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Background.  Persons living with human immunodeficiency virus (HIV; PLWH) experience a high burden of cancer. It remains 
unknown which cancer types are reduced in PLWH with earlier initiation of antiretroviral therapy (ART).

Methods.  We evaluated AIDS-free, ART-naive PLWH during 1996–2014 from 22 cohorts participating in the North American 
AIDS Cohort Collaboration on Research and Design. PLWH were followed from first observed CD4 of 350–500 cells/µL (baseline) 
until incident cancer, death, lost-to-follow-up, or December 2014. Outcomes included 6 cancer groups and 5 individual cancers that 
were confirmed by chart review or cancer registry linkage. We evaluated the effect of earlier (in the first 6 months after baseline) 
versus deferred ART initiation on cancer risk. Marginal structural models were used with inverse probability weighting to account 
for time-dependent confounding and informative right-censoring, with weights informed by subject’s age, sex, cohort, baseline year, 
race/ethnicity, HIV transmission risk, smoking, viral hepatitis, CD4, and AIDS diagnoses.

Results.  Protective results for earlier ART were found for any cancer (adjusted hazard ratio [HR] 0.57; 95% confidence interval 
[CI], .37–.86), AIDS-defining cancers (HR 0.23; 95% CI, .11–.49), any virus-related cancer (HR 0.30; 95% CI, .16–.54), Kaposi sar-
coma (HR 0.25; 95% CI, .10–.61), and non-Hodgkin lymphoma (HR 0.22; 95% CI, .06–.73). By 15 years, there was also an observed 
reduced risk with earlier ART for virus-related NADCs (0.6% vs 2.3%; adjusted risk difference −1.6; 95% CI, −2.8, −.5).

Conclusions.  Earlier ART initiation has potential to reduce the burden of virus-related cancers in PLWH but not non-AIDS-
defining cancers (NADCs) without known or suspected viral etiology.
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Although life expectancy has dramatically increased with the 
introduction of combination antiretroviral therapy (ART) [1], 
persons living with human immunodeficiency virus (HIV; 

PLWH) now experience an increasing burden of age-associated 
morbidity, including cancers. Although the burden of AIDS-
defining cancers (ADCs) has decreased, it is still elevated, and 
the incidence rates for a number of non-AIDS-defining cancers 
(NADCs), especially those with a known or suspected viral eti-
ology, are considerably higher than in the general population 
[2].

Given the established link between immunosuppression, 
prolonged viral suppression, and many cancer types [3–10], 
especially those with a known or suspected viral etiology, it 
follows that earlier initiation of ART may reduce the risk of 
cancer in PLWH. Virus-related cancers have been shown to be 
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especially increased in PLWH [10], which may be due to ge-
neral deficits in immune surveillance or an impaired ability of 
the immune system to suppress oncogenic viruses [11]. Prior 
research [12] has demonstrated that the strongest associations 
of oncogenic viruses and cancer in PLWH were Kaposi sarcoma 
herpes virus with Kaposi sarcoma (KS); Epstein-Barr virus 
with non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma 
(HL); human papillomavirus (HPV) with cervical, anal, vulvar, 
vaginal, penile, and oropharyngeal cancer; and hepatitis B and 
C with liver cancer. However, only 1 observational study [13] 
and 1 trial [14] have directly evaluated the association of timing 
of ART and cancer risk.

The goal of the current analysis was to evaluate whether 
the timing of ART initiation (ie, how long it takes to initiate 
ART once linked to care) is associated with the risk of spe-
cific cancers. The study will be conducted within the North 
American AIDS Cohort Collaboration on Research and Design 
(NA-ACCORD) and will use causal statistical methodologies 
[15] to overcome the inherent biases using observational data. 
The large sample size and extended follow-up of NA-ACCORD 
[16] enable the evaluation of more cancer types than previous 
studies, and the setting has greater generalizability to PLWH in 
routine clinical care. Results may help inform cancer preven-
tion and screening efforts among PLWH, many of whom may 
not have linked to care or initiated ART until many years after 
infection. Evaluating timing of ART initiation and cancer risk 
can also provide further insights to etiology of specific cancers, 
because any effect of deferred ART initiation on cancer risk is 
likely mediated by prolonged exposure to immunodeficiency 
and inflammation.

