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Abstract

We present a deep learning framework for wide-field, content-aware estimation of absorption and 

scattering coefficients of tissues, called Generative Adversarial Network Prediction of Optical 

Properties (GANPOP). Spatial frequency domain imaging is used to obtain ground-truth optical 

properties at 660 nm from in vivo human hands and feet, freshly resected human esophagectomy 

samples, and homogeneous tissue phantoms. Images of objects with either flat-field or structured 

illumination are paired with registered optical property maps and are used to train conditional 

generative adversarial networks that estimate optical properties from a single input image. We 

benchmark this approach by comparing GANPOP to a single-snapshot optical property (SSOP) 

technique, using a normalized mean absolute error (NMAE) metric. In human gastrointestinal 

specimens, GANPOP with a single structured-light input image estimates the reduced scattering 

and absorption coefficients with 60% higher accuracy than SSOP while GANPOP with a single 

flat-field illumination image achieves similar accuracy to SSOP. When applied to both in vivo and 

ex vivo swine tissues, a GANPOP model trained solely on structured-illumination images of 

human specimens and phantoms estimates optical properties with approximately 46% 

improvement over SSOP, indicating adaptability to new, unseen tissue types. Given a training set 

that appropriately spans the target domain, GANPOP has the potential to enable rapid and accurate 

wide-field measurements of optical properties.
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I. INTRODUCTION

THE optical properties of tissues, including the absorption (μa) and reduced scattering μs′
coefficients, can be useful clinical biomarkers for measuring trends and detecting 

abnormalities in tissue metabolism, tissue oxygenation, and cellular proliferation [1]–[5]. 

Optical properties can also be used for contrast in functional or structural imaging [6], [7]. 

Thus, quantitative imaging of tissue optical properties can facilitate more objective, precise, 

and optimized management of patients.

To measure optical properties, it is generally necessary to decouple the effects of scattering 

and absorption, which both influence the measured intensity of remitted light. Separation of 

these parameters can be achieved with temporally or spatially resolved techniques, which 

can each be performed with measurements in the real or frequency domains. Spatial 

Frequency Domain Imaging (SFDI) decouples absorption from scattering by characterizing 

the tissue modulation transfer function to spatially modulated light [8], [9]. This approach 

has significant advantages in that it can easily be implemented with a consumer grade 

camera and projector, and achieve rapid, non-contact mapping of optical properties. These 

advantages make SFDI well-suited for applications that benefit from wide-field 

characterization of tissues, such as image-guided surgery [10], [11], tissue perfusion 

measurement [12], and wound characterization [13], [14]. Additionally, recent work has 

explored the use of SFDI for improving endoscopic procedures [15], [16].

Although SFDI is finding a growing number of clinical applications, there are remaining 

technical challenges that limit its adoption. First, SFDI requires structured light projection 

with carefully-controlled working distance and calibration, which is especially challenging 

in an endoscopic setting. Second, it is difficult to achieve real-time measurements. 

Conventional SFDI requires a minimum of six images per wavelength (three distinct spatial 

phases at two spatial frequencies) to generate a single optical property map. A lookup table 

(LUT) search is then performed for optical property fitting. The recent development of real-

time single snapshot imaging of optical properties (SSOP) has reduced the number of 

images required per wavelength from 6 to 1, considerably shortening acquisition time [17]. 

However, SSOP introduces image artifacts arising from single-phase projection and 

frequency filtering, which corrupt the optical property estimations. To reduce barriers to 

clinical translation, there is a need for optical property mapping approaches that are 

simultaneously fast and accurate while requiring minimal modifications to conventional 

camera systems.

Here, we introduce a deep learning framework to predict optical properties directly from 

single images. Deep networks, especially convolutional neural networks (CNNs), are 

growing in popularity for medical imaging tasks, including computer-aided detection, 

segmentation, and image analysis [18]–[20]. We pose the optical property estimation 

challenge as an image-to-image translation task and employ generative adversarial networks 

(GANs) to efficiently learn a transformation that is robust to input variety. First proposed in 

[21], GANs have improved upon the performance of CNNs in image generation by 

including both a generator and a discriminator. The former is trained to produce realistic 
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output, while the latter is tasked to classify generator output as real or fake. The two 

components are trained simultaneously to outperform each other, and the discriminator is 

discarded once the generator has been trained. When both components observe the same 

type of data, such as text labels or input images, the GAN model becomes conditional. 

Conditional GANs (cGANs) are capable of making structured predictions by incorporating 

non-local, high-level information. Moreover, because they can automatically learn a loss 

function instead of using a handcrafted one, cGANs have the potential to be an effective and 

generalizable solution to various image-to-image translation tasks [22], [23]. In medical 

imaging, cGANs have been proven successful in many applications, such as image synthesis 

[24], noise reduction [25], and sparse reconstruction [26]. In this study, we train cGAN 

networks on a series of structured (AC GANPOP) or flat-field illumination images (DC 

GANPOP) paired with corresponding optical property maps (Fig. 1). We demonstrate that 

the GANPOP approach produces rapid and accurate estimation from input images from a 

wide variety of tissues using a relatively small set of training data.

