMstage 1 sleep, N2 =non-REMstage 2 sleep, N3 =non-REMstage 3 sleep.
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ie, the percentage of sleep epochs included in the diagonal of the
CM) were calculated from each CM. Stage-specific Cohen’s κ
(κW, κN1, κN2, κN3, κREM), accuracies (AW, AN1, AN2, AN3,
AREM), andF1 scores (F1W,F1N1, F1N2, F1N3, F1REM)were also
obtained. Finally, the overall F1 score (F1) was calculated as
average across the stage-specific F1 scores. Figure S3 in the
supplemental material provides the equations that were used to
compute all the IRRmeasures.We decided to calculate all these
different measures to provide a complete and comprehensive
overview of the agreement, as each of them considers different
aspects of the agreement.22 In particular, accuracy gives higher
importance to true positives and true negatives, F1 score to false
negatives and false positives, and Cohen’s κ corrects accuracy
for possible random agreement.22 The values of Cohen’s κwere
interpreted according to Landis and Koch23: κ < 0 indicating no
agreement, 0 ≤ κ < 0.20 indicating slight agreement, 0.20 ≤ κ <
0.40 indicating fair agreement, 0.40 ≤ κ < 0.60 indicating
moderate agreement, 0.60 ≤ κ < 0.80 indicating substantial
agreement, and κ ≥ 0.80 indicating almost perfect agreement.

Sleep and demographic factors influencing IRR
The effects of age, sex, body mass index (BMI), PLMS index, and
AHI on the overall κ, A, and F1 score values were evaluated by
means of multiple linear regression analysis. All predictors (except
for sex,whichwas included as a categorical predictor) and κ, A, and
F1 score values were Z-score transformed. Noncollinearity of pre-
dictors was ensured by checking that the variation inflation factors
were less than 10.24 Normality of the residuals was checked by
visual inspection of Q-Q plots. In case of not normal residuals, we
applied cubic transformation to κ, A, and F1 score values.

RESULTS

Out of the 1,066 participants included in the study, 570 were
men (53.47%). The median age of the participants was 54 years
(5th–95th percentiles: 26–74 years), the median BMI was

28.0 kg/m2 (5th–95th percentiles: 21.1–37.1 kg/m2), themedian
AHIwas 3.9 events/h (5th–95th percentiles: 0.1–40.0 events/h),
and the median PLMS index was 6.4 (5th–95th percentiles: 0–
66.4). The distributions of sleep stages scored by the human
scorers and the automatic algorithm across the participants are
shown in Table 1. No significant difference was found in the
percentage of manually scored W, whereas significant dif-
ferences were present between the percentage of all other
sleep stages scored by sleep experts in Innsbruck and Berlin
and by the algorithm.

To have an overview of the obtained CMs across the par-
ticipants, each CM was row-wise normalized (ie, for each row,
the elements were divided by their sum). Figure 4 shows the
mean and standard deviation values of the normalized CMs
across the participants. As an example to interpret the row-wise
normalized CMs, in Figure 4A, the element in {row 1, column
1} indicates that 81 ± 16% of the epochs scored as W in
Innsbruck were also scored as W in Berlin. Similarly, the el-
ement in {row 1, column 2} indicates that 16 ± 15% of the
epochs scored as W in Innsbruck were scored as N1 in Berlin.

Table 2 shows the average, standard deviation, median, and
5th and 95th percentiles of the overall κ and stage-specific κ for
all comparison across the participants. The values for overall
and stage-specific accuracies and F1 scores are reported in
Table S1 and Table S2.

The results reported in Figure 4, Table 2, Table S1, and
Table S2 show that there was an average overall substantial
agreement between themanual scorers (κ=0.66±0.13,A=0.75
± 0.10, F1 = 0.70 ± 0.10) and the automatic sleep staging al-
gorithm agreed significantly more (P < .001 with Mann-
Whitney U tests for all overall performances) with the scorings
performed in Innsbruck (κ = 0.68 ± 0.14, A = 0.78 ± 0.10, F1 =
0.65 ± 0.13) than to the ones performed in Berlin (κ = 0.55 ±
0.15, A = 0.67 ± 0.12, F1 = 0.59 ± 0.12).