METHODS

Study Design and Population

The source population for the study sample is the NA-ACCORD, 
a consortium of 22 single-site and multisite cohorts of HIV-
seropositive adults (≥18 years) from >200 clinical sites in the 
United States and Canada [16]. All contributing cohorts annu-
ally submit a standard set of demographic, treatment, clinical, 
laboratory, and vital status data, with complete data available for 
analysis through 2014. The human subjects research activities 
of the NA-ACCORD have been reviewed and approved by the 
individual cohorts local institutional review boards and by the 
Johns Hopkins School of Medicine.

Here, our study design aimed to use observational data to 
emulate [17] inferences from a hypothetical randomized con-
trolled trial that would be conducted to inform the decision 
when to initiate ART to prevent cancer risk after PLWH first 
present to care. Eligible PLWH for the target trial would be ran-
domized to one of >200 treatment arms corresponding with the 
timing of ART initiation in monthly (ie, 30-day) intervals for 
up to 20 years after first entering care. Although PLWH could 

theoretically start ART in any month after first presenting to 
care, we were specifically interested in comparing those who 
started ART early (ie, initiated ART within the first 6 months) 
with those who deferred ART (ie, initiated ART at 7  months 
or later). See Supplementary Appendix Figure 1 for more de-
tails about the target trial we are emulating. To identify the 
study population from observational data that best represented 
the target population for the hypothetical trial, we identified 
PLWH who were AIDS-free (because an AIDS diagnosis has 
long been an indication for earlier ART initiation), ART-naive, 
no prior cancer diagnosis, and who presented to care during 
1996–2014 with CD4 between 350 and 500 cells/µL, to answer 
the focused clinical question of whether cancer risk varied by 
the timing of ART initiation in this narrow CD4 range. We also 
chose the 350–500 cells/µL range because CD4 threshold guide-
lines varied during the study period but for the most part were 
at or below this threshold [18]. An advantage of the 2014 end 
date is that the follow-up was prior to the release of the START 
trial findings which informed ART guidelines recommending 
immediate initiation of ART [19]. Time zero (ie, baseline) was 
the date of the first clinically observed CD4 in the target range 
while also meeting all other criteria. We also identified a sec-
ondary study population with a broader CD4 range at presen-
tation (ie, ≥350 cells/µL) to provide greater generalizability to 
PLWH in care.

Study Endpoints and Follow-up

As described previously, NA-ACCORD developed a stand-
ardized process for case finding and validation for all invasive 
cancers by cancer registry linkage or manual review of med-
ical records and pathology reports [20]. The following 6 cancer 
groups were analyzed: (1) any cancer (excluding non-melanoma 
skin cancer); (2) ADCs, which included KS, NHL, and cervical 
cancer; (3) NADCs; (4) virus-related NADCs, which included 
anal, liver, oropharyngeal, penile, vaginal, vulvar cancers, and 
HL; (5) virus-unrelated NADCs, which included all NADCs not 
included in virus-related NADCs group; and (6) virus-related, 
which combined ADCs and virus-related NADCs. Based on a 
priori power calculations, we also evaluated the 5 most common 
individual cancers: KS, NHL, HL, and lung and prostate can-
cers. PLWH were followed from baseline until the earliest of 
a cancer diagnosis, death, administrative end of follow-up (31 
December 2014 or end of an NA-ACCORD cohort’s data collec-
tion window), or loss-to-follow-up. For those with more than 1 
cancer type during follow-up, we did not censor follow-up for a 
given cancer at the time of the first cancer.

Study Exposure

The primary exposure of interest was timing of initiation of ART, 
defined as earlier ART (started ART within 6 months of baseline) 
and deferred ART (started ART after 6 months, which includes 
those who never started ART during follow-up). The units of 
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observation were consecutive monthly (ie, 30-day) intervals fol-
lowing each participant’s baseline for up to 20 years (>200 monthly 
intervals), and for each month we determined whether a person 
had first started ART by the end of the month. Because we did 
not aim to evaluate cancer risks under each of the >200 possible 
treatment initiation patterns, we created a single dichotomous 
time-updated exposure status variable summarizing, at each time 
point, earlier versus deferred ART. Before month 6, this binary 
exposure was defined as the indicator of prior ART initiation; 
after 6 months, the binary exposure was defined as the indicator 
of ART initiation in the first 6 months of follow-up. Six months 
was chosen a priori to define earlier ART for consistency with 
prior studies using similar methods [21, 22]. Analogous to em-
ulation [17] of an intention-to-treat (ITT) trial, we assumed that 
once a person started ART they remained on ART until the end 
of follow-up. In real-world settings, however, patients may not be 
perfectly adherent to ART after initiation, thus ITT results reflect 
the anticipated cancer burden that might occur in routine clinical 
care. We therefore also performed a per-protocol analysis [23], for 
which we censored follow-up once there was evidence of ART dis-
continuation (ie, no ART for ≥3 months) after first initiating ART. 
Results for the per-protocol analysis reflect the cancer burden if 
all subjects remained on ART once initiated for the remainder of 
follow-up.

