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Abstract

Each day, the retina converts an immense number of photons into chemical signals that are then 

transported to higher order neural centers for interpretation. This process of photo transduction 

requires large quantities of cellular energy and anabolic precursors, making the retina one of the 

most metabolically active tissues in the body. With such a large metabolic demand, the retina is 

understandably sensitive to perturbations in perfusion and hypoxia. Indeed, retinal ischemia 

underlies many prevalent retinal disorders including diabetic retinopathy (DR), retinal vein 

occlusion (RVO), and retinopathy of prematurity (ROP). Retinal ischemia leads to the expression 

of growth factors, cytokines, and other cellular mediators which promote inflammation, vascular 

dysfunction, and ultimately, vision loss. This review aims to highlight the most recent and 

compelling findings that have advanced our understanding of the molecular mechanisms 

underlying retinal ischemias.

Metabolism and retinal ischemia

An important cellular response to ischemia is activation of hypoxia inducible factors (HIFs). 

While stabilization of HIFs is most often attributed to reduced intracellular oxygen 

concentrations, HIF activation is also highly dependent upon the metabolic status of the cell. 

In both PHD2-mediated and FIH-1-mediated hydroxylation of HIFs, one oxygen atom from 

O2 is inserted into the respective amino acid residue while the remaining oxygen atom is 

bound to the citric acid cycle (TCA) intermediate α-ketoglutarate [1,2]. When metabolism is 

compromised and α-ketoglutarate levels are low, PDH2 and FIH-1 hydroxylation is 

inhibited, promoting HIF stabilization [3]. HIF activation is also highly dependent upon the 

presence of increased reactive oxygen species (ROS) generated by mitochondrial respiration 

[4], and in the absence of mitochondrial-derived ROS, hypoxia-induced HIF stabilization 

may be blunted [5]. Metabolism and redox homeostasis are tightly balanced in the normal 

state but may become misaligned in response to ischemia such that perturbations in 

metabolism result in increased ROS [6]. Hence, HIF activation is tightly coupled to the 

metabolic status of the cell (Figure 1).

The retina is one of the most metabolically active tissues in the body [8,9], and until 

recently, it was assumed that the retina satisfied its vast metabolic needs through oxidative 

glycolysis. However, Smith et al. recently demonstrated that photoreceptors rely heavily on 
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β-oxidation for ATP production [10●●]. Remarkably, 87% of glucose in ex vivo mouse 

retinas was converted to lactate rather than being used for oxidative phosphorylation, 

suggesting that aerobic glycolysis may occur in the retina. This conclusion is further 

supported by two recent studies which showed that photoreceptors rely on aerobic glycolysis 

to accumulate anabolic precursors for outer segment biogenesis [11] and that aerobic 

glycolysis in photoreceptors is important for adaptation to metabolic stress [12]. Moreover, 

Joyal et al. demonstrated coupled regulation of lipid and glucose metabolism in 

photoreceptors and showed that simultaneous impairment of lipid and glucose metabolism in 

the photoreceptors of very-low-density lipoprotein receptor knockout mice (Vldlr−/−) 

resulted in decreased α-ketogluterate, HIF-1α stabilization, and subsequent formation of 

neovascularization in the deep capillary plexus (Figure 2a). These vascular lesions highly 

resemble those seen in age-related macular degeneration (AMD) patients with retinal 

angiomatous proliferation (RAP) and suggest that HIF-1α stabilization in photoreceptors 

may be the underlying mechanism in this AMD subpopulation. Interestingly, mice that lack 

the lipid metabolism regulator PPARα develop retinal degeneration and vascular dysfunction 

[13]. These mice demonstrate impaired oxidative phosphorylation of lipids, diminished 

mitochondrial function, and compensatory increases in oxidative glycolysis, further 

underscoring the importance of β-oxidation in the retina. In patients, two large clinical trials 

have confirmed that fenofibrates, PPARα agonists, significantly reduce the progression of 

DR [14,15], and animal studies using novel PPARα agonists have shown decreased vascular 

dysfunction in diabetic rats [16] and reduced vascular lesion size in mice with laser-induced 

choroidal neovascularization (CNV) [17].