When the automatic scoring was compared with the epochs
where there was an agreement between manual scorers (ie,

Table 1—Sleep stages distributions in the hypnograms scored in Innsbruck, Berlin, and by the algorithm.

Sleep Stages Measure INN BER AUTO
P

INN vs BER INN vs AUTO BER vs AUTO

W (% of TIB)
µ ± σ 18.80 ± 12.05 18.95 ± 12.39 24.57 ± 15.01

n.s. < .001 < .001
m [5th–95th] 16.49 [4.40–42.49] 16.62 [4.13–42.58] 21.71 [6.61–53.8]

N1 (% TIB)
µ ± σ 11.44 ± 6.61 20.43 ± 10.12 4.49 ± 3.05

< .001 < .001 < .001
m [5th–95th] 9.88 [4.48–23.86] 18.55 [7.54–39.83] 3.76 [0.89–10.02]

N2 (% TIB)
µ ± σ 40.85 ± 9.47 31.41 ± 10.67 47.68 ± 11.44

< .001 < .001 < .001
m [5th–95th] 41.57 [24.36–55.23] 31.20 [13.65–48.65] 48.59 [27.05–64.20]

N3 (% TIB)
µ ± σ 10.92 ± 7.01 14.71 ± 7.23 6.10 ± 6.23

< .001 < .001 < .001
m [5th–95th] 10.85 [0.00–22.99] 14.29 [3.19–26.94] 4.50 [0.00–18.19]

REM (% TIB)
µ ± σ 14.34 ± 5.78 10.86 ± 5.54 11.91 ± 6.13

< .001 < .001 .001
m [5th–95th] 14.21 [5.12–23.85] 10.80 [1.45–20.61] 11.90 [2.00–22.43]

The distributions are calculated as percentage of time in bed (TIB) and shown as mean (µ) ± 1 standard deviation (σ), median (m), and 5th–95th percentiles
across the participants. Statistical analyses were performed with Mann-Whitney U tests corrected with Bonferroni procedure. Statistical significance was set
at the value of .05. AUTO=automatic algorithm, BER=Berlin, INN= Innsbruck, N1 =non-REMstage 1 sleep, N2 = non-REMstage 2 sleep, N3 =non-REMstage
3 sleep, n.s. = nonsignificant; REM = rapid eye movement, W = wakefulness.
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CONS vs AUTO), substantial values of overall agreement were
obtained (κ = 0.73 ± 0.14, A = 0.82 ± 0.10, F1 = 0.70 ± 0.13),
indicating that the automatic scoring overall correctly classified

the sleep epochs with clearer patterns. When both manual
scorings were compared with the automatic ones (ie, MAN vs
AUTO), the overall average performances (κ = 0.61 ± 0.14, A =

Figure 4—Row-wise normalized confusion matrices across all participants.

The values are shown as mean and standard deviation across the participants. For each matrix element, a darker color represents a higher agreement.
(A) INN vs BER: comparison of manual hypnograms scored in Innsbruck and Berlin. (B) INN vs AUTO: comparison of manual hypnograms scored in Innsbruck
to the automatic ones. (C) BER vs AUTO: comparison of manual hypnograms scored in Berlin to the automatic ones. (D) CONS vs AUTO: comparison of the
epochs where manual scorers from Innsbruck and Berlin were in consensus to the respective epochs automatically scored. (E)MAN vs AUTO: comparison of
both manual hypnograms to the automatic one (in case of disagreement between manual scorers, an epoch was equally weighted between the 2 manually
scored stages). As an example to interpret these row-wise CMs, in A, the element in {row 1, column 1} indicates that 81 ± 16% of the epochs scored as W in
Innsbruck were also scored asW in Berlin. Similarly, the element in {row 1, column 2} indicates that 16 ± 15% of the epochs scored as W in Innsbruck were scored as
N1 in Berlin. W = wakefulness, REM = rapid eye movement sleep, N1 = non-REM stage 1 sleep, N2 = non-REM stage 2 sleep, N3 = non-REM stage 3 sleep.
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0.72 ± 0.01, F1 = 0.62 ± 0.12) ranged between to the ones
obtained for INN vs AUTO and BER vs AUTO.