Confounders

Time-independent variables considered were baseline age, 
sex, cohort, entry year, race/ethnicity, HIV transmission risk, 
ever smoked, ever hepatitis B virus (HBV) infected, and ever 
hepatitis C virus (HCV) infected. Time-dependent variables 
considered were CD4, time since last measured CD4, time-
dependent AIDS diagnoses, and time since baseline date. We 
did not consider HIV RNA as a confounder because becoming 
undetectable during follow-up was collinear with recent ART 
initiation. We had missing data on race/ethnicity, HIV trans-
mission risk, and smoking for some subjects, and partially ob-
served data for the time-varying covariate CD4 because it was 
not measured at each monthly interval. Details about the sta-
tistical handling of missing or partially missing covariate data 
using the missing indicator approach [24–28] are provided in 
the Supplementary Appendix.

Statistical Analysis

We first present baseline characteristics for the study popula-
tion, as well as a comparison of baseline characteristics between 
those that started earlier versus deferred ART. Next, we pre-
sent the percentage of person-years contributed to the earlier 
and deferred ART groups, and mean CD4 over time. We also 
present crude cancer incidence rates per 1000 person-years for 
each cancer outcome.

For each cancer outcome we then estimated adjusted hazard 
ratios (HRs), by fitting working [29] logistic marginal structural 

models (MSM) [30] for the counterfactual discrete-time hazard 
functions associated with the >200 ART initiation regimens. 
Inverse probability weighting [15] estimation was implemented 
to account for both baseline and time-dependent confounding 
[31] and informative right-censoring [32]. Our ITT analyses in-
corporated weights for right-censoring due to death or loss to 
follow-up, and our per-protocol analyses additionally incorpo-
rated weights for right-censoring due to ART discontinuation. 
Next, for ITT analyses only, we used more complex working 
models that included interaction terms between time and the 
exposure to derive estimates of cumulative incidence curves, 
risk differences (RD), and risk ratios (RR).

To investigate the potential impact of unmeasured con-
founding, we calculated E-values [33], which quantify the 
strength of an unmeasured confounder with both the exposure 
and outcome that would fully explain away the observed find-
ings. We also performed sensitivity analyses excluding poten-
tial prevalent cancers (ie, cancers diagnosed within 6 months 
after baseline). Additional details on all statistical methods are 
provided in the Supplementary Appendix. Analyses were con-
ducted using SAS, version 9.4 (Cary, NC, USA).

RESULTS

Of 119 543 PLWH in NA-ACCORD for years 1996–2014, our 
primary study population consisted of 14 674 PLWH who were 
ART-naive, AIDS-free, and with CD4 350–500 cells/µL at base-
line (see Figure 1 for exclusions and Table 1 for baseline char-
acteristics). The secondary study population included 21  947 
PLWH with baseline CD4  ≥350 cells/µL. Those who started 
ART earlier had a later entry year, a higher proportion of Blacks, 
and greater percentage HCV infection compared with the de-
ferred ART group (Table  1). Those in the earlier ART group 
initiated ART 0.1 years (1.5 months) after index on average, and 
the deferred ART group initiated ART 1.7  years (20  months) 
after index.