In another recent report, Friedlander et al. demonstrated that genetically induced 

pseudohypoxia in retinal pigmented epithelial (RPE) cells, via conditional VHL knockdown, 

resulted in rapid metabolic stress in RPE cells and led to photoreceptor degeneration [18●]. 

In these mice, accumulation of glycogen and lipid droplets in RPE cells were observed after 

only three days post-induction of VHL deletion. Interestingly, gene profiling experiments 

demonstrated downregulation of fatty acid metabolism regulatory genes while mass 

spectrometry revealed increased levels of several acylcarnitines, suggesting impaired lipid 

handling in pseudohypoxic RPE. Lastly, Kurihara et al. demonstrated that pseudohypoxic 

RPE upregulates glycolytic regulatory enzymes while simultaneously downregulating those 

involved in the TCA cycle, seemingly shifting to anaerobic glycolysis (Figure 2a). 

Interestingly, the pathological changes observed in pseudohypoxic RPE cells were 

dependent upon HIF-2α but not HIF-1α. However, HIF-1α inhibition in rodent models of 

laser-induced choroidal neovascularization (CNV), using a small molecule inhibitor [19] and 

RPE-specific genetic ablation [20], significantly reduced vascular lesion size, demonstrating 

the complex context-dependent effects of HIFs in hypoxic RPE.

Other studies have supported the notion of a metabolic shift in response to retinal ischemia. 

In a metabolomics study on vitreous humor from patients with proliferative diabetic 

retinopathy (PDR), proline, citrulline, arginine, and β-oxidation products were found to be 

significantly increased [21] (Figure 2b). Eyes from mice with oxygen-induced retinopathy 

(OIR) showed similar increases in metabolites, supporting the notion that OIR mice 

recapitulate aspects of PDR. In a more recent metabolomics study on PDR vitreous, 

researchers found a downregulation of glycolytic intermediates and an upregulation of β-
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oxidation, purine metabolism, and pentose phosphate pathway (PPP) intermediates [22]. In 

addition, the group found increased levels of citrulline and proline and decreased levels of 

xanthine (Figure 2b). Similarly, pentose phosphates were found to be elevated in the plasma 

of patients with DR and may be suggestive of a cellular response to oxidative stress because 

the PPP is the main source of NADPH [23]. In a metabolomics study in rodents, the retinas 

from diabetic db/db mice showed significant increases in glycolytic metabolites and long-

chain acylcarnitines, suggesting an increase in glycolysis and β-oxidation in this model of 

nonproliferative diabetic retinopathy (NPDR) [24]. Interestingly, Vancura et al. found that 

transcripts of β-oxidation regulatory proteins in mouse whole retina and isolated 

photoreceptors follow a dopamine-dependent circadian cycle and that this transcript pattern 

is misaligned in diabetic db/db mice [25]. Consistent with this observation, recent reports 

have identified HIF-1α as a regulator of circadian clock expression during pathological 

hypoxia [26,27].

Painting a cohesive picture of the metabolic alterations observed in retinal ischemia is a 

challenging proposition. The retina is composed of many different cell types, and each has a 

unique context-dependent response to hypoxia and energy deprivation; this creates a mosaic 

when viewed as a whole. For example, endothelial cells (ECs) rely upon increased aerobic 

glycolysis for EC rearrangement during vessel sprouting [28] but decreased glycolytic 

intermediates were observed in PDR vitreous, suggesting significant contributions from 

other cell types. Moreover, the setting in which retinal ischemia occurs is different for each 

disease, further complicating our ability to draw broad conclusions. For example, diabetic 

retinopathy occurs in the backdrop of hyperglycemia and hyperlipidemia and unraveling the 

coordinated metabolic responses to these additional variables is difficult. While the study of 

metabolomics in retinal ischemia is in its infancy, a clear trend is that β-oxidation appears to 

be critically important in both normal and pathological physiology of the retina. Further 

studies are needed to determine how and if metabolic alterations play a causal role in the 

progression of ischemic retinopathies.