Concerning the single sleep stage performances, the accuracy
values (Table S2) were always high because of imbalanced
classes; therefore, a meaningful analysis of the agreements can
beperformedonly consideringκ and F1 score values. Themanual
scorers from Innsbruck and Berlin tended to disagree mostly for
scoring of N1 sleep (κN1 = 0.40 ± 0.16, F1N1 = 0.49 ± 0.15),
whereas the agreement was substantial for all the other sleep stages.

Comparedwith the 2manual scorings, the automatic scoring had
anaverage fair agreement forN1 (κN1 = 0.30 ± 0.16, F1N1 = 0.34 ±
0.16 for INNvsAUTOand κN1=0.22±0.14, F1N1 =0.28±0.15
for BER vs AUTO). For N3 sleep, the average agreement be-
tween the human scorers and the algorithmwasmoderate (κN3 =
0.49±0.33, F1N3 =0.48±0.35 for INNvsAUTOand κN3=0.40
± 0.31, FN3 = 0.43 ± 0.33 for BER vs AUTO). The agreement
was, on average, substantial for all the other sleep stages, except
for N2 sleep for BER vs AUTO (moderate agreement).

The stage-specific performances for the comparisonMANvs
AUTO ranged between the ones obtained for INNvsAUTOand
BER vs AUTO. Concerning the comparison CONS vs AUTO,
there was an average substantial agreement forW, N2 andREM
sleep (κW = 0.80 ± 0.17, F1W = 0.85 ± 0.14, κN2 = 0.74 ± 0.15,
F1N2 = 0.84 ± 0.11, κREM = 0.86 ± 0.21, F1REM = 0.86 ± 0.23),
whereas only a fair average agreement was obtained for N1
sleep (κN1 = 0.39 ± 0.20, F1N1 = 0.42 ± 0.19) and amoderate one
for N3 sleep (κN3 = 0.53 ± 0.34, F1N3 = 0.50 ± 0.37).

It can be noticed that the performances obtained for N3 sleep
havemedian values of κN3 and F1N3 for CONS vs AUTO around
0.10 higher than the average ones. This is because the automatic
algorithm did not score any epoch as N3 sleep for 193 participants,
whereasnoN3sleepwas scored for 105participants in Innsbruckand

for 5 participants inBerlin. In general,weobserved that the automatic
algorithmscoredsignificantly lessN3sleepcomparedwith thehuman
scorers (Table 1). To better understand the possible cause of
disagreement between manual and automatic scoring, Figure 5
shows (A) an epoch in which the scorer correctly scored N3
sleep (as 24% of the epoch contains slow wave activity) but the
algorithm scored N2 sleep; (B) an epoch in which the human
scorers wrongly scored N3 sleep (as only 17% of the epoch
contains slowwave activity), but the algorithm correctly scored
N2 sleep; and (C) an epoch where human scorers and the al-
gorithmcorrectly scoredN3 sleep (slowwave activity present in
42% of the epoch). The percentages of slow wave activity in
these epochs were manually counted by an independent scorer.

Table 3 shows the results of the multiple regression analyses
for the overall κ values, and Table S3 and Table S4 show the
ones for accuracy and F1 score values. A higher disagreement
for sleep stage scoring was observed for men and older par-
ticipants with higher AHI and BMI.