For the ITT analysis, 14  674 PLWH contributed 73  670 
person-years; 46% of participants were administratively cen-
sored (at end of 2014), 42% were lost-to-follow up, 8% died, 
and 4% had any cancer. Thirty percent of person-years for 
the primary study population was classified as earlier ART 
and 70% as deferred ART, with consistent distributions over 
time (Supplementary Appendix Figure 2). From baseline to 
15.5 years, mean CD4 increased from 418 to 700 cells/µL for 
the earlier ART group and from 428 to 634 cells/µL for the de-
ferred ART group, with an average 96 cells/µL higher in the 
earlier ART group. Incidence rates for all cancers are shown in 
Table 2 and indicated the earlier ART group had reduced in-
cidence rates compared with the deferred ART group for any 
cancer, ADC and any virus-related cancer, and similar rates 
comparing earlier and deferred ART for NADC, virus-related 
NADC, and virus-unrelated NADC. For individual cancers, we 

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa1046#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa1046#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciaa1046#supplementary-data


Earlier or Deferred ART and Cancer Risk  •  cid  2021:72  (1 June)  •  1903

noted reduced cancer incidence rates with earlier ART for KS 
and NHL, higher rates for prostate cancer and similar rates for 
HL and lung cancer.

Adjusted HRs for ITT results shown in Figure 2, which ig-
nore ART discontinuations, indicate a reduced risk with earlier 
ART compared with deferred ART for any cancer (hazard ratio 
[HR] 0.70, 95% confidence interval [CI], .52–.94), ADC (HR 
0.36, 95% CI, .21–.61), any virus-related cancer (HR 0.41, 95% 
CI, .26–.65), KS (HR 0.35, 95% CI, .17–.72), and NHL (HR 0.36, 
95% CI, .16–.79). No statistically significant differences between 
earlier and deferred ART were noted for any NADC, virus-
unrelated NADC, HL, lung cancer or prostate cancer, and there 
was a trend toward a protective effect for virus-related NADCs 
(HR 0.47, 95% CI, .21–1.02). Adjusted HRs for per-protocol 
results (Supplementary Appendix Figure 3), which accounted 
for ART discontinuations, were similar and in general stronger 

compared with ITT, except for virus-related NADC, which no 
longer was reduced for earlier ART.

As shown in Figure 3, starting ART earlier resulted in a lower 
cumulative incidence of cancer at all time points (5, 10, and 15 years 
after baseline) for any cancer, ADC, and any virus-related cancer, 
and for virus-related NADCs by 15 years only (P < .001). As shown 
in Table 3, by 15 years the cumulative incidence of cancer was lower 
with earlier ART for ADC (1.9% vs 4.5%), virus-related NADC 
(0.6% vs 2.3%) and any virus-related cancer (2.6% vs 6.9%).

Results for the secondary study population (Supplementary 
Appendix Figure 4) were similar with minor differences (eg, 
earlier ART was protective for NHL in ITT but not per-protocol 
analyses). Sensitivity analyses that excluded those with a cancer 
event during the first 6 months of follow-up had minimal influ-
ence on adjusted HRs with changes in inferences (Supplementary 
Appendix Figure 5).

Figure 1.  Flow diagram. Depiction of criteria used to identify eligible population and primary and secondary study populations from the source population. Primary study 
population consists of AIDS-free, ART-free adult persons living with HIV with baseline CD4 between 350 and 500 cells/µL and secondary study population consists of those 
with CD4 ≥350 cells/µL at baseline. Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; NA-ACCORD, North American AIDS Cohorts Collaboration 
on Research and Design.
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DISCUSSION

In this large North American HIV cohort study, we found that 
PLWH who started ART earlier compared with those who de-
ferred ART had significantly lower risks for any cancer (30% 
lower overall), ADC (64% lower), and any virus-related cancer 
(59% lower). Of individual cancers evaluated, we estimated 
lower overall risks with earlier ART for KS and NHL but not 

other cancer types. By 15  years, the cumulative incidence 
of cancer was lower with earlier ART for ADC, virus-related 
NADC, and any virus-related cancer.

Our results support the results of the START trial, which pro-
vided the most definitive evidence to date regarding effects of 
timing of ART initiation and risk of cancer [14]. Among 2326 
PLWH randomized to initiate ART immediately and 2359 

Table 1.  Baseline Characteristics for All Persons Living With HIV in the Primary Study Population (N = 14 674)

Characteristic All PLWH (N = 14 674) Earlier ARTa (N = 4353) Deferred ARTa (N = 9916)

Median entry year (IQR) 2004 (1999, 2008) 2006 (1999, 2010) 2003 (1999, 2007)

Median follow-up years (IQR) 3.8 (2.0, 7.3) 3.8 (2.1, 7.5) 4.0 (2.1, 7.5)

Median years to first ART (IQR) 0.6 (0.1, 1.8) 0.1 (0.1, 0.3) 1.7 (1.0, 3.1)