II. RELATED WORK

A. Diffuse Reflectance Imaging

Optical absorption and reduced scattering coefficients can be measured using temporally or 

spatially resolved diffuse reflectance imaging. Approaches that rely on point illumination 

inherently have a limited field of view [27], [28]. Non-contact, hyperspectral imaging 

techniques measure the attenuation of light at different wavelengths, from which the 

concentrations of tissue chromophores, such as oxy- and deoxy-hemoglobin, water, and 

lipids, can be quantified [29]. A recent study has also proposed using a Bayesian framework 

to infer tissue oxygen concentration by recovering intrinsic multispectral measurements 

from RGB images [30]. However, these methods fail to unambiguously separate absorption 

and scattering coefficients, which poses a challenge for precise chromophore measurements. 

Moreover, accurate determination of both parameters is critical for the detection and 

diagnosis of diseases [1], [5].

B. Single Snapshot Imaging of Optical Properties

SSOP achieves optical property mapping from a single structured light image. Using Fourier 

domain filtering, this method separates DC (planar) and AC (spatially modulated) 

components from a single-phase structured illumination image [17]. A grid pattern can also 

be applied to simultaneously extract optical properties and three-dimensional profile 

measurements [31]. When tested on homogeneous tissue-mimicking phantoms, this method 

is able to recover optical properties within 12% for absorption and 6% for reduced scattering 

using conventional profilometry-corrected SFDI as ground truth.

C. Machine Learning in Optical Property Estimation

Despite its prevalence and increasing importance in the field of medical imaging, machine 

learning has only recently been explored for optical property mapping. This includes a 

random forest regressor to replace the nonlinear model inversion [32], and using deep neural 

networks to reconstruct optical properties from multifrequency measurements [33]. Both of 

these approaches aim to bypass the time-consuming LUT step in SFDI. However, they 
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require diffuse reflectance measurements from multiple images to achieve accurate results 

and process each pixel independently without considering the content of surrounding pixels.

III. CONTRIBUTIONS

We propose an adversarial framework for learning a content-aware transformation from 

single illumination images to optical property maps. In this work, we:

1. develop a data-driven model to estimate optical properties directly from a single 

input reflectance image;

2. demonstrate advantages of structured (AC) versus flat-field (DC) illumination to 

determine optical properties via an adversarial learning approach;

3. perform cross-validated experiments, comparing our technique with model-based 

SSOP and other deep learning-based methods; and

4. acquire and make publicly-available a dataset of registered flat-field-illumination 

images, structured-illumination images, and ground-truth optical properties of a 

variety of ex vivo and in vivo tissues.

IV. METHODS

For training and testing of the GANPOP model, single structured or flat-field illumination 

images were used, paired with registered optical property maps. Ground truth optical 

properties were obtained by conventional six-image SFDI. GANPOP performance was 

analyzed and compared to other techniques both in unseen tissues of the same type as the 

training data (human ex vivo esophagus images from a new patient) and in different tissue 

types (in vivo and ex vivo swine gastrointestinal tissues).

A. Hardware

In this study, all images were captured using a commercial SFDI system (Reflect RS™, 

Modulated Imaging Inc.). A schematic of the system is shown in Fig. 2. Cross polarizers 

were utilized to reduce the effect of specular reflections, and images were acquired in a 

custom-built light enclosure to minimize ambient light. Raw images, after 2×2 pixel 

hardware binning, were 520×696 pixels, with a pixels size of 0.278 mm in the object space.

B. SFDI Ground Truth Optical Properties

Ground truth optical property maps were generated using conventional SFDI with 660 nm 

light following the method from Cuccia et al. [9]. First, images of a calibration phantom 

with homogeneous optical properties and the tissue of interest are captured under spatially 

modulated light. We used a flat polydimethylsiloxane-titanium dioxide (PDMS-TiO2) 

phantom with reduced scattering coefficient of 0.957 mm−1 and absorption coefficient of 

0.0239 mm−1 at 660 nm. We project spatial frequencies of 0 mm−1 (DC) and 0.2 mm−1 

(AC), each at three different phase offsets (0, 2
3π, and 4

3π) for this study. AC images are 

demodulated at each pixel x using:
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MAC(x) = 2
3 ⋅

I1(x) − I2(x) 2 + I2(x) − I3(x) 2

+ I3(x) − I1(x) 2,
(1)

where I1, I2, and I3 represent images at the two phase offsets. The spatially varying DC 

amplitude is calculated as the average of the three DC images. Diffuse reflectance at each 

pixel x is then computed as:

Rd(x) = MAC(x)
MAC, ref(x) ⋅ Rd, predicted . (2)

Here, MAC,ref denotes the demodulated AC amplitude of the reference phantom, and 

Rd,predicted is the diffuse reflectance predicted by Monte Carlo models. Where indicated, we 

corrected for height and surface angle variation of each pixel from depth maps measured via 

profilometry. Profilometry measurements were obtained by projecting a spatial frequency of 

0.15 mm−1 and calculating depth at each pixel [34]. A k value of 0.8 and 0.4 was used at DC 

and AC in order to minimize error in angle correction [35]. Finally, μa and μs′ are estimated 

by fitting Rd, 0mm−1 and Rd, 0.2mm−1 into an LUT previously created using Monte Carlo 

simulations [36].