DISCUSSION

We evaluated IRR for sleep stage scoring performed by human
scorers in2Europeansleepcentersandbytheartificial intelligence–
based Stanford-STAGES algorithm on a population-based study
in 1,066 participants, who were part of the Study of Health in
Pomerania-TREND baseline examination. The results showed
an overall substantial agreement for sleep stage scoring between
the 2 sleep centers and between human and automatic scoring.The
human scorers disagreed mostly for N1 sleep and the automatic
scoring had the lowest agreement with the manual scoring for N1
and N3 sleep. Furthermore, we assessed that sleep stage scoring

Table 2—Overall and stage-specific values of Cohen’s κ for the different comparisons.

Parameter Measures
Comparison

INN vs BER INN vs AUTO BER vs AUTO CONS vs AUTO MAN vs AUTO

κ
µ ± σ 0.66 ± 0.13 0.68 ± 0.14 0.55 ± 0.15 0.73 ± 0.14 0.61 ± 0.14

m [5th–95th] 0.67 [0.43–0.83] 0.70 [0.41–0.84] 0.56 [0.30–0.77] 0.76 [0.47–0.90] 0.62 [0.36–0.79]

κW
µ ± σ 0.78 ± 0.14 0.74 ± 0.17 0.70 ± 0.19 0.80 ± 0.17 0.72 ± 0.17

m [5th–95th] 0.81 [0.48–0.94] 0.78 [0.38–0.92] 0.75 [0.31–0.92] 0.86 [0.43–0.96] 0.76 [0.39–0.91]

κN1
µ ± σ 0.40 ± 0.16 0.30 ± 0.16 0.22 ± 0.14 0.39 ± 0.20 0.25 ± 0.14

m [5th–95th] 0.40 [0.13–0.66] 0.30 [0.04–0.57] 0.21 [0.02–0.47] 0.40 [0.05–0.70] 0.24 [0.04–0.48]

κN2
µ ± σ 0.62 ± 0.16 0.71 ± 0.14 0.53 ± 0.17 0.74 ± 0.15 0.62 ± 0.14

m [5th–95th] 0.65 [0.34–0.84] 0.73 [0.46–0.87] 0.55 [0.24–0.79] 0.77 [0.46–0.92] 0.63 [0.37–0.81]

κN3
µ ± σ 0.66 ± 0.28 0.49 ± 0.33 0.40 ± 0.31 0.53 ± 0.34 0.42 ± 0.32

m [5th–95th] 0.77 [0.00–0.93] 0.57 [0.00–0.91] 0.41 [0.00–0.88] 0.64 [0.00–0.94] 0.46 [0.00–0.87]

κREM
µ ± σ 0.75 ± 0.21 0.79 ± 0.21 0.74 ± 0.23 0.86 ± 0.21 0.76 ± 0.20

m [5th–95th] 0.82 [0.26–0.96] 0.86 [0.30–0.96] 0.81 [0.15–0.95] 0.94 [0.36–0.99] 0.82 [0.30–0.95]

The values are shown asmean (µ) ± 1 standard deviation (σ), median (m), and 5th– 95th percentiles across the participants. INN vsBER: comparison ofmanual
hypnograms scored in Innsbruck and Berlin; INN vsAUTO: comparison ofmanual hypnograms scored in Innsbruck to the automatic ones; BER vsAUTO: comparison of
manual hypnogramsscored inBerlin to theautomatic ones;CONSvsAUTO:comparisonof theepochswheremanual scorers from InnsbruckandBerlinwere in consensus
to the respective epochs automatically scored; MAN vs AUTO: comparison of both manual hypnograms to the automatic one (in case of disagreement between manual
scorers, an epochwas equallyweighted between the twomanually scored stages). AUTO= automatic algorithm, BER = Berlin, CONS = consensus, INN = Innsbruck,
MAN = manual, N1 = non-REM stage 1 sleep, N2 = non-REM stage 2 sleep, N3 = non-REM stage 3 sleep, REM = rapid eye movement, W = wakefulness.
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disagreement is higher for older participants, for men, and for
participants with higher AHI and BMI.