Median age (IQR), years 39 (31, 47) 39 (30, 47) 39 (30, 47)

Men, N (%) 12 553 (86) 3811 (88) 8376 (84)

HIV risk, N (%)    

  Men who have sex with men 5612 (38) 1767 (41) 3720 (38)

  Injection drug use 1896 (13) 599 (14) 1248 (13)

  Heterosexual 2236 (15) 612 (14) 1578 (16)

  Other 259 (2) 61 (1) 188 (2)

  Unknown 4671 (32) 1314 (30) 3182 (32)

Imputed HIV risk, N (%) 837 (6) 286 (7) 505 (5)

Race/ethnicity, %    

  White 6699 (46) 2137 (49) 4391 (44)

  Black 6197 (42) 1630 (37) 4385 (44)

  Hispanic 973 (7) 297 (7) 649 (7)

  Other 805 (5) 289 (7) 491 (5)

Imputed HIV race, N (%) 871 (6) 366 (8) 445 (4)

Median CD4 (IQR), cells/µL 429 (390, 466) 415 (380, 454) 434 (396, 469)

Median log HIV RNA (IQR), copies/mL 4.3 (3.8, 4.8) 4.6 (4.0, 5.0) 4.2 (3.7, 4.7)

Ever smoked, N (%) 9476 (65) 2876 (66) 6396 (65)

Imputed smoking, N (%) 4165 (28) 1155 (27) 2829 (29)

Ever hepatitis B infection, N (%) 824 (6) 228 (5) 574 (6)

Ever hepatitis C infection, N (%) 2915 (20) 705 (16) 2148 (22)

Abbreviations: ART, antiretroviral therapy; HIV, human immunodeficiency virus; IQR, interquartile range; PLWH, persons living with HIV.
aAmong PLWH with at least 6 months follow-up (N = 649 excluded with <6 months follow-up).

Table 2.  Crude Cancer Incidence Rates, by Earlier or Deferred ART, Among the Primary Study Population

Earlier ART Deferred ART

 N PY Incidence Rate per 1000 PY N PY Incidence Rate per 1000 PY

Cancer group       

  Any cancer 158 21 792 725.0 471  51 878 907.9

  ADC 34 22 374 152.0 166  53 163 312.2

  NADC 127 21 979 577.8 320  52 334 611.5

  Virus-related NADC 17 22 473 75.6 63  53 459 117.8

  Virus-unrelated NADC 111 22 071 502.9 261  52 546 496.7

  Any virus-related 50  22 282 224.4 225  52 962 424.8

Individual cancer       

  KS 16  22 482 71.2 73  53 408 136.7

  NHL 17  22 470 75.7 92  53 459 172.1

  HL 7  22 517 31.1 19  53 607 35.4

  Lung 31  22 544 137.5 64  53 592 119.4

  Prostate 37  22 402 165.2 44  53 425 82.4

Abbreviations: ADC, AIDS-defining cancer; ART, antiretroviral therapy; HL, Hodgkin lymphoma; KS, Kaposi sarcoma; NADC, non-AIDS-defining cancer; NHL, non-Hodgkin lymphoma; PY, 
person-years.
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randomized to defer ART, the authors reported a 74% reduction 
in virus-related cancers and a nonsignificant 51% reduction in 
virus-unrelated cancers. Here, with more than 10 times as many 
events and longer follow-up we also demonstrated a reduction 
in virus-related cancers but not virus-unrelated cancers. A sub-
sequent pooled analysis of the Strategies for Management of 
Antiretroviral Therapy (SMART) and START trials [34] did 
observe a higher risk of virus-unrelated cancers with deferred/
intermittent ART compared with immediate/continuous ART. 
Unique findings in our study compared with the results from 
the trial data included the protection for individual cancers in-
cluding KS and NHL, and the reduced cumulative incidence of 
virus-related NADCs for earlier ART by 15 years (0.6% vs 2.3%) 
but not virus-unrelated NADCs (9.8% vs 8.6%).