C. Single Snapshot Optical Properties (SSOP)

SSOP was implemented as the model-based alternative of AC GANPOP. This method 

separates DC and AC components from a single-phase structured-light image by frequency 

filtering with a 2D band-stop filter and a high-pass filter [17]. Both filters are rectangular 

windows that isolate the frequency range of interest while preserving high-frequency content 

of the image. In this study, cutoff frequencies fDC = [0.16 mm−1, 0.24 mm−1] and fAC = [0, 

0.16 mm−1] were selected [31]. MDC can subsequently be recovered through a 2D inverse 

Fourier transform, and the AC component is obtained using an additional Hilbert transform.

D. GANPOP Architecture

The GANPOP architecture is based on an adversarial training framework. When used in a 

conditional GAN-based image-to-image translation setup, this framework has the ability to 

learn a loss function while avoiding the uncertainty inherent in using handcrafted loss 

functions [23], [37]. The generator is tasked with predicting pixel-wise optical properties 

from SFDI images while the discriminator classifies pairs of SFDI images and optical 

property maps as being real or fake (Fig. 1). The discriminator additionally gives feedback 

to the generator over the course of training. The generator employs a modified U-Net 

consisting of an encoder and a decoder with skip connections [38]. However, unlike the 

original U-Net, the GANPOP network includes properties of a ResNet, including short skip 

connections within each level [39] (Fig. 3). Each residual block is a 3-layer building block 

with an additional convolutional layer on both sides. This ensures that the number of input 

features matches that of the residual block and that the network is symmetric [40]. 

Moreover, GANPOP generator replaces the U-Net concatenation step with feature addition, 

making it a fully residual network. Using n as the total number of layers in the encoder-
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decoder network and i as the current layer, long skip connections are added between the ith 

and the (n − i)th layer in order to sum features from the two levels. After the last layer in the 

decoder, a final convolution is applied to shrink the number of output channels and is 

followed by a Tanh function. Regular ReLUs are used for the decoder and leaky ReLUs 

(slope = 0.2) for the encoder. We chose a receptive field of 70 × 70 pixels for our 

discriminator because this window captures two periods of AC illumination in each 

direction. This discriminator is a three-layer classifier with leaky ReLUs (slope = 0.2), as 

discussed in [23]. The discriminator makes classification decisions based on the current 

batch as well as a batch randomly sampled from 64 previously generated image pairs. Both 

networks are trained iteratively and the training process is stabilized by incorporating 

spectral normalization in both the generator and the discriminator [41]. The conditional 

GAN objective for generating optical property maps from input images (G : X → Y) is:

ℒGAN(G, D) = Ex, y pdata(x, y) (D(x, y) − 1)2

+ Ex pdata (x) D(x, G(x))2 ,
(3)

where G is the generator, D the discriminator, and pdata is the optimal distribution of the 

data. We empirically found that a least squares GAN (LSGAN) objective [42] produced 

slightly better performance in predicting optical properties than a traditional GAN objective 

[21], and so we utilize LSGAN in the networks presented here. An additional ℒ1 loss term 

was added to the GAN loss to further minimize the distance from the ground truth 

distribution and stabilize adversarial training:

ℒ1(S) = Ex, y pdata (x, y) y − G(x) 1 . (4)

The full objective can be expressed as:

ℒ(G, D) = ℒGAN(G, D) + λℒ1(G), (5)

where λ is the regularization parameter of the ℒ1 loss term. This optimization problem was 

solved using an Adam solver with a batch size of 1 [43]. The training code was implemented 

using Pytorch 1.0 on Ubuntu 16.04 with Google Cloud. A single NVIDIA Tesla P100 GPU 

was used for both training and testing. For all experiments, λ was set to 60. A total of 200 

epochs was used with a learning rate of 0.0002 for half of the epochs and the learning rate 

was linearly decayed for the remaining half. Both networks were initialized from a Gaussian 

distribution with a mean and standard deviation of 0 and 0.02, respectively. In addition, we 

performed comparative analyses of our proposed network against other commonly-used 

architectures for image-to-image translation, including ResNet and U-Net, both standalone 

and incorporated into a GAN structure.

Conventional neural networks typically operate on three-channel (or RGB) images as input 

and output. In this study, four separate networks (N1 to N4) were trained for image-to-image 

translation with a variety of input and output parameters, summarized in Table I.
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For input, IAC and IDC represent single-phase raw images at 0.2 mm−1 and 0 spatial 

frequency, respectively. MDC,ref and MAC,ref are the demodulated DC and AC amplitude of 

the calibration phantom. Channel 3 is left as zeros in all cases. It is important to note that 

MAC,ref and MDC,ref are measured only once during calibration before the imaging 

experiment and thus do not add to the total acquisition time. The purpose of these two terms 

is to account for drift of the system over time and correct for non-uniform illumination, 

making the patch used in the network origin-independent. These two calibration images are 

also required by traditional SFDI and the SSOP approaches. A network without calibration 

was empirically trained, and it produced 230% and 58% larger error than with calibration in 

absorption and scattering coefficients, respectively. A single output image contains both μa 

and μs′ in different channels. Two dedicated networks were empirically trained for estimating 

μa and μs′ independently, but no accuracy benefits were observed. Optical property maps 

calculated by non-profile-corrected SFDI were used as ground truth for N1 and N2. We also 

assessed the ability of GANPOP networks (N3 and N4) to learn both optical property 

estimation and sample height and surface normal correction by training and testing with 

profilometry-corrected data (μa,corr and μs, corr′ ).