The overall agreement between scorers in Innsbruck and
Berlin is in the range reported in previous studies.2–7 There was
substantial agreement for all sleep stages, except for N1 sleep.
The lower agreement for scoring N1 sleep matches previous
literature results3–5,7 and substantiates the difficulties in scoring
this stage, because of its transitory nature between wakefulness
and deeper sleep1 and to the lack of specific electrophysiologic
elements (eg, as sleep spindles, K-complexes, delta waves, or
rapid eye movements). All the stage-specific κ values lay in the
range of the values reported in previous studies.3–5,7 Therefore,
our findings confirm the rates of IRR for sleep stage scoring
between human scorers previously presented in literature.3–5,7

The automatic scoring agreed more with the manual scoring
performed in Innsbruck than the one carried out in Berlin. Sleep
recordings from Innsbruck were included in the original work
where the Stanford-STAGES algorithm was presented.15

However, they were not used to train the algorithm, thus en-
suring no bias in our results. As the algorithm mostly disagreed
with the human scorers for N1 and N3 sleep, a possible reason
for the lower overall agreement for BER vs AUTO compared
with INN vs AUTO might be the higher number of epochs
scored as N1 and N3 sleep in Berlin.

The Stanford-STAGES algorithm has been originally tested
on the Inter-Scorer Reliability Cohort, a cohort of 70 PSGs
scored by 6 sleep experts,25 where it achieved an average ac-
curacy of 0.78 compared with manual sleep scoring.15 Because
the Inter-Scorer Reliability Cohort includes only women25 and
male sex significantly decreases IRR, such accuracy should be
compared with the average one we obtained when considering
onlywomen from our cohort (ie, 0.75 forMANvsAUTO). This
comparison shows that, in our cohort, the algorithm performed
only slightly worse than in the Inter-Scorer Reliability Cohort.
In the original study, the Stanford-STAGES algorithm has also
been tested in 3 other cohorts,26–29 all scored only by 1 single

Figure 5—Example of sleep epochs where manual scorers agreed to score N3 sleep.

(A) Epoch that was correctly manually scored in both centers as N3 sleep (slow wave activity covers 24% of the epoch), but was scored as N2 by the algorithm.
(B) Epoch that was wrongly scored as N3 by human scorers in the 2 sleep centers (17% of the epoch contains slow wave activity) but correctly scored as
N2 by the algorithm. (C) Epoch correctly scored by the algorithm and the human scorers as N3 sleep (42% of the epoch has slow wave activity). For each
electroencephalographic channel, the red lines are drawn at −37.5 and +37.5 µV to highlight the amplitude of 75-µV peak-to-peak amplitude of slow waves.
N2 = non–rapid eye movement (NREM) stage 2 sleep, N3 = NREM stage 3 sleep.
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scorer, achieving average accuracy between 0.77 and 0.86.15 In
our cohort, the automatic scoring had an average overall ac-
curacy between 0.67 (for BER vs AUTO) and 0.78 (for INN vs
AUTO). Therefore, when considering the performances ob-
tained for INN vs AUTO, the Stanford-STAGES algorithm
showed similar performances to the ones reported in the original
study. This suggests an overall good generalizability of the
algorithm to a new unseen cohort.

The statistical analyses revealed that increased age,male sex,
and higher AHI and BMI are related to higher disagreement in
sleep stage scoring. This is likely because of the increased sleep
fragmentation and sleep structure changes seen in the elderly,30,31

the lower sleep quality in men compared with women,32 the
increased sleep fragmentation caused by increased end-apneic
arousals,33 and the increased sleep disruption associated with
higher BMI.34

Concerning single sleep stage performances, the biggest
discrepancies compared with the manual hypnograms were
found in the automatic scoring of N1 and N3 sleep. Previous
studies have reported agreements (measured by κ) in the range
of 0.16–0.57 for N1 sleep3–5,7 between human scorers. The
agreement values we found between automatic and manual
scoring lay in this range.