Inflammation and retinal ischemia

The retina, like its parent organ system the CNS, was historically viewed as an 

immunologically privileged tissue because of its inability to mount an adaptive immune 

response. The retina maintains a highly controlled blood-retina barrier (BRB) which uses 

tight junctions to limit the extravasation of leukocytes and leakage of intravascular fluid 

[29]. However, the notion of immunological privilege in the retina has been challenged by 

accumulating evidence demonstrating the central role of inflammation in ischemic 

retinopathies.

In a novel mouse model of DR where pericyte coverage of retinal vessels is reduced by 

treatment with anti-PDGFRβ, Uemura et al. observed irreversible BRB breakdown 

secondary to sustained leukocyte infiltration [30●]. The group found a >10-fold increase in 

retinal macrophages which persisted throughout the life of the animal and were associated 

with growth factor release. Remarkably, macrophage depletion using clodronate liposomes 

dramatically suppressed retinal edema and restored vessel integrity. Thus, in DR patients 

with pericyte-free vessels, infiltrating macrophages may exacerbate BRB dysfunction via 
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paracrine growth factor release (Figure 3a). However, in laser-induced CNV mice, 

macrophage deletion has shown inconsistent results. Local partial depletion of CD11b+ 

macrophages and microglia via drug-induced knockdown was not sufficient to reduce 

vascular lesion size [31], while splenic-denervated and splenectomized mice resulted in 

decreased infiltrating macrophages and concomitant reductions in vascular lesion size [32].

In another recent report, Sapieha et al. demonstrated that hypoxic retinal cells enter 

senescence and take on a pro-inflammatory secretory phenotype [33●●]. In OIR mice, the 

group observed a dynamically evolving pattern of cellular senescence that commenced in the 

ganglion cell layer (GCL) of avascular regions and propagated to ECs of neovascular tufts 

and microglia (Figure 3b). Senescent cells demonstrated semaphorin 3A (SEMA3A) 

dependent expression of several pro-inflammatory mediators, and a similar panel of 

cytokines was found to be elevated in the vitreous of PDR patients. Likewise, SEMA3A was 

found to be elevated in the plasma of NPDR and PDR patients and compared between the 

two, was significantly higher in the PDR group [34]. Interestingly, in OIR mice, 

administration of metformin significantly reduced senescence, cytokine secretion, and total 

neovascular area. This report suggests a potential model in which the ischemic neural retina 

enters a senescence-like state as a form of protection from hypoxia-associated cell death but 

with the unintended consequence of promoting inflammatory factors that spread senescence 

to microglia and endothelial cells, ultimately leading to vascular dysfunction. Subsequent 

reports have demonstrated premature senescence of retinal ECs in microaneurysms of 

elderly patients [35], ganglion cells of mice with IOP-elevation-induced ischemia [36], and 

retinal capillaries of streptozotocin-induced type 1 diabetic mice [37]. Further studies are 

needed to fully understand the different stimuli that trigger and mediate senescence in the 

retina.

In patients with RVO, clinicians observed that treatment with anti-VEGF agents promoted 

reperfusion of previously occluded retinal vessels [38]. Campochiaro et al. helped to 

elucidate the mechanism underlying this observation by showing that increased retinal 

secretion of VEGF stimulated marked leukocyte trafficking to the retina [39●●]. These 

leukocytes physically plugged the capillary lumen and led to secondary regions of hypoxia 

in the downstream tissue (Figure 3c). Moreover, reducing retinal VEGF levels by either 

therapeutic or genetic means was sufficient to restore perfusion in previously occluded 

vessels similar to what was observed in RVO patients treated with anti-VEGF injections. 