All optical property maps for training and testing were normalized to have a consistent 

representation in the 8-bit images commonly used in CNNs. We defined the maximum value 

of 255 to be 0.25 mm−1 for μa and 2.5 mm−1 for μs′. Additionally, each image of size 520 × 

696 was segmented at a random stride size into multiple patches of 256 × 256 pixels and 

paired with a registered optical property patch for training, as shown in Fig. 4.

E. Tissue Samples

1) Ex Vivo Human Esophagus: Eight ex vivo human esophagectomy samples were 

imaged at Johns Hopkins Hospital for training and testing of our networks. All patients were 

diagnosed with esophageal adenocarcinoma and were scheduled for an esophagectomy. The 

research protocol was approved by the Johns Hopkins Institutional Review Board and 

consents were acquired from all patients prior to each study. All samples were handled by a 

trained pathologist and imaged within one hour after resection [44].

Example raw images of a specimen captured by the SFDI system are shown in Fig. 2, 4, and 

12(a). All samples consisted of the distal esophagus, the gastroesophageal junction, and the 

proximal stomach. The samples contain complex topography and a relatively wide range of 

optical properties (0.02–0.15 mm−1 for μa and 0.1–1.5 mm−1 for μs′ at λ = 660 nm), making 

it suitable for training a generalizable model that can be applied to other tissues with non-

uniform surface profiles. An illumination wavelength of 660 nm was chosen because it is 

close to the optimal wavelength for accurate tissue oxygenation measurements [45].

In this study, six ex vivo human esophagus samples were used for training of the GANPOP 

model and two used for testing. A leave-two-out cross validation method was implemented, 

resulting in four iterations of training for each network. Performance results reported here 

are from an average of these four iterations.
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2) Homogeneous Phantoms: The four GANPOP networks were also trained on a set 

of tissue-mimicking silicone phantoms made from PDMS-TiO2 (P4, Eager Plastics Inc.) 

mixed with India ink as absorbing agent [46]. To ensure homogeneous optical properties, the 

mixture was thoroughly combined and poured into a flat mold for curing. In total, 18 

phantoms with unique combinations of μa and μs′ were fabricated, and their optical properties 

are summarized in Fig. 5.

In this study, six tissue-mimicking phantoms were used for training and twelve for testing. 

We intentionally selected phantoms for training that had optical properties not spanned by 

the human training samples (highlighted by green ellipses in Fig. 6), in order to develop 

GANPOP networks capable of estimating the widest range of optical properties.

3) In Vivo Samples: To provide the network with in vivo samples that were perfused 

and oxygenated, eight human hands and feet with different levels of pigmentation 

(Fitzpatrick skin types 1–6) were imaged with SFDI. This protocol was approved by the 

Johns Hopkins Institutional Review Board and consent was acquired from each participant 

prior to imaging. Six hands and feet were used for training and two for testing. Similar to 

human esophagus samples, leave-two-out cross validations were used for each network.

4) Swine Tissue: Four specimens of upper gastrointestinal tracts that included stomach 

and esophagus were harvested from four different pigs for ex vivo imaging with SFDI. 

Optical properties of these samples are summarized in Fig. 7. Additionally, we imaged a pig 

colon in vivo during a surgery. The live study was performed with approval from Johns 

Hopkins University Animal Care and Use Committee (ACUC). All swine tissue images 

were excluded from training and used only for testing optical property prediction.

F. Performance Metric

Normalized Mean Absolute Error (NMAE) was used to evaluate the performance of 

different methods, which was calculated using:

NMAE =
∑i = 1

T pi − pi, ref

∑i = 1
T pi, ref

. (6)

pi and pi,ref are pixel values of predicted and ground-truth data, and T is the total number of 

pixels. The metric was calculated using SFDI output as ground truth. A smaller NMAE 

value indicates better performance.

Additional metrics were used to assess pixel accuracy at constant reflectance values, 

including normalized error:

errori = pi − pi, ref
pi, ref

, (7)

and average optical property (OP) deviation:
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Average OP Deviation =
∑i = 1

T (errorμa, i2 + errorμs′ , i
2 )

T . (8)

V. RESULTS

A. SSOP Validation

For benchmarking, SSOP was implemented as a model-based counterpart of GANPOP. For 

independent validation, we applied SSOP to 18 homogeneous tissue phantoms (Fig. 5). Each 

value was calculated as the mean of a 100 × 100-pixel region of interest (ROI) from the 

center of the phantom, with error bars showing standard deviations. SSOP demonstrates high 

accuracy in predicting optical properties of the phantoms, with an average percentage error 

of 2.35% for absorption and 2.69% for reduced scattering.

B. AC GANPOP Test in Homogeneous Phantoms

Phantom optical properties predicted by N1 are plotted with ground truth in Fig. 6. Each 

optical property reported is the average value of a 100 × 100 ROI of a homogeneous 

phantom, with error bars showing standard deviations. On average, AC GANPOP produced 

4.50% error for absorption and 1.46% for scattering. The scatter plot in Fig. 6 is overlaid on 

a 2D histogram of pixel counts for each (μa,μs′) pair used in an example training iteration. 

Green ellipses indicate training samples from homogeneous phantoms. The two testing 

results enclosed by red boxes have optical properties outside of the range spanned by the 

training data but were still reasonably estimated by the AC GANPOP network.