For N3 sleep, previous studies have reported agreements
(measured by κ) between human scorers in the range of 0.49–
0.79.3–5,7 On average, we found that the agreement between the
Stanford STAGES-algorithm and the human scorers in Berlin
and Innsbruckwas lower, because the algorithm tended to score
less epochs as N3 sleep. This could be because of several
reasons. First, the automatic algorithm used only central and
occipital EEG derivations, whereas the human scorers evalu-
ated also the frontal EEG electrodes while scoring. As the slow
waves characterizing N3 sleep are most prominent in the frontal
derivations1 and as AASM recommends using the frontal
derivations to measure slow wave amplitudes,19,20 the human

scorers might have been more sensitive for recognizing slow
wave activity (Figure 5A). Second, the underscoring of N3
sleep by the algorithm could be the consequence of the training
process of the algorithm, where very few epochs scored as N3
sleep might have been included and no strategy to overcome
class imbalancemight have been used.15 Third, this discrepancy
might also be caused by the human scorers being too sensitive to
visual identification of slow wave activity (Figure 5B). Pre-
vious findings showed that some human raters tend to score N3
even in presence less than 20% of the epoch covered by slow
wave activity.35 An in-depth analysis of the causes of the dis-
crepancies for scoring N3 sleep is not themain aim of this work.
However, the results indicate possible issues of the Stanford-
STAGE algorithm in scoring N3 sleep. Future independent
studies should further investigate this.

Improvements for the generalizability of the Stanford-
STAGES algorithm could be achieved by applying transfer
learning, a technique that allows adaptation of a pretrained
algorithm to unseen data to improve the classification perfor-
mances. Some studies have already shown promising results in
adapting a pretrained artificial intelligence algorithm for sleep
stage scoring in new cohorts.36–38 However, current transfer
learning techniques still require expert knowledge in manual
fine-tuning of the algorithms, making their implementation in a
clinical environment impractical. Future studies should eval-
uate automatic procedures to apply transfer learning in the
context of automatic sleep stage scoring.

Our results suggest that the Stanford-STAGES algorithm is
overall generalizable to a new cohort and therefore potentially
applicable in clinical practice; further validations in different
cohorts are needed before its integration in clinical routine. In a
first step, the algorithm could be used for semiautomatic sleep
stage scoring. In particular, the hypnodensity could be used as a
useful tool for this purpose, as a sleep expert could perform just a
fast check for the epochs where a stage has a clearly higher

Table 3—Results of the multiple regression linear analyses for overall Cohen’s κ.