Thus, a single ischemic event in the retina can lead to a cycle of increasing hypoxia through 

VEGF-dependent leukostasis. Interestingly, leukostasis was similarly observed in the retinal 

vessels of streptozotocin-induced type 1 diabetic mice and was abolished with viral 

overexpression of angiotensin-converting enzyme (ACE)-2 [40]. Leukostasis is likely 

triggered by a number of different stimuli, and further research is needed to elucidate the 

mechanisms.

While FOXP3+ T-regulatory (Treg) cells are known to modulate inflammation in a variety of 

tissues [41], their role in the ischemic retina has remained largely unexplored. In a 

paradigm-shifting report, Wilkinson-Berka et al. displayed the beneficial properties of 

FOXP3+ Treg cells in OIR eyes by demonstrating their ability to inhibit the formation of 

pathological neovessels and dampen microglial activation [42●●]. The group showed that 
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FOXP3+ Tregs are able to penetrate the BRB and function to reduce microglial activation 

through direct cell contact, leading to reduced expression of pro-inflammatory mediators 

(Figure 3d). Moreover, interventions that increased FOXP3+ Tregs significantly reduced 

vasobliteration and neovascularization and decreased VEGF expression. These findings 

support the notion that FOXP3+ Tregs are an endogenous cellular mechanism by which 

retinal inflammation can be controlled. Similar findings were reported in OIR mice lacking 

toll-like receptor 2 and 4 which mediates the balance between IL-17A-expressing Th17 cells 

and FOXP3+ Tregs [43]. The retinas of these mice had significantly increased FOXP3+ Treg 

cells and displayed decreased vasobliteration, neovascularization, microglial activation, and 

pro-inflammatory cytokines. Interestingly, in zebrafish, FOXP3+ Tregs are necessary for 

retinal regeneration and function to secrete regenerative factors and dampen excessive 

inflammation [44]. Thus, treatments that increase FOXP3+ Tregs may be beneficial in 

patients with ischemic retinopathies.

Retinal inflammation is now understood to be a central player in the progression of ischemic 

retinopathies. Indeed, intraocular treatment with corticosteroids is known to slow the 

development of PDR [45] and abrogate the expression of vasoactive proteins in DR patients 

[46]. Compelling cases have been put forth that implicate both innate and adaptive immune 

cells in the inflammatory response to retinal ischemia. However, a lack of animal models 

that fully recapitulate all aspects of the human disease has prevented a unified conclusion 

regarding the causal cell types and factors involved. Further research is needed to fully 

understand the molecular mechanisms underlying inflammation in retinal ischemias.

Vascular dysfunction and retinal ischemia

The retinal vasculature is unique in that it is readily visualized in living animals and isolated 

tissue. As such, the retina has served as an invaluable tool for studying EC biology. A well 

characterized consequence of retinal ischemia is aberrant angiogenesis referred to as 

neovascularization [47]. Neovessels lack proper cell adhesion proteins, leading to leakage of 

intravascular fluid and subsequent vision loss, if left untreated [48]. Vascular dysfunction is 

central to ischemic retinopathies, and recent studies have expanded our knowledge of the 

molecular mechanisms underlying its pathogenesis.

Neovessels are composed of highly proliferative ECs, but the exact population of cells 

giving rise to neovessels has remained elusive. Recent work by Dimmeler et al. has helped to 

elucidate the underlying mechanism of neovascular proliferation by showing that the 

majority of neovessels (≤69%) arise due to clonal expansion of previously quiescent ECs 

[49●●]. Using Confetti mice, which tags mature ECs with either GFP, YFP, or RFP 

following inducible cre-recombinase expression, the authors demonstrated that normal 

retinal vasculature is lined with a heterogeneous assortment of ECs. However, in OIR mice, 

neovessels were characterized by homogenous cell populations, suggesting that 

neovascularization is largely due to clonal expansion of formerly quiescent ECs (Figure 4a). 