C. GANPOP Test on Ex Vivo Human Esophagus

GANPOP and SSOP were tested on the ex vivo human esophagus samples. NMAE scores 

were calculated for the two testing samples from each of four-fold cross validation 

iterations, and the average values from the four networks tested on a total of eight samples 

are reported in Fig. 8. Results from N3, N4, and SSOP are also compared to profilometry-

corrected ground truth and shown in the same bar chart. On average, AC GANPOP produced 

approximately 60% higher accuracy than SSOP. Example optical property maps of a testing 

sample generated by N1 are shown in Fig. 12(a).

D. GANPOP Test on Pig Samples

Each of the four GANPOP networks were tested on ex vivo esophagus and stomach samples 

from four pigs. Average NMAE scores for GANPOP and SSOP method were calculated for 

all eight pig tissue specimens (four esophagi and four stomachs) and are summarized in Fig. 

8. Background regions, which were absorbing paper, were manually masked in the 

calculation, and the reported scores are the average values of 779,101 tissue pixels. Despite 

the fact that some testing samples had optical properties not covered by the training set (Fig. 

7), AC GANPOP outperforms SSOP in terms of average accuracy and image quality (Fig. 

12).
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The networks were additionally tested on an in vivo pig colon. Average NMAE scores for 

GANPOP and SSOP are reported in Fig. 8 as average values of 118,594 pixels. The 

generated maps are shown in Fig. 12(c). AC GANPOP produces more accurate results than 

SSOP when compared to both uncorrected and profile-corrected ground truth data.

E. GANPOP Test on Hemisphere Phantoms

To prove that AC GANPOP has the potential to infer profilometry correction from a single 

image, N3 was additionally tested on a hemisphere phantom with expected μa = 0.013mm−1 

and μs′ = 1.5mm−1. Shown in Fig. 9, AC GANPOP produces smaller errors than uncorrected 

SFDI, especially for angles greater than 30 degrees. Moreover, AC GANPOP results follow 

a similar error profile to the corrected ground truth. With a more sophisticated profilometry 

correction scheme, this error can be further minimized.

F. GANPOP Test on In Vivo Human Hands

To further demonstrate that GANPOP is able to accurately compute optical properties of 

inhomogeneous media, we segmented hand images into vessels and background tissue and 

calculated the respective NMAE (Table II). Fig. 10 shows optical property maps of a 

representative human hand from SFDI, SSOP, and AC GANPOP, with vessels clearly visible 

in the absorption maps.

G. Decoupling Absorption and Scattering

To explore the capability of GANPOP to decouple the contributions of scattering and 

absorption to reflectance measurements, we compare SSOP, DC GANPOP, and AC 

GANPOP to a baseline predictor that outputs the average scattering and absorption 

coefficients from training pixels with equal diffuse reflectance. For the human esophagus, 

examining all pixels with an Rd, 0mm−1 = 0.200 ± 0.0025, we find that the ground truth SFDI 

optical property measurements show a standard deviation of 26.7% for absorption and 

25.0% for reduced scattering. The baseline change in optical properties between 

Rd, 0mm−1 = 0.200 and 0.205 is much smaller–approximately 3.7% in absorption and 1.2% in 

reduced scattering. The normalized errors show that absorption and scattering errors are 

correlated for all methods (Fig. 11(e)-(h)). To assess the overall ability of each method to 

decouple optical properties, Fig. 11(i) shows the average optical property deviation of all 

optical property pairs for each reflectance value in the human esophagus testing samples. 

The SSOP error decreases with larger Rd, likely due to increased signal-to-noise ratios 

resulting from more detected photons. The baseline exhibits an improvement in accuracy 

that is generally correlated with the number of training pixels. DC GANPOP outperforms 

the baseline error at almost all values, indicating that its wide distribution of optical property 

estimates is consistently better than a constant pair prediction, and that it is effectively 

incorporating information about image content into each pixel prediction. AC GANPOP 

achieves the lowest error for all reflectances with more than 20 training pixels.

H. Comparative Analysis of Existing Deep Networks

Several deep learning architectures were explored for the purpose of optical property 

mapping, including conventional U-Net [38] and ResNet [39], both stand-alone and 
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integrated in a cGAN framework [23], [40]. The NMAE performance of each architecture 

was compared to AC GANPOP. All the networks were four-fold cross-validated, and the 

testing dataset included eight ex vivo human esophagi, four ex vivo pig GI samples, one in 
vivo pig colon, and eight in vivo hands and feet (Table III).

VI. DISCUSSION

In this study, we have described a GAN-based technique for end-to-end optical property 

mapping from single structured (AC) and flat-field (DC) illumination images. Compared to 

the original pix2pix paradigm [23], the generator of our model adopted a fusion of U-Net 

and ResNet architectures for several reasons. First, a fully residual network effectively 

resolved the issue of vanishing gradients, allowing us to stably train a relatively deep neural 

network [40]. Second, the use of both long and short skip connections enables the network 

to learn from the structure of the images while preserving both low and high frequency 

details. The information flow both within and between levels is important for the prediction 

of optical properties, as demonstrated by the improved performance over a U-Net or ResNet 

approach. To further demonstrate the importance of skip connections in the network, we 

conducted an experiment with all skip connections removed and the network failed to 

converge. We also varied the number of convolutional layers by adding two additional layers 

in both the generator and the discriminator. Without skip connections, the deeper network 

did not converge. With skip connections, the network produced similar accuracy to the 

original GANPOP architecture. However, adding more layers means a higher computational 

cost and a longer time to train as it makes the model significantly larger (300 million 

parameters, as compared to 78 million in the original model).