Predictors
INN vs BER INN vs AUTO* BER vs AUTO CONS vs AUTO* MAN vs AUTO*

b P b P b P b P b P

Intercept −0.118 .003 −0.145 < .001 −0.188 < .001 −0.192 < .001 −0.208 < .001

Age −0.106 < .001 −0.060 .053 −0.145 < .001 −0.097 .002 −0.132 < .001

Sex (F) 0.251 < .001 0.308 < .001 0.399 < .001 0.407 < .001 0.441 < .001

PLMS index −0.023 .443 −0.047 .114 −0.033 .272 −0.057 .054 −0.042 .152

AHI −0.227 < .001 −0.238 < .001 −0.175 <.001 −0.185 < .001 −0.200 < .001

BMI −0.041 .189 −0.087 .005 −0.066 .031 −0.077 .012 −0.080 .008

Overall P < .001 < .001 < .001 < .001 < .001

For each analysis, the overall Cohen’s κ was the outcome variable and age, sex (categorical), PLMS index, AHI, and BMI the predictors. Z-score
transformations were applied to both outcome variable and predictors (except sex). For each model, the overall P value is reported, as well as the slope
estimate (b) and the P value of each predictor. Statistical significance was set at the value of .05. INN vs BER: comparison of manual hypnograms scored in
Innsbruck and Berlin; INN vs AUTO: comparison of manual hypnograms scored in Innsbruck to the automatic ones; BER vs AUTO: comparison of manual
hypnograms scored in Berlin to the automatic ones; CONS vs AUTO: comparison of the epochs where manual scorers from Innsbruck and Berlin were in
consensus to the respective epochs automatically scored; MAN vs AUTO: comparison of both manual hypnograms to the automatic one (in case of dis-
agreement betweenmanual scorers, an epoch was equally weighted between the 2manually scored stages). AHI = apnea-hypopnea index, AUTO = automatic
algorithm, BER = Berlin, BMI = body mass index, CONS = consensus, INN = Innsbruck. MAN = manual, PLMS = periodic limb movement during sleep. *Cubic
transformation was applied to Cohen’s κ in the highlighted comparisons to meet the normality assumption of the model residuals.
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probability than the other stages, whereas a more careful check
would be required only for the remaining epochs. Previous
studies showed that manual edit of an automatic sleep stage
scoring substantially reduces the interrater variability6,8,39 and
that a semiautomatic approach is less time consuming than a
complete manual analysis.40 Future research should investigate
the usefulness of theStanford-STAGESalgorithm in the context
of semiautomated sleep stage scoring.

The main limitation of this work is that our study population
belongs to a population-based cohort and thus does not rep-
resent the population usually admitted in a sleep center.
Therefore, our results might be not representative of the per-
formances of sleep stage scoring in a clinical environment,
where current scoring rules are particularly challenging to apply
to patients (eg, with neurodegeneration).41 Furthermore, as
previously outlined, 2 different versions of the AASM manual
for scoring sleep were used in the 2 different European
centers19,20 (these criteria slightly differ for the definitions of
transitions N1-N2 and for the definition of REM sleep42), thus
the results might have a bias. Another potential limitation is that
sleep stages were scored in Berlin by different sleep experts,
whereas in Innsbruck it was only by one expert. Despite
interrater variability between scorers inBerlinwasminimized,18

the inclusion of different experts in Berlin might constitute a
bias for the evaluation of IRR, which could not be considered in
our analysis. Furthermore, different years of experience in sleep
stage scoring of the different experts might have influenced our
results. Finally, when we compared the performances achieved
in this cohort to the ones obtained in the cohorts where the
Stanford-STAGES algorithm was originally validated, we
could not take into account possible difference in age, sex
distribution, AHI, and BMI between the cohorts. These factors
might be the cause of the slightly lower agreements seen in
our cohort.

In conclusion, our study evaluated IRR for sleep stage
scoring between 2 European sleep centers and the automatic
artificial intelligence–based Stanford-STAGES algorithm. Our
results show that IRR between human scorers is similar to
previously reported results. Furthermore, we found that the
Stanford-STAGES algorithm had an overall good agreement
with manual scoring and that it performed similarly in this
cohort as the in ones where it has been originally tested, thus
suggesting that it is generalizable to new unseen cohorts. Future
studies should further confirm our findings in new independent
cohorts. Future research should also evaluate the integration of
automatized transfer learning techniques for better adaptation of
the Stanford-STAGES algorithm to new cohorts and the inte-
gration of the algorithm for semiautomated sleep stage scoring
for clinical purposes.

ABBREVIATIONS

A, accuracy
AASM, American Academy of Sleep Medicine
AHI, apnea-hypopnea index
AUTO, Automatic
BER, Berlin

BMI, body mass index
CM, confusion matrix
CONS, Consensus
EEG, electroencephalogram
EDF, European data format
INN, Innsbruck
IRR, interrater reliability
MAN, Manual
N1, non–rapid eye movement sleep stage 1
N2, non–rapid eye movement sleep stage 2
N3, non–rapid eye movement sleep stage 3
PLMS, periodic limb movements during sleep
PSG, polysomnography
REM, rapid eye movement
W, wakefulness
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