Few observational studies have evaluated the association 
of timing of ART initiation and cancer risk. Among >11  000 

PLWH in the Centers for AIDS Research Network of Integrated 
Clinical Systems (CNICS) cohort, of which some sites are also 
included in NA-ACCORD, Yanik et al [13] noted a lower risk of 
KS, lymphomas (HL or NHL combined) and HPV-related ADCs 
and NADCs but not for liver and virus-unrelated NADCs, with 
increasing CD4 at ART initiation. Consistent with our results 
here, among PLWH in the US Veterans Administration, Park 
et al [5] noted the highest risk of virus-related cancers among 
those with unsuppressed virus, and no association of virus sup-
pression for NADCs.

The mechanism for the lower risk of virus-associated cancers 
for the earlier ART group is likely via improved maintenance 
of higher CD4. In our study, the overall unadjusted mean dif-
ference in CD4 was 96 cells/µL. Many prior studies have docu-
mented associations between low CD4 and increased risk of 
specific cancers, but the studies were not designed specifically 

Figure 2.  Adjusted hazard ratios for intention-to-treat analysis of earlier versus deferred antiretroviral therapy initiation and risk of cancer among the primary study pop-
ulation (baseline CD4 350–500 cells/µL). HR and 95% CI for earlier versus deferred (reference) ART and risk for cancer are shown. Results from intention-to-treat marginal 
structural working models, with weights for ART initiation, and right-censoring due to death and loss to follow-up. With deferred ART as reference and as indicated on the 
figure, an HR < 1 indicates earlier ART is protective and an HR > 1 indicates deferred ART is protective. E-values presented in italics below HR estimates and CIs and inter-
preted as the minimum strength of an unmeasured confounder with both the exposure and outcome (on a risk ratio scale) that would account for the observed HR or CI above 
and beyond what is already accounted for in the models. Abbreviations: ADC, AIDS-defining cancer; CI, confidence interval; HL, Hodgkin lymphoma; HR, hazard ratio; KS, 
Kaposi sarcoma; NADC, non-AIDS-defining cancer; NHL, non-Hodgkin lymphoma.
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to evaluate the timing of ART use and cancer risk [3–10]. The 
protective effect for earlier ART may also be a result of reduced 
exposure to chronic inflammation [35, 36] but few studies have 
directly evaluated immune activation markers and cancer risk 
in PLWH [37]. Our findings of stronger effects with earlier ART 
for ADCs and virus-related NADCs than observed for other 
NADCs support the concept that immunodeficiency and in-
flammation may have substantial effects on the long-term ability 
to suppress oncogenic viruses [11]. It should be noted that our 
definition of virus-related cancers was based on associations re-
ported in the literature [12] and not actual infections. Future 
research is needed to further clarify the precise role of delayed 

ART and prolonged immunodeficiency on viral-induced onco-
genesis in PLWH.

Our study’s main limitation is the potential for residual con-
founding due to unmeasured confounding (eg, body mass index, 
diet, HPV) or imperfect measurement of smoking. However, as 
described in detail in the Supplementary Appendix, except for 
any cancer, the large E-values computed in sensitivity analyses 
suggest our results are robust to unmeasured confounders. An 
additional limitation was that the primary findings based on ITT 
analyses may be attenuated with greater levels of nonadherence 
to ART. The per-protocol results that censored at first evidence 
of ART discontinuation did have stronger results although 

Figure 3.  Cumulative incidence curves for earlier versus deferred ART initiation and risk of cancer among the primary study population (baseline CD4 350–500 cells/µL). 
Cumulative incidence curves for each of 6 cancer groups, including (A) any cancer; (B) ADC; (C) NADC; (D) NADC, virus-related; (E) NADC, virus-unrelated; and (F) any virus-
related cancers. The time scale is years from baseline, defined as date of the first clinically observed CD4 between 350 and 500 cells/µL. Solid lines correspond with cumu-
lative incidence curves for those that started earlier and dashed lines correspond with cumulative incidence curves for those that deferred ART. Cumulative incidence curves 
were mapped from adjusted estimates of the hazards from intention-to-treat analysis. P-values on plot are for tests that the differences between the areas under the 2 curves 
at 5, 10, and 15 years after baseline are 0. Abbreviations: ADC, AIDS-defining cancers; ART, antiretroviral therapy; NADC, non-AIDS-defining cancers.
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inferences were similar. We believe the ITT results provide 
greater generalizability to routine clinical care. Next, inferences 
rely on the assumption of correct specification of the logistic 
models that were used to estimate propensity scores, although the 
distribution of the inverse probability weights did not raise con-
cerns over practical violations of the positivity assumption due to 
strong confounding. Our study also included a low percentage of 
females and Hispanics and only US and Canadian populations in 
care, thus limiting generalizability to other populations.