Moreover, the group found that clonally expanded ECs demonstrate hypoxia and TGFβ-

dependent expression of gene products involved in endothelial-to-mesenchymal transition 

(EndMT), suggesting that clonal expansion of ECs may involve EndMT. In agreement, 

expression of microRNA-20a in human umbilical vein ECs was shown to inhibit EndMT 
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through repression of canonical TGFβ signaling [50]. Moreover, expression of the EndMT 

transcription factor SNAI1 was found to be increased in the vascular lesions of OIR and 

CNV mice [51]. Interestingly, epiretinal membranes from PDR patients demonstrated 

colocalization of the endothelial marker CD31 and the fibroblastic marker S100A4, 

providing evidence that EndMT occurs in patients [52]. Taken together, these findings 

suggest that retinal neovascularization may be due to EndMT-mediated clonal expansion of 

ECs, and that suppression of EndMT mediators may be of therapeutic value in patients with 

ischemic retinopathies.

In another recent report, Beli et al. identified a novel function of the retina-gut axis by 

showing that shifts in the gut microbiome attenuate retinal vascular dysfunction in diabetic 

mice through altered bile acid (BA) metabolism [53●]. In two separate mouse models of 

diabetic retinopathy, intermittent fasting (IF) was shown to alter the bacterial populations of 

the gut microbiome and decrease numbers of acellular retinal capillaries. The authors found 

increased circulating levels of the BA metabolite tauroursodeoxycholate (TUDCA) and 

showed that ganglion cells express TGR-5, the cognate TUDCA receptor. Transcripts of 

TNF-α, the negatively-regulated downstream target of TGR-5 activation, were significantly 

decreased in the retinas of IF treated mice and resulted in decreased leukocyte infiltration. 

Importantly, the protective effects of IF were replicated with pharmacological activation of 

TGR5, confirming the beneficial effects of altered BA metabolism on the retinal vasculature 

of diabetic mice (Figure 4b).

In wet AMD patients, gut metagenome sequencing revealed altered bacterial populations 

compared to non-AMD controls [54]. Interestingly, in mice fed a high-fat diet, CNV 

vascular lesions were found to be significantly larger, and this increase was abrogated by 

fecal transplant from control mice, suggesting complicity of the gut flora [55]. Thus, 

alterations in the retina-gut axis accentuate vascular dysfunction in rodents and suggest that 

dietary restrictions may be of therapeutic value in patients with retinal ischemias. Further 

studies are needed to elucidate the molecular signals that govern the retina-gut axis.

Conclusion

The retina is particularly susceptible to ischemia given its immense metabolic needs. The 

molecular responses to retinal ischemia are multifaceted, and include pathways involved in 

metabolism, inflammation, and vascular homeostasis, among others. While these pathways 

are designed to protect the retina from hypoxia and nutrient deprivation, they often lead to 

exudation, pathological vessel growth, and vision loss. A current focus in the field is to 

determine which of these molecular responses are causative versus consequential, so that 

clinical interventions may be developed that effectively prevent disease progression. The 

discovery of VEGF as a central mediator in the progression of retinal ischemias and the 

subsequent development of anti-VEGF agents has preserved vision in millions of patients 

[56,57]. Even with the remarkable benefits of anti-VEGF agents, some patients still 

experience disease progression, highlighting the need for new treatments that target ischemic 

retinopathies from different perspectives[58]. The recent studies highlighted in this review 

represent significant advances in understanding the molecular mechanisms responsible for 

retinal ischemia and may be influential in the development of novel treatments.
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Figure 1. 
Molecular mechanisms regulating HIF activation. All metazoans share an evolutionarily 

conserved heterodimer system known as hypoxia-inducible factor 1 (HIF-1) which indirectly 

senses intracellular oxygen concentrations and acts as a transcription factor to initiate a 

cellular response to hypoxia. HIF-1 consists of two subunits, HIF-1α and HIF-1β, both of 