As shown in Table III, the inclusion of a discriminator significantly improved the 

performance of the fusion generator. This was especially apparent in the case for pig data, 

likely due to this testing tissue differing considerably from the training samples. We 

hypothesize that the cGAN architecture enforced the similarity between generated images 

and ground truth while preventing the generator from depending too much on the context of 

the image. Overall, the AC GANPOP method outperformed the other deep networks by a 

significant margin on all data types (Table III). We additionally conducted ablation studies 

by isolating the ℒ1 and ℒ2 loss in (5). With only ℒ1, the network became a standalone 

fusion generator, which performed poorly compared to using the proposed objective 

(ResNet-UNet versus ResNet-UNet GAN in Table III). With only ℒ2 loss, the network 

failed to converge. This is because ℒ1 loss guides the training of the network after 

initialization, when there are large differences between predictions and ground truth. As the 

predictions become more accurate, ℒ2 contributes more to the overall loss function. 

Additionally, we empirically found that a least squares GAN outperformed a conventional 

GAN when trained for 200 epochs. However, as discussed in [47], this improvement could 

potentially be matched by a conventional GAN with more training.

The training set used in this study is relatively small, including 6 human esophagi, 6 hands 

and feet, and 6 homogeneous phantoms. Effective training is achieved in this small dataset 

through several strategies. First, the incorporation of spectral normalization stabilizes 
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training and prevents mode collapse [41]. Second, we utilized patch-wise training and 

applied random stride sizes when extracting patches. This served to augment the dataset and 

provided random jitter. Moreover, training samples had heterogeneous optical properties, 

covering a wide range for both absorption and scattering (Fig. 6). We believe that this also 

helped with data efficiency as every pixel was used in learning the transformation from 

reflectance images to optical properties.

Compared to phantom ground truth in Fig. 6, AC GANPOP estimated optical properties 

with standard deviations on the same order of magnitude as conventional SFDI. 

Additionally, the AC GANPOP networks exhibited potential to extrapolate phantom optical 

properties that were not present in the training samples (highlighted by the red boxes in Fig. 

6). This provides evidence that these networks have successfully learned the relationship 

between diffuse reflectance and optical properties, and are able to infer beyond the range of 

training data.

Fig. 8 shows that AC GANPOP consistently outperformed SSOP when tested on these types 

of data. From Fig. 7, it is evident that optical properties of the pig samples differed 

considerably from those of human esophagi used for training. Nevertheless, AC GANPOP 

exhibited more accurate estimation than the model-based SSOP benchmark. Moreover, a 

single network was trained for estimating both μa and μs′ due to its lower computational cost 

and potential benefits in learning the relationships between the two parameters in tissues.

Table II displays the accuracy of AC GANPOP compared to SSOP on different regions a 

representative hand image, including vessels and background tissues. The NMAE values of 

these subtypes have a similar trend to those of the full images. Combined with the qualitative 

results shown in Fig. 10, this indicates that GANPOP is capable of not only accurately 

inferring optical properties of relatively homogeneous media, but also capturing subtle 

changes caused by transitions in tissue types.

Compared to SSOP, AC GANPOP optical property maps contain fewer artifacts caused by 

frequency filtering (Fig. 10 and 12). For both GANPOP and SSOP optical property 

estimation, a relatively large error is present on the edge of the sample. This is caused by the 

transition between tissue and the background, which poses problems for SFDI ground truth, 

and would be less significant for in vivo imaging. Artifacts caused by patched input are 

visible in GANPOP images, which can be reduced by using a larger patch size. However, 

this was not implemented in our study due to the size and the number of the specimens 

available for training. In our benchmarking with SSOP, we implemented the first version of 

the technique, which does not correct for sample height and surface angle variations. This 

allowed comparing identical input images for both SSOP and AC GANPOP.

In addition to training GANPOP models to estimate optical properties from objects assumed 

to be flat (N1 and N2), we trained networks that directly estimate profilometry-corrected 

optical properties (N3 and N4). For the same AC input, these models generated improved 

results over SSOP when tested on human and pig data. When compared against profile-

corrected ground truth, they produced 47.3% less error for μa and 29.1% for μs′ than did 

uncorrected output from N1. Combined with results shown in Fig. 9, this demonstrates that 
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AC GANPOP is capable of inferring surface profile from a single fringe image and adjusting 

measured diffuse reflectance accordingly.