In summary, our results further support test and treat all 
strategies because earlier ART initiation should substantially 
reduce the burden of virus-related cancers in PLWH. However, 
given that many PLWH are linked to care long after acquiring 
HIV, PLWH will continue to face a higher risk of these types 
of cancer, such that efforts to optimize cancer screening, HPV 
and HBV vaccination, and treatment of coinfections such as 
HCV are needed. Results also indicate that the risks of virus-
unrelated cancers may not be substantially reduced with earlier 
ART initiation, providing evidence of limited protection against 
these cancers with a reconstituted immune system. Thus, pre-
ventive efforts for virus-unrelated NADCs should focus on risk 
mitigation including screening and reduction in known cancer 
risk factors such as smoking, obesity, and unhealthy alcohol use.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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Phyllis Tien, and Gypsyamber D’Souza; Maple Leaf Medical Clinic: Frederic 
Crouzat, Mona Loutfy, Graham Smith, and Meenakshi Gupta; The McGill 
University Health Centre, Chronic Viral Illness Service Cohort: Marina 
B. Klein; Multicenter Hemophilia Cohort Study–II*: Charles Rabkin; 
Ontario HIV Treatment Network Cohort Study*: Abigail Kroch, Ann 

Table 3.  Cumulative Incidence of Cancer by 5, 10, and 15 Years After Baseline, With Adjusted Risk Differences and Adjusted Risk Ratios Comparing 
Earlier and Deferred ART

Cumulative Incidence, %

Adjusted RDa (95% CI) Adjusted RRa (95% CI) E-valueb for: RR (95% CI) Earlier ART Deferred ART (ref)

5 years      

  Any cancer 3.2 5.4 −2.2 (−3.8, −.6) .59 (.37, .82) 2.8 (1.7)

  ADC 0.6 2.2 −1.6 (−2.3, −.9) .28 (.12, .44) 6.6 (4.0)

  NADC 3.1 3.0 .1 (−1.2, 1.4) 1.03 (.61, 1.46) 1.2 (1.0)

  Virus-related NADC 0.4 0.4 0 (−.4, .3) .90 (.02, 1.78) 1.5 (1.0)

  Virus-unrelated NADC 2.7 2.6 .1 (−1.1, 1.3) 1.04 (.57, 1.51) 1.2 (1.0)

  Any virus-related 1.1 2.6 −1.6 (−2.5, −.7) .40 (.19, .61) 4.4 (2.7)
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  Any cancer 7.4 10.7 −3.3 (−7.0, .4) .69 (.42, .97) 2.3 (1.2)

  ADC 1.5 4.3 −2.8 (−5.4, −.3) .34 (.07, .62) 5.3 (2.6)

  NADC 6.1 7.1 −1.0 (−3.7, 1.8) .86 (.50, 1.22) 1.6 (1.0)

  Virus-related NADC 0.6 1.4 −.7 (−1.6, .1) .46 (.05, .88) 3.8 (1.5)

  Virus-unrelated NADC 5.6 5.9 −.3 (−3.0, 2.4) .94 (.50, 1.39) 1.3 (1.0)

  Any virus-related 2.2 5.2 −3.0 (−5.7, −.4) .42 (.15, .69) 4.2 (2.3)

15 years      
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  Virus-related NADC 0.6 2.3 −1.6 (−2.8, −.5) .27 (.03, .52) 6.9 (3.3)

  Virus-unrelated NADC 9.8 8.6 1.1 (−2.8, 5.1) 1.13 (.65, 1.62) 1.5 (1.0)

  Any virus-related 2.6 6.9 −4.2 (−7.3, −1.1) .39 (.15, .62) 4.6 (2.6)

Bolding indicates P < .05.

Abbreviations: ADC, AIDS-defining cancer; ART, antiretroviral therapy; CI, confidence interval; NADC, non-AIDS-defining cancer; RD, risk difference; RR, risk ratio.
aResults from intention-to-treat working marginal structural models with interaction terms between time and the exposure, and weights for ART initiation, and right-censoring due to death 
and loss to follow-up.
bE-values interpreted as the minimum strength of an unmeasured confounder with both the exposure and outcome (on an RR scale) that would account for the observed RR or CI beyond 
what is already accounted for in the models.
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