which are constitutively expressed at the transcriptional and translational levels. Regulation 

of the HIF-1 heterodimer system primarily occurs through post-translational modifications 

of HIF-1α which is hydroxylated by the prolyl hydroxylase PHD2 and the asparaginyl 

hydroxylase FIH-1. Hydroxylated HIF-1α binds von Hippel-Lindau (VHL) which recruits 

ubiquitin ligases and targets HIF-1α for proteasomal degradation. PHD2 and FIH-1-

mediated hydroxylation of HIF-1α utilizes O2 as a substrate and is thus limited by the 

availability of oxygen, providing a real-time sensor of intracellular O2 concentrations. 

During hypoxia, HIF-1α hydroxylation is inhibited, preventing its degradation and allowing 

heterodimerization with HIF-1β. This unit directly interacts with DNA at hypoxia response 

elements (HREs) and induces the transcription of a diverse set of genes including those 

involved in angiogenesis, metabolism, and inflammation [7]. In PHD2 and FIH-1-mediated 

hydroxylation of HIF-1α, one oxygen atom is inserted into HIF-1α while the remaining 

oxygen atom is inserted into α-ketoglutarate, splitting it into CO2 and succinate. Thus, 

independent of hypoxia, reduced α-ketoglutarate levels can act as a limiting reagent in the 

hydroxylation of HIF-1α, leading to its activation. In addition, increased mitochondrial-

derived ROS can inhibit hydroxylation of HIF-1α through an unknown mechanism, leading 

to its activation.
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Figure 2. 
Novel insights into the metabolic alterations in retinal ischemias. (a) In the normal state, 

photoreceptors (depicted here in grey) rely on aerobic glycolysis for synthesis of anabolic 

precursors and β-oxidation for production of ATP. When both β-oxidation and glycolysis are 

impaired, as in Vldlr−/− mice, α-ketogluterate levels are reduced leading to activation of 

HIF-1α and subsequent neovascularization. In pseudohypoxic RPE cells (depicted here in 

blue), β-oxidation regulatory proteins are reduced and long-chain acylcarnitines aggregate, 

suggesting impaired lipid handling. In addition, TCA cycle enzymes are downregulated and 

glycolytic enzymes are increased, suggesting a shift to anaerobic glycolysis. (b) 
Metabolomic studies on vitreous humor from PDR patients (depicted here as upper eye) 

revealed several metabolic alterations including increased proline, citrulline, arginine, 

acylcarnitines, pentose phosphates, and purine intermediates, and decreased glycolytic 

intermediates and xanthine. Metabolomic analysis of retinas from diabetic db/db mice 

(depicted here as lower eye) revealed increased acylcarnitines and glycolytic metabolites.
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Figure 3. 
Novel insights into the inflammatory responses to retinal ischemias. (a) CD45hi CD11b+ 

macrophages are increased in mouse retinas with pericyte free vessels and promote vascular 

dysfunction through paracrine growth factor release. (b) Neovascular endothelial cells and 

microglia enter a senescent-like state in hypoxic mouse retinas and develop a pro-

inflammatory secretory phenotype. (c) Leukostasis-mediated vascular plugging occurs in 

response to increased retinal VEGF and results in secondary regions of retinal hypoxia. (d) 
FOXP3+ Tregs improve vascular dysfunction in hypoxic mouse retinas by decreasing 

microglial activation via direct cell contact.
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Figure 4. 
Novel insights into vascular dysfunction in retinal ischemias. (a) Normal retinal vasculature 

is composed of a heterogeneous assortment of ECs while neovascularization is homogenous 

and composed of clonally expanded ECs originating from a previously quiescent EC. (b) 
Changes in gut flora, induced by intermittent fasting, alters BA metabolism, leading to 

increased TUDCA. TUDCA travels via the blood to the neural retina where it signals 

through its cognate receptor and protects the retinal vasculature.
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