Table III:
PERFORMANCE COMPARISON OF THE PROPOSED FRAMEWORK AGAINST MODEL-BASED SSOP AND OTHER DEEP LEARNING ARCHITECTURES WHEN TESTED ON PROFILE-UNCORRECTED DATA (N1). PERFORMANCE IS MEASURED IN TERMS OF NORMALIZED MEAN ABSOLUTE ERROR (NMAE)
| Data type | SSOP | ResNet | UNet | ResNet-UNet | ResNet GAN | UNet GAN | Proposed (ResNet-UNet GAN) | |||||||
| μa | μa | μa | μa | μa | μa | μa | ||||||||
| Human esophagus | 0.312 | 0.298 | 0.192 | 0.136 | 0.144 | 0.136 | 0.185 | 0.129 | 0.201 | 0.140 | 0.148 | 0.143 | 0.124 | 0.121 |
| In vivo pig colon | 0.171 | 0.112 | 2.032 | 0.145 | 0.251 | 0.186 | 1.533 | 0.145 | 1.953 | 0.133 | 0.190 | 0.152 | 0.074 | 0.067 |
| Ex vivo pig GI tissue | 0.246 | 0.235 | 0.516 | 0.415 | 0.208 | 0.187 | 0.392 | 0.337 | 0.511 | 0.564 | 0.187 | 0.171 | 0.143 | 0.133 |
| In vivo hands and feet | 0.194 | 0.101 | 0.337 | 0.070 | 0.100 | 0.066 | 0.250 | 0.068 | 0.643 | 0.162 | 0.089 | 0.056 | 0.048 | 0.030 |
| Overall | 0.231 | 0.187 | 0.769 | 0.192 | 0.176 | 0.144 | 0.590 | 0.170 | 0.827 | 0.250 | 0.154 | 0.131 | 0.097 | 0.088 |