In experiment N2 and N4, when trained on DC illumination images, the GANPOP model 

became less accurate. It is important to note that any model that only considers DC 

reflectance values from pixels individually would be inherently limited in predicting the 

correct optical property pair among the infinite possibilities that would give the same 

reflectance measurement. However, since GANPOP is a content-aware framework that 

incorporates information from surrounding pixels in its prediction, it is possible to estimate 

optical properties from a more representative distribution than an approach that considers 

pixels in isolation. This hypothesis is supported by Fig. 11, which shows that DC GANPOP 

produces a wide range of estimates for a single diffuse reflectance and a lower average error 

than a baseline approach that gives a single optical property pair that minimizes errors for 

each reflectance in a training set. Therefore, we hypothesize that, when sufficiently trained 

on a certain tissue type, GANPOP has the potential to enable fairly rapid and accurate wide-

field measurements of optical properties from conventional camera systems. This could be 

useful for applications such as endoscopic imaging of the GI tract, where the range of tissue 

optical properties is limited and modification of the hardware system is challenging.

The generator models trained in this study were 600MB in size with 78 million parameters. 

Each iteration was trained on approximately 500 patches, and this process took 3 hours on 

an NVIDIA Tesla P100 GPU. In terms of speed, GANPOP requires capturing one sample 

image instead of six, thus significantly shortening data acquisition time while avoiding 

image artifacts due to motion or change in ambient light. For optical property extraction, the 

model developed here without optimization takes approximately 0.04 s to process a 256 × 

256 image on an NVIDIA Tesla a P100 GPU. Therefore, this technique has the potential to 

be applied in real time for fast and accurate optical property mapping. In terms of 

adaptability, random cropping ensures that our trained models work on any 256 × 256 

patches within the field of view. Additionally, while the models were trained on the same 

calibration phantom at 660 nm, they could theoretically be applied to other references or 

wavelengths by scaling the average MDC,ref and MAC,ref.

For future work, a more generalizable model that would work on a range of imaging systems 

could be trained using domain adaptation techniques. A wider range of optical properties 

could also be incorporated into the training set, though this would inevitably incur a higher 

computational cost and necessitate a much larger dataset for training. Another future 

direction is to explore the applications of GANPOP in situations where SFDI data is difficult 

to acquire. Findings from this study indicate that training on a relatively small set of images 

can enable a GANPOP generator that is accurate and robust. Thus, in cases where acquiring 

training data is expensive or laborious, we hypothesize that a small dataset containing 

relatively few samples would be sufficient for enabling accurate predictions. Moreover, 

although all input images used here were acquired at an approximately-constant working 

distance, GANPOP could be modified to work for a variety of imaging geometries. 

Incorporating monocular depth estimates into the prediction may enable GANPOP to 

account for large differences in working distance [48], [49]. This could be particularly useful 

for endoscopic screening where constant imaging geometries are difficult to achieve. Having 
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a model trained on images at multiple wavelengths, this technique can be modified to 

provide critical information in real time, such as tissue oxygenation and metabolism 

biomarkers. Accuracy in this application may also benefit from training adversarial networks 

to directly estimate these biomarkers rather than using optical properties as intermediate 

representations. By similar extension, future research may develop networks to directly 

estimate disease diagnosis and localization from structured light images.

VII. CONCLUSION

We have proposed a deep learning-based approach to optical property mapping (GANPOP) 

from single snapshot wide-field images. This model utilizes a conditional Generative 

Adversarial Network consisting of a generator and a discriminator that are iteratively trained 

in concert with one another. Using SFDI-determined optical properties as ground truth, AC 

GANPOP produces significantly more accurate optical property maps than a model-based 

SSOP benchmark. Moreover, we have demonstrated that DC GANPOP can estimate optical 

properties with conventional flat-field illumination, potentially enabling optical property 

mapping in endoscopy without modifications for structured illumination. This method lays 

the foundation for future work in incorporating real-time, high-fidelity optical property 

mapping and quantitative biomarker imaging into endoscopy and image-guided surgery 

applications.
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Fig. 1. 
Proposed conditional Generative Adversarial Network (cGAN) architecture. The generator 

is a combination of ResNet and U-Net and is trained to produce optical property maps that 

closely resemble SFDI output. The discriminator is a three-layer classifier that operates on a 

patch level and is trained to classify the output of the generator as ground truth (real) or 

generated (fake). The discriminator is updated using a history of 64 previously-generated 

image pairs.
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Fig. 2. 
Overview of conventional SFDI illumination patterns, hardware, and processing flow. SFDI 

captures six frames (three phase offsets at two different spatial frequencies) to generate an 

absorption and reduced scattering map. DC indicates planar illumination images and AC 

indicates spatially modulated images. To calculate optical properties, acquired images are 

demodulated, calibrated against a reference phantom, and inverted using a lookup table.
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Fig. 3. 
Detailed architecture of the proposed generator. We use a fusion network that combines 

properties from ResNet and U-Net, including both short and long skip connections in the 

form of feature addition. Each residual block contains five convolution layers, with short 

skips between the first and the fifth layer.
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Fig. 4. 
Example input-output pair used in N1 showing each individual channel as well as the 

combined RGB images. Channel 1 and 2 of the output contain μa and μs′, respectively. Thus, 

a high absorption appears red while a high scattering appears green.
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Fig. 5. 
Validation of SSOP model-based prediction of optical properties with 18 homogeneous 

tissue phantoms. SSOP prediction from a single input image demonstrates close agreement 

with SFDI prediction from six input images.
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Fig. 6. 
Scatter plot showing optical property pairs estimated by AC GANPOP compared to ground 

truth from conventional SFDI on 12 tissue phantoms. The 2D histogram in the background 

illustrates the distribution of training pixels among all optical property pairs, determined by 

SFDI. Green ellipses indicate dense pixel counts due to homogeneous phantoms used in 

training. Testing samples in the red box fell outside of the training range but were accurately 

predicted by AC GANPOP.
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Fig. 7. 
Histogram of optical property distribution of testing pixels from pig samples. Compared to 

training samples, pig tissues tested in this study had, on average, lower absorption 

coefficients and higher scattering coefficients.
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Fig. 8. 
Accuracy of SSOP (blue), DC GANPOP (green) and AC GANPOP (yellow) in predicting 

optical properties of various types of samples. Average NMAE for absorption (left column) 

and scattering coefficients (right column) are reported. Top row shows the accuracy as 

compared to profile-uncorrected SFDI ground truth, and bottom row is against corrected 

ground truth. The same uncorrected SSOP data is used in both cases.
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Fig. 9. 
(a): Height map of a hemisphere phantom measured by SFDI profilometry; (b) and (c): 

Absorption and scattering coefficients measured by AC GANPOP (N3), profile-corrected 

(ground truth) and uncorrected SFDI compared to expected values.
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Fig. 10. 
Absorption (top) and reduced scattering (bottom) maps of the back of a hand generated by 

(a) SFDI ground truth, (b) SSOP, and (c) AC GANPOP. GANPOP result closely resembles 

the ground truth in terms of pixel accuracy and image quality, even for fine vascular 

structures.
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Fig. 11. 
Top row: optical property distributions of esophagus test samples estimated by: (a) SFDI 

ground truth, (b) SSOP, (c) DC GANPOP, and (d) AC GANPOP, at a constant reflectance of 

Rd, 0mm−1 = 0.20. Red cross in (a) marks the baseline measurement, which is the average 

value of all training optical property pairs. Middle row: corresponding error histograms from 

(e) baseline, (f) SSOP, (g) DC GANPOP, and (h) AC GANPOP. Bottom row: (i) plot of 

average average optical property (OP) deviation of all optical property pairs for a given DC 

reflectance. Each average OP deviation is calculated as the average distance of all test points 

from ground truth at the corresponding reflectance level. Dotted line in (i) indicates where 

(a)-(h) are sampled.
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Fig. 12. 
Example results for AC input to non-profilometry-corrected optical properties (N1). From 

left to right: RGB image and raw structured illumination image, SFDI ground truth, SSOP 

output, AC GANPOP output, absolute percent error map between SSOP and ground truth, 

and absolute percent error map between AC GANPOP and ground truth. From top to 

bottom: (a) ex vivo human esophagus, (b) ex vivo pig stomach and esophagus, (c) in vivo 
pig colon, and (d) in vivo human foot. Optical properties are measured in mm−1.
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Table I:

SUMMARY OF NETWORKS TRAINED IN THIS STUDY

Input Output

Ni Channel 1 Channel 2 Channel 1 Channel 2

N1 IAC
MDC, ref

IAC
MAC, ref

μa μs′

N2 IDC
MDC, ref

IDC
MAC, ref

μa μs′

N3 IAC
MDC, ref

IAC
MAC, ref

μa,corr μs, corr′

N4 IDC
MDC, ref

IDC
MAC, ref

μa,corr μs, corr′
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Table II:

PERFORMANCE COMPARISON OF SSOP, DC GANPOP, AND AC GANPOP FOR FULL HAND 

IMAGES, VESSELS, AND BACKGROUND TISSUES

SSOP DC GANPOP AC GANPOP

μa
NMAE

μs′
NMAE

μa
NMAE

μs′
NMAE

μa
NMAE

μs′

Vessels 0.1069 0.0600 0.1007 0.0968 0.0305 0.0206

Background 0.2311 0.1307 0.1345 0.1203 0.0407 0.0321

Hand overall 0.2262 0.1284 0.1339 0.1199 0.0404 0.0320
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Table III:

PERFORMANCE COMPARISON OF THE PROPOSED FRAMEWORK AGAINST MODEL-BASED 

SSOP AND OTHER DEEP LEARNING ARCHITECTURES WHEN TESTED ON PROFILE-

UNCORRECTED DATA (N1). PERFORMANCE IS MEASURED IN TERMS OF NORMALIZED MEAN 

ABSOLUTE ERROR (NMAE)

Data type SSOP ResNet UNet ResNet-UNet ResNet GAN UNet GAN Proposed 
(ResNet-UNet 

GAN)

μa μs′ μa μs′ μa μs′ μa μs′ μa μs′ μa μs′ μa μs′
Human 

esophagus
0.312 0.298 0.192 0.136 0.144 0.136 0.185 0.129 0.201 0.140 0.148 0.143 0.124 0.121

In vivo pig 
colon

0.171 0.112 2.032 0.145 0.251 0.186 1.533 0.145 1.953 0.133 0.190 0.152 0.074 0.067

Ex vivo pig 
GI tissue

0.246 0.235 0.516 0.415 0.208 0.187 0.392 0.337 0.511 0.564 0.187 0.171 0.143 0.133

In vivo hands 
and feet

0.194 0.101 0.337 0.070 0.100 0.066 0.250 0.068 0.643 0.162 0.089 0.056 0.048 0.030

Overall 0.231 0.187 0.769 0.192 0.176 0.144 0.590 0.170 0.827 0.250 0.154 0.131 0.097 0.